

Linux Administration
Cookbook

Insightful recipes to work with system administration
tasks on Linux

Adam K. Dean

BIRMINGHAM - MUMBAI

Linux Administration Cookbook
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Prachi Bisht
Content Development Editor: Deepti Thore
Technical Editor: Sayali Thanekar
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Jisha Chirayil
Production Coordinator: Arvindkumar Gupta

First published: December 2018

Production reference: 1311218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-252-9

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Adam K. Dean has used Linux since 2005, when he rendered his first computer
unbootable during an Ubuntu installation. Undeterred, a subsequent installation was
successful, notwithstanding the odd graphical and Wi-Fi issues.

Between bouts of writing about himself in the third person, Adam now runs his own
consultancy offering Linux expertise to a range of clients, though he hasn't forgotten
his origins, and still occasionally renders computers unbootable.

This book wouldn't have been possible without the cumulative effort of a number of
people. With that in mind, I'd like to first thank Lucy, for being supportive and
understanding of my seemingly erratic life; Sam and Jon, for their excellent feedback
on this book; and Martyn, Daj, AJ, Colin, Lath, Rob, and many others I've met in
my career, for shaping the engineer I am.

About the reviewer

Donald Tevault—but you can call him Donnie—got involved with Linux way back in
2006, and has been working with it ever since. He holds the Linux Professional
Institute Level 3—security certification, and the GIAC Incident Handler certification.
Donnie is a professional Linux trainer, and thanks to the magic of the internet, teaches
Linux classes literally the world over from the comfort of his living room.

Sam Norbury is someone who you never find frowning, at best you'll get a non-
informative mmm from his general direction, which gives nothing away as to the
inner-workings of his head, or what he thinks of your latest suggestion. Prized for his
Ansible knowledge and patience, he now splits his time between consulting and
travelling the world, spreading apathy everywhere he goes.

Jon Nield is a senior engineer who's reputation for calm and methodical problem
solving has earned him a reputation as one of the most easy-going and nicest guys in
tech. Having worked in the computing and server industry for many years, his
expertise in areas such as C, and the underpinnings of the Linux operating system,
make him a highly-sought consultant.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction and Environment Setup 7
Introduction 7
Understanding and choosing a distribution 8

Ubuntu 9
Debian 11
CentOS – the one we'll mostly be using 12
Red Hat Enterprise Linux 13

Installing VirtualBox 14
Installing VirtualBox on Ubuntu 15

Command-line installation 15
Graphical installation 16

Installing VirtualBox on macOS 17
Command-line installation 17
Graphical installation 17

Installing VirtualBox on Windows 18
Graphical installation 18

Installing our chosen distribution manually 19
Obtaining our CentOS installation media 19

Checking the checksum 21
Setting up our VM 22

VirtualBox main window 23
CentOS installation 24

Accessing and updating our VM 32
Logging in from the VirtualBox window 33
Logging in from the host Terminal 35

Making sure sshd is running 36
Making sure that VirtualBox lets us through 36

Updating our VM 39
Understanding how VMs differ 41

dmidecode 41
lshw 44

Quick sudo explanation 46
Using Vagrant to automatically provision VMs 47

Kickstart 48
Vagrant 48

Anecdote – try, try, and try again 52

Chapter 2: Remote Administration with SSH 55
Introduction 55

Table of Contents

[ii]

Technical requirements 56
Generating and using key pairs with ssh-keygen 57

Getting ready 59
How to do it… 60

RSA example 60
Ed25519 example 62

How it works… 63
The public and private key files 64
The authorized_keys file 66

There's more... 68
To passphrase or not to passphrase 69
Additional flags 69

See also 70
SSH client arguments and options 71

Getting ready 71
How to do it… 71

SSH using hostnames instead of IPs 71
SSHing to a different user 72
SSHing to a different port 72
SSHing to an IPv6 address 73
SSHing before running a command 74
SSH and X11 forwarding 74

How it works… 75
There's more… 75
See also 76

Using a client-side SSH configuration file 76
Getting ready 76
How to do it… 77
How it works… 78
There's more… 83
See also 84

Modifying the server-side SSH configuration file 84
Getting ready 84
How to do it… 85

Changing the default port 85
Changing the listen address 87
Changing the daemon logging level 88
Disallowing root login 89
Disabling passwords (force key use) 90
Setting a message of the day (motd) 90
The UseDNS setting 91
AllowUsers 92

How it works… 92
There's more… 93
See also 93

Rotating host keys and updating known_hosts 94
Getting ready 94

Table of Contents

[iii]

How to do it… 96
How it works… 98
There's more… 98

Technical requirements 99
Using local forwarding 99

Getting ready 99
How to do it… 100

On the command line 100
Using an SSH config file 101

How it works… 102
There's more… 103

Watching our SSH session 103
Connecting to systems beyond the remote host 104

See also 104
Using remote forwarding 105

Getting ready 105
How to do it… 105

On the command line 105
Using an SSH config file 106

How it works… 106
There's more… 107
See also 108

ProxyJump and bastion hosts 109
Getting ready 109
How to do it… 109

Using an SSH config file 110
How it works… 110
There's more… 113

Multiple hosts 113
ProxyCommand 114
Bastion hosts 115

Using SSH to create a SOCKS Proxy 116
Getting ready 117
How to do it… 117

On the command line 117
Using an SSH config file 118

How it works… 119
There's more… 121

Understanding and using SSH agents 121
Getting ready 122
How to do it… 123
How it works… 125
There's more… 125

ssh-add 126
AddKeysToAgent 127

See also 127

Table of Contents

[iv]

Running multiple SSH servers on one box 128
Getting ready 128
How to do it… 128
How it works… 130
There's more… 131

Summary 132

Chapter 3: Networking and Firewalls 134
Introduction 134
Technical requirements 135
Determining our network configuration 136

Getting ready 137
How to do it… 137

Discerning the IP 137
Discerning the IP (deprecated method) 139
Discerning the gateway address 140
Discerning the gateway address (deprecated method) 141

How it works… 141
There's more… 141

Checking connectivity 142
Checking what route our box will take 142

See also 144
More examples of using the ip suite 144

Getting ready 144
How to do it… 144

Adding and removing an IP against an interface 144
Shutting down and bringing up an interface administratively 145
Adding a new route to our routing table 146

How it works… 147
There's more… 148
See also 149

Adding and configuring network interfaces 149
Getting ready 149
How to do it… 150

Configuring a new interface 150
How it works… 151
There's more… 152
See also 153

Modern domain name resolution on Linux 153
Getting ready 154
How to do it… 154

Querying a domain 154
Checking the domain resolution settings 155
Changing the domain resolution settings 156

How it works… 157
There's more… 158
See also 159

Table of Contents

[v]

Configuring NTP and the problems we face 159
Getting ready 160
How to do it… 160

Checking if NTP is running 161
Checking if NTP traffic is flowing 161
Enabling an NTP client 163
Enabling an NTP server 164

How it works… 165
There's more… 166
See also 167

Listing firewall rules on the command line 167
Getting ready 168
How to do it… 168

iptables 168
firewall-cmd 172
ufw 173

How it works… 174
There's more… 174
See also 174

Adding and removing firewall rules on the command line 175
Getting ready 175
How to do it… 175

firewall-cmd 175
iptables 177
ufw 178

How it works… 179
There's more… 180

Determining the running services and ports in use 182
Getting ready 182
How to do it… 183
How it works… 186
There's more… 187

Debugging with iftop 188
Getting ready 188
How to do it… 189
How it works… 191
There's more… 191

Summary 192

Chapter 4: Services and Daemons 195
Introduction 195
Technical requirements 196
Determining running services 197

How to do it… 198
How it works… 200
There's more… 201

Table of Contents

[vi]

See also 201
Listing installed services 201

Getting ready 201
How to do it… 202
How it works… 202
There's more… 203
See also 205

Starting and stopping services 205
How to do it… 206

Stopping our service 206
Starting our service 206

How it works… 207
There's more… 207
See also 208

Changing which services start and stop at boot 208
Getting ready 208
How to do it… 208

Enabling our service 209
Disabling our service 210

How it works… 210
There's more… 210
See also 211

Common services you might expect to see 211
How to do it… 211

auditd.service 211
chronyd.service 211
crond.service 212
lvm2-*.service 212
NetworkManager.service 212
nfs.service 212
postfix.service 212
rsyslog.service 213
sshd.service 213
systemd-journald.service 213
systemd-logind.service 213

How it works… 213
There's more… 214
See also 214

Understanding service unit files 214
How to do it… 215
How it works… 217
There's more… 218
See also 218

Customizing systemd unit files 218
How to do it… 218
How it works… 219

Table of Contents

[vii]

There's more… 220
See also 221

Testing running services 221
Getting ready 221
How to do it… 222
How it works… 223
There's more… 223

Writing a basic unit file 223
How to do it… 223
How it works… 225
There's more… 225
See also 227

Working with systemd timers (and cron) 227
How to do it… 228

systemd timers 228
cron 229

How it works… 231
There's more… 231
See also 233

Other init systems 234
Getting ready 234
How to do it… 234

CentOS 6 and Upstart 234
Debian 7 and SysV init 236

How it works… 237
There's more… 238
See also 238

Round-up – services and daemons 238

Chapter 5: Hardware and Disks 240
Introduction 240
Technical requirements 241
Determining hardware 242

Getting ready 242
How to do it… 243

lspci 243
lshw 246
/proc 249
/sys 251
dmesg (and the kernel logs) 252
dmidecode 253
/dev 254

How it works… 257
Testing hardware 257

Getting ready 258
How to do it… 258

Table of Contents

[viii]

Self-monitoring, analysis, and reporting technology (SMART) 258
hdparm 259
Memory testing 260

How it works… 262
There's more… 262

The role of the kernel 263
Getting ready 263
How to do it… 263
How it works… 268
There's more… 269

Disk configuration on Linux 269
Getting ready 269
How to do it… 270

Listing disks with lsblk 270
Listing mount points with df 271
Listing filesystems with df 272
Listing logical volume manager disks, volume groups, and logical
volumes 273

Physical disks 273
Volume groups 274
Logical volumes 275

Listing swap 276
How it works… 277
There's more… 278

The filesystem hierarchy 279
Getting ready 279
How to do it… 279
How it works… 280
There's more… 281

Configuring a blank disk and mounting it 282
Getting ready 282
How to do it… 282
How it works… 286
There's more… 287

Re-configuring a disk using LVM 288
Getting ready 288
How to do it… 289
How it works… 291
There's more… 291

Using systemd-mount and fstab 293
Getting ready 293
How to do it… 294

fstab 294
systemd-mount 295

How it works… 296
There's more… 297
See also 297

Table of Contents

[ix]

Disk encryption and working with encryption at rest 298
Getting ready 298
How to do it… 299
How it works… 301
There's more… 302
See also 303

Current filesystem formats 304
Getting ready 305
How to do it… 305
How it works… 306

Upcoming filesystem formats 307
Getting ready 307
How to do it… 307
How it works… 308

Round-up – hardware and disks 309

Chapter 6: Security, Updating, and Package Management 310
Introduction 310
Technical requirements 311
Checking package versions 312

Getting ready 313
How to do it… 313

CentOS 313
Debian 317

How it works… 321
There's more… 322

Checking the OS version 323
How to do it… 323

CentOS 323
Debian 326
Ubuntu 327

How it works… 330
There's more… 330
See also... 331

Checking for updates 331
How to do it… 332

CentOS 332
Debian 335

How it works… 338
There's more… 338

Automating updates 339
How to do it… 339

CentOS 339
Debian 343

How it works… 345
There's more… 347

Table of Contents

[x]

Automatic provisioning 347
Checking mailing lists and errata pages 348

Getting ready 348
How to do it… 348

Package changelogs 349
Official sources and mailing Lists 351
Other sources 352

How it works… 353
There's more… 353

Using snaps 353
How to do it… 354

Searching out snaps 354
Installing snaps 355
Listing installed snaps 355
Interacting with daemon snaps 355
Removing snaps 356

How it works… 357
There's more… 358
See also... 359

Using Flatpak 361
Getting ready 361
How to do it… 362

Searching for a package 362
Installing our package 362
Running our package 363
Listing installed packages 364
User installations 364
Removing packages 364

How it works… 365
There's more… 365
See also... 366

Using Pip, RubyGems, and other package managers 366
Getting ready 366
How to do it… 367

Pip 367
RubyGems 369

How it works… 371
There's more… 371

When to use programming-language package managers 371
--user/ --system (pip) and --user-install (gem) 372
Python virtualenv 372

See also 372
Dependency hell (a quick word) 373

Getting ready 373
How to do it… 374

System-installed and third-party installed versions of Pip 374
Dependency problems in conflicting Pip packages 375

Table of Contents

[xi]

Apt's conflict solution 376
Potential solutions 377

How it works… 378
Compiling from source 378

Getting ready 378
How to do it… 379
How it works… 386
There's more… 387
See also... 387

Technical requirements 388
Adding additional repositories 388

Getting ready 388
How to do it… 388

CentOS – Adding the EPEL repository with epel-release 389
CentOS – Adding the ELRepo repository by file 390
Debian – Adding additional repositories 393
Ubuntu – Adding PPAs 395

How it works… 396
Roundup – security, updating, and package management 396

Chapter 7: Monitoring and Logging 398
Introduction 398
Technical requirements 399
Reading local logs 400

Getting ready 401
How to do it… 401
How it works… 404
There's more… 407

Using journalctl on systemd systems 408
Getting ready 408
How to do it… 408
How it works… 414
There's more… 415
See also 416

Centralizing logging 416
Getting ready 417
How to do it… 417

Remote logging with rsyslog – UDP example 418
Remote logging with rsyslog – TCP example 419
Remote logging with journald 420

How it works… 422
There's more… 422

Local resource measuring tools 423
Getting ready 424
How to do it… 424

top 424

Table of Contents

[xii]

free 428
htop 429
NetData 431

How it works… 432
There's more… 433

Local monitoring tools 434
Getting ready 434
How to do it… 434

atop 434
sar 437
vmstat 438

How it works… 439
Remote monitoring tools 440

Getting ready 441
How to do it… 441

Nagios 441
Icinga2 446

How it works… 464
There's more… 464
See also 465

Centralizing logging with the Elastic Stack 466
Getting ready 466
How to do it… 467

centos2 469
debian1 and debian2 469
Kibana 470

How it works… 473
There's more… 474

Roundup – Monitoring and Logging 475

Chapter 8: Permissions, SELinux, and AppArmor 477
Introduction 477
Technical requirements 478
Linux file permissions 479

Getting ready 479
How to do it… 479
How it works… 480

exampledir 480
examplefile 481

There's more… 482
Root access to directories and files 482
Other execute characters 482

Modifying file permissions 484
Getting ready 484
How to do it… 484

chown 484
chmod 486

Table of Contents

[xiii]

chattr 486
How it works… 487

chown 487
chmod 487
chattr 488

There's more… 488
Avoiding octal notation (if you hate it) in chmod 488
Hierarchical permissions 489

See also 490
Technical requirements 491
Users and groups 491

Getting ready 492
How to do it… 492

whoami 492
Users on a system 492
Groups on a system 494
Daemons using users 495

How it works… 496
There's more… 496

AppArmor and modification 497
Getting ready 497
How to do it… 497
How it works… 499
There's more… 500

SELinux and modification 501
Getting ready 502
How to do it… 502
How it works… 506
There's more… 508
See also 508

Checking SELinux is running, and the importance of keeping it
running 508

Getting ready 509
How to do it… 509
How it works… 513
There's more… 514
See also 514

Resetting SELinux permissions 515
Getting ready 515
How to do it… 515
How it works… 517
There's more… 517

Roundup – permissions, SELinux, and AppArmor 518

Chapter 9: Containers and Virtualization 520
Introduction 520

Table of Contents

[xiv]

Technical requirements 522
What is a container? 522

Getting ready 523
How to do it… 523
How it works… 525

cgroups (Linux control groups) 525
namespaces 525
The breakdown of our creation 526

There's more… 527
The LXD daemon 527

See also 528
Installing Docker 528

Getting ready 529
How to do it… 529
How it works… 530
There's more… 532

Slightly more 533
See also 533

Running your first Docker container 533
Getting ready 533
How to do it… 534
How it works… 535

Creating a container 535
Listing our container 536
Executing commands in our container 536
Stopping our container 537

Debugging a container 537
Getting ready 537
How to do it… 537
How it works… 539
There's more… 539

Searching for containers (and security) 540
Getting ready 540
How to do it… 540
How it works… 545
There's more… 547

What is virtualization? 547
Getting ready 548
How to do it… 548
How it works… 550
There's more… 551

Starting a QEMU machine with our VM 551
Getting ready 552
How to do it… 552
How it works… 555
There's more… 556

Table of Contents

[xv]

See also 557
Using virsh and virt-install 558

Getting ready 558
How to do it… 558

virt-install 558
virsh 559

How it works… 563
There's more… 564

Comparing the benefits of local installs, containers, and VMs 565
Getting ready 565
How to do it… 565

Local Nginx install 566
Docker Nginx install 567
VM Nginx install 568

How it works… 569
Brief comparison of virtualization options (VMware, proxmox,
and more) 570

Getting ready 570
How to do it… 570

VMware ESXi 570
Proxmox Virtual Environment 572
OpenStack 573

How it works… 575
Roundup – containers and virtualization 576

Chapter 10: Git, Configuration Management, and Infrastructure as
Code 578

Introduction 578
Technical requirements 579
What is Git? 580

Getting ready 580
How to do it… 581

Cloning 581
Exploring and making changes 581

How it works… 584
There's more… 586

Setting up a Git server 588
Getting ready 588
How to do it… 589
How it works… 589
There's more… 590

Committing to our Git repository 591
Getting ready 591
How to do it… 592
How it works… 594

Matching versus simple 594

Table of Contents

[xvi]

Branching our Git repository and committing changes 595
Getting ready 595
How to do it… 595
How it works… 599
There's more… 601
See also 602

Installing Ansible 602
Getting ready 603
How to do it… 603
How it works… 608
There's more… 611

The raw module 611
The shell and command modules 612

See also 613
Using Ansible to install Java from a role 613

Getting ready 613
How to do it… 614
How it works… 616
There's more… 618
See also 620

Storing our Ansible configuration in Git 620
Getting ready 620
How to do it… 621
How it works… 621

Exploring options for IaC 622
Getting ready 623
How to do it… 624

Terraform 624
Packer 628

How it works… 630
There's more… 634
See also 635

Roundup – Git, Configuration Management, and Infrastructure
as Code 635

Chapter 11: Web Servers, Databases, and Mail Servers 638
Introduction 638
Technical requirements 640
Installing and understanding a web server 640

Getting ready 641
How to do it… 642

Installing httpd (Apache) on CentOS 642
Installing Nginx on Debian 643

How it works… 644
There's more… 645

Basic Apache configuration 645

Table of Contents

[xvii]

Getting ready 646
How to do it… 646
How it works… 649
There's more… 650
See also 651

Basic Nginx configuration 651
Getting ready 652
How to do it… 652
How it works… 654
There's more… 656
See also 656

SSL, TLS, and LetsEncrypt 657
Getting ready 659
How to do it… 659
How it works… 661
There's more… 662

Let's Encrypt 663
Work environment certificates 663

See also 663
Basic MySQL or MariaDB Installation 664

Getting ready 665
How to do it… 665

Listing, creating, and selecting databases and tables 666
How it works… 669
There's more… 670
See also 670

Basic PostgreSQL installation 670
Getting ready 671
How to do it… 671

Listing, creating, and selecting databases and tables 671
How it works… 673

Local MTA usage and configuration (Postfix) 674
Getting ready 675
How to do it… 676

main.cf 678
/etc/aliases 678

How it works… 679
There's more… 681
See also 682

Local MTA usage and configuration (Exim) 682
Getting ready 683
How to do it… 683
How it works… 685
There's more… 689

NoSQL documents (MongoDB example) 689
Getting ready 690

Table of Contents

[xviii
]

How to do it… 691
How it works… 694
There's more… 695

NoSQL KV (Redis example) 696
Getting ready 696
How to do it… 697
How it works… 698

Messaging brokers and queues (RabbitMQ example) 699
Getting ready 701
How to do it… 701
How it works… 704

Roundup – web servers, databases, and mail servers 705
Super personal preference time! 707

Chapter 12: Troubleshooting and Workplace Diplomacy 708
Introduction 708
Technical requirements 709
What is troubleshooting? 710

How to do it… 710
Isolating the real issue 711

Getting ready 711
How to do it… 712

Giving estimates and deciding on next steps 714
Getting ready 714
How to do it… 715
There's more… 716

Using ss, iftop, tcpdump, and others for network issues 716
Getting ready 717
How to do it… 717

Ping 717
ss 719
iftop 720
tcpdump 722

Using cURL, wget, and OpenSSL for remote web issues 723
Getting ready 724
How to do it… 724

cURL 725
Wget 727
OpenSSL 729

Using iotop, top, and vmstat for local resource issues 734
Getting ready 734
How to do it… 734

iotop 735
top 738
vmstat 739

Using ps, lsof, Strace, and /proc for service issues 740

Table of Contents

[xix]

Getting ready 740
How to do it… 741

ps 741
lsof 742
Strace 743
/proc 745

Making a copy of problems for later debugging 745
Getting ready 746
How to do it… 746

Temporary solutions and when to invoke them 747
How to do it… 748

Handling irate developers 749
How to do it… 750

Handling irate managers 751
How to do it… 751

Handling irate business owners 752
How to do it… 753

Roundup - Troubleshooting and workplace diplomacy 753
Don't trust time 753
Don't overlook the simple 754
On "cloud" deployments 754
Learn from my mistakes 755

Chapter 13: BSDs, Solaris, Windows, IaaS and PaaS, and DevOps 756
Introduction 756
Determining the type of system you're on 757

How to do it… 757
uname 758
The filesystem check 758

How it works… 759
There's more… 760

Understanding how the BSDs differ 760
The differences 761

FreeBSD 761
OpenBSD 763

Understanding how Solaris and illumos differ 765
The differences 765

Oracle Solaris 766
illumos 767

Understanding how Windows differs 768
The differences 768

IaaS (Infrastructure as a Service) 770
IaaS providers and features 771

PaaS (Platform as a Service) 772
PaaS providers and features 773

The Ops versus DevOps Wars 774

Table of Contents

[xx]

More of a skirmish, really 776
Roundup – BSDs, Solaris, Windows, IaaS and PaaS, DevOps 777

Other Books You May Enjoy 779

Index 782

Preface
When it comes to servers, there's no more popular OS than Linux and its family of
distributions. No matter which company you work for these days, there's a good
chance at least part of their infrastructure runs some flavor of Linux.

Because of this, there's never been a better time to get into Linux system
administration and engineering (along with the tangentially related disciplines),
though I would say that, of course... being a Linux sysadmin.

This book aims to be your reference and guide for certain common tasks in the Linux
world, from the mundane and basic to the fun and complex, though anything can be
complex if you try hard enough. I hope that, while reading it, you find something
new (preferably a lot of new things) and maybe come across suggestions that you
wouldn't have come across otherwise.

We're also going to get practical in our work (because just reading about things is
boring), using virtual machines throughout to achieve our intended goals.

Who this book is for
This book is for a mixture of people, from the new and inexperienced, to the old and
grumpy (like me).

It aims to teach you the basics of what you need to know to get started, while also
introducing some real-world examples and suggesting various tips and tricks that
you may not know already.

Even if you've been using Linux for a couple of decades, I hope you'll find something
in this book that you didn't know, or find enlightening.

What this book covers
Chapter 1, Introduction and Environment Setup, explains how to set up a vanilla
environment so that you understand what Vagrant does behind the scenes, and why
we do what we do in terms of installation.

Chapter 2, Remote Administration with SSH, helps you understand the marvel that is
SSH, and how it can make your life not only easier, but significantly better.

Preface

[2]

Chapter 3, Networking and Firewalls, covers a topic I find to be more of a pain than
any other, networking and firewalling. We're going to look at the importance of each
of these.

Chapter 4, Services and Daemons, inspects the nature of daemons, hunting them
down, and killing them when they get too power-hungry. Services are also covered in
this chapter.

Chapter 5, Hardware and Disks, covers the most treacherous part of any system, the
hardware. Here, we'll talk about the evils of disks and how you might go about
troubleshooting a physical system.

Chapter 6, Security, Updating, and Package Management, covers the stuff that makes
servers useful. Packages have to get on systems in some way, shape, or form, and
here, we'll investigate how they do it!

Chapter 7, Monitoring and Logging, explores the two topics most sysadmins groan at,
knowing they're important at the same time. We're going to look at why you need
both sensible monitoring and robust logging.

Chapter 8, Permissions, SELinux, and AppArmor, covers the innate security systems in
place on a lot of servers, no matter how painful they might be to use and configure.
Here, we'll talk about their importance.

Chapter 9, Containers and Virtualization, explores a favorite topic of mine, the
segmentation of operating systems and how you might go about accomplishing such
an arcane task.

Chapter 10, Git, Configuration Management, and Infrastructure as Code, discusses the
importance of not losing your configuration when your computer randomly dies, and
the ease with which solutions can be spun up and torn down.

Chapter 11, Web Servers, Databases, and Mail Servers, looks at some of the core
functionality servers can provide, underpinning the majority of what the internet was
invented to accomplish: communication.

Chapter 12, Troubleshooting and Workplace Diplomacy, expounds some basic
troubleshooting techniques, and contains a philosophical discussion on keeping your
head in stressful situations. The author is something of an authority on this.

Chapter 13, BSDs, Solaris, Windows, IaaS and PaaS, and DevOps, is a fun final chapter
on semi-related systems in the Linux world, some of which you'll definitely come
across, and some which should have been greater than they turned out to be.

Preface

[3]

To get the most out of this book
You're going to need a computer. If you intend to work along with the examples, the
easiest way to do so is by utilizing Vagrant, which is software for building portable
development environments programmatically.

At the start of each chapter with working code, you'll find a Vagrantfile entry. This
can be downloaded from the links provided later in this preface, but it can also be
typed out if you prefer.

For the best experience, I'd recommend a computer with at least four cores and
preferably 8 GB of RAM, though you might be able to tweak each entry for your own
purposes.

This book assumes basic knowledge of moving around a Linux filesystem using the
command line.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ /github. com/
PacktPublishing/ Linux- Administration- Cookbook. In case there's an update to the
code, it will be updated on the existing GitHub repository.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook
https://github.com/PacktPublishing/Linux-Administration-Cookbook

Preface

[4]

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https:/ /www. packtpub. com/ sites/ default/
files/downloads/ 9781789342529_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "I've put together the following Vagrantfile for use in
this chapter."

A block of code is set as follows:

-*- mode: ruby -*-
vi: set ft=ruby :

$provisionScript = <<-SCRIPT
sed -i 's#PasswordAuthentication no#PasswordAuthentication yes#g'
/etc/ssh/sshd_config
systemctl restart sshd
SCRIPT

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

[vagrant@centos2 ~]$ ip a
<SNIP>
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 08:00:27:56:c5:a7 brd ff:ff:ff:ff:ff:ff
 inet 192.168.33.11/24 brd 192.168.33.255 scope global
noprefixroute eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fe56:c5a7/64 scope link
 valid_lft forever preferred_lft forever

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342529_ColorImages.pdf

Preface

[5]

Any command-line input or output is written as follows:

[vagrant@centos1 ~]$ ssh centos2 -X

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "The last thing to do from the main screen is set our INSTALLATION
DESTINATION."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How
to do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any
software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

Preface

[6]

There's more…
This section consists of additional information about the recipe in order to make you
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us
at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packt.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introduction and Environment

Setup
In this chapter, we will cover the following recipes:

Understanding and choosing a distribution
Installing VirtualBox
Installing our chosen distribution manually
Connecting to our virtual machine (VM)
Accessing and updating our VM
Understanding how VMs differ
Quick sudo explanation
Using Vagrant to automatically provision VMs
Anecdote (try, try, and try again)

Introduction
Before we get into the nitty-gritty of what distribution (sometimes shortened to
"distro") we're going to use, we must first take a rather large step backwards and
consider the concept of Linux in a somewhat philosophical way.

A good description of "what Linux is" can be hard to pin down, due in no small part
to a level of confusion willfully propagated by IT professionals, because it makes
them sound much smarter than they actually are when they come to explain it.

Because you're reading this book, I'm going to assume that you know of Linux at a
high level; you know that it's an operating system (OS) like Windows or macOS, that
it's not seen much of the limelight, and that it's not generally used on the desktop.

Introduction and Environment Setup Chapter 1

[8]

This assessment is both right and wrong, depending on who you're speaking to.

Laid-back systems administrators (sysadmins) will lean back further, nod their 80s
era mohawk, and agree that Linux is an OS—and a decent one at that. They will then
go back to playing with whatever trendy software they're learning this week so that
they can try and shoehorn it into the infrastructure next week.

Self-proclaimed graybeards will stop what they're doing, sigh audibly, and pick up
their fourth cup of coffee before swiveling around to give you a lecture on the
difference between GNU/Linux (or GNU+Linux) and the Linux kernel.

A kernel is an important part of any complete OS. It's the piece of
software that sits between the hardware and the software,
performing the grunt work of translating between the two. All
operating systems will have a kernel of one sort or other, for
example, the macOS kernel is call XNU.

The lecture you receive will be tedious, will involve names such as Richard Stallman,
Linus Torvalds, and possibly even Andrew Tanenbaum, and may even take upwards
of an hour, but the main takeaway will be that Linux is the accepted name of the OS
you're learning about, while also being technically incorrect. They will say that Linux
is really just the kernel, and everything beyond that is a distribution wrapped atop
the GNU tools suite.

It is considered sensible to avoid this debate at all costs.

For the purposes of this book, when I refer to Linux, I'm talking
about the OS as a whole, and when I refer to the kernel, I'm really
talking about the Linux kernel, the development of which is
spearheaded by Linus Torvalds.

Understanding and choosing a
distribution
Linux, as hinted at in the preceding section, is fragmented. There's no better way to
describe this, due to the sheer number of different distributions you can download
from a multitude of different vendors. Some of these vendors are for-profit, offering
support contracts and SLAs with your purchase of their OS, and some are entirely
voluntary, manned by one person in their garage.

Introduction and Environment Setup Chapter 1

[9]

There are literally hundreds of distributions to choose from, and each has their
advocate-army to tell you why theirs is "the one true distribution" and "there's really
no reason to go shopping around for a different one."

There are also Linux distributions that have been created for specific
purposes, such as Red Star OS, the purportedly North Korean Linux
distribution.

The truth of the matter is that most businesses use the Linux distribution they do
because it was:

The first one that popped up when the owner Googled free OS
The one the first IT Administrator liked
The one that offers a contract they can invoke when something breaks

Going through each distribution that's around at the moment would be futile, as
they're being created or abandoned on an almost weekly basis. Instead, I'm going to
run through a popular selection (in the server space, rather than the desktop), explain
some key differences, and then talk about which I'll be using for the rest of this book.

Don't be deterred if the distribution your business uses isn't one we talk about here –
most of the tooling is consistent across distributions, and where it differs,
documentation exists to help you out.

If you want to learn more about the various distributions available
to you, a site called DistroWatch (https:/ /distrowatch. com/) has
been around for years, and offers a regularly updated list of most
Linux distributions, organized by page hit ranking.

Ubuntu
Ubuntu is the first Linux distribution I ever installed, and I'd wager the same could be
said for a lot of people who started in Linux around the mid-2000s. It's also the
distribution I'm using to write this book.

It has enjoyed consistent mindshare on the desktop, thanks to its decent attempt at
marketing (including its position in Google's rankings when searching Linux), its
perception as Linux for Human Beings, and its user-friendliness.

https://distrowatch.com/
https://distrowatch.com/
https://distrowatch.com/
https://distrowatch.com/
https://distrowatch.com/
https://distrowatch.com/
https://distrowatch.com/
https://distrowatch.com/

Introduction and Environment Setup Chapter 1

[10]

Downstream from Debian, Ubuntu's development is headed by Canonical, and while
they started with an emphasis on making a rock-solid desktop OS, they have since
moved into the lofty realms of attempting to dominate the server space, and have
entered the IoT device market too.

When we say "downstream" in this sense, we mean that Ubuntu
shares a lot of its foundation with Debian, except it adds some extra
bits and takes some bits out. In the Linux world, there are few from-
scratch distributions, with most using another distribution as their
bedrock.

Known also for its cutesy naming convention (18.04 being Bionic Beaver), the fact
Ubuntu was so popular on the desktop meant it was the obvious distribution of
choice for sysadmins to install on their servers, reaching for what they were already
familiar with.

More recently, it's become increasingly common to find Ubuntu installations when
dealing with inherited systems, usually a long-term support (LTS) release (so that
confusion and headaches around OS upgrades can be avoided for a reasonable length
of time.)

Ubuntu releases on a six-monthly cycle, with every two years being an LTS release
(14.04, 16.04, and 18.04, most recently). Their numbering convention is year-released,
followed by month (so April 2018 is 18.04). It is possible to upgrade from version to
version of Ubuntu.

Canonical also aren't shy of introducing new technology and software in Ubuntu,
even when it diverges from their Debian base. Recent examples of this include the
following:

Snaps: A way of distributing distribution-agnostic software
Upstart: A replacement initialization system that was later also replaced by
systemd

Mir: A display server, which was initially conceived as a way to replace the
ageing X Window System

Ubuntu can be downloaded from https:/ / ubuntu. com.

https://ubuntu.com
https://ubuntu.com
https://ubuntu.com
https://ubuntu.com
https://ubuntu.com
https://ubuntu.com
https://ubuntu.com

Introduction and Environment Setup Chapter 1

[11]

Debian
As mentioned previously, Debian (the universal OS) is the basis for a lot of other
distributions that came later, but it has consistently been one of the most popular,
both on the desktop and on servers. It is still highly likely that you will choose to
install Debian yourself, or will inherit a system running this distribution, with its
reputation for stability.

Traditionally, the server-space war was fought between two camps, the Debian
Druids and the CentOS Cardinals. In more recent years, newcomers have entered the
fray (like Ubuntu,) but these two still hold a considerable amount of hardware to
ransom.

Releasing every two or three years, the Debian versions are named after Toy Story
characters (7—Wheezy, 8—Jessie, 9—Stretch). They have a reputation for being one of
the most stable Linux distributions around, with tried and tested versions of software,
as well as sensibly backported fixes.

Backporting is the act of taking a fix from a recent release of
software, such as the kernel itself, and incorporating those fixes into
the version you're running, recompiling it into a new piece of
software. Features are rarely backported, due to features having the
potential to introduce more breaking changes into long-term
support distributions.

Some criticism is sometimes leveled at Debian because it generally has older versions
of packages available in its release version, which may not include all the trendy and
cool features a systems administrator wants, or a developer desires. This isn't fair,
given that people generally look for stability and security in the server world, over
the latest and greatest version of Node.js.

Debian has staunch defenders, and it holds a special place in a lot of hearts, though
it's unusual to see it in some Enterprise environments because it's developed by the
Debian Project, rather than a traditional company that can offer support contracts. In
my anecdotally dismissible experience, I have more often seen Debian in smaller
companies who needed a quick solution, and slightly larger companies who still run
some legacy systems.

Introduction and Environment Setup Chapter 1

[12]

Debian can be downloaded from https:/ / www.debian. org.

CentOS – the one we'll mostly be using
The other part of the traditional server-space war, CentOS features its own soldiers
and martyrs. It is still widely used, and has a reputation for stability and boredom
that rivals Debian's.

The Community Enterprise Operating System (CentOS) is a freely available and
compiled version of the Red Hat Enterprise Linux distribution, which aims to offer
functional compatibility, generally replacing the Red Hat logo with the CentOS logo
to avoid trademark infringement. (In January of 2014 it was announced that Red Hat
was joining forces with CentOS, to help drive and invest in CentOS development.)

Because of its nature, a lot of systems administrators have installed CentOS to better
understand the Red Hat world, because (as mentioned previously) Red Hat has a
good reputation in Enterprise companies, so it would make sense to install something
so strikingly similar.

This installation trend goes both ways. I have seen companies who started out by
installing CentOS because it was readily available and allowed them to design their
infrastructure easily, utilizing publicly available and free repos, before moving to a
RHEL deployment for the finished product.

Repos is a short form way of saying repositories, which are the
common location from which software is installed on a Linux
system. Where Windows usually has downloads from websites, and
macOS has the App Store, Linux has used software repositories for
most of its life, and they have the advantage of being easily
searchable with a few keystrokes on the command line.

I have also seen companies who deployed RHEL everywhere, only to realise that they
were spending a lot of money, and never invoking the support they'd bought because
their operations team was just that good! They would then gradually phase out their
Red Hat deployments and move to CentOS, changing very little in the process.

https://www.debian.org
https://www.debian.org
https://www.debian.org
https://www.debian.org
https://www.debian.org
https://www.debian.org
https://www.debian.org
https://www.debian.org
https://www.debian.org

Introduction and Environment Setup Chapter 1

[13]

Releases come about every few years, with version 7 being released in 2014, and
getting consistent updates since then. However, it should be noted that version 6,
which was released in 2011, will be getting maintenance updates until 2020.

CentOS can be downloaded from https:/ /centos. org. We will go
through this in the installation section.

Red Hat Enterprise Linux
Red Hat Enterprise Linux, or RHEL as it's more commonly known (because it's a long
name), has a very firm footing in Enterprises. It targets the commercial space very
well, and as a result it is not uncommon to find yourself on a RHEL box, which
you've initially assumed to be a CentOS installation.

What makes RHEL different is the support offered by Red Hat, Inc. and the various
services that you can utilize if you've bought an official package.

While Red Hat still offers the source code for their distribution without question
(hence CentOS), they sell versions and packages for everything from the desktop up
to data centre installations.

There's an adage that states "no one got fired for buying IBM," which is a little dated
in this day and age, but I've heard people invoke this philosophy to describe Red Hat
on more than one occasion. No one will get fired for buying Red Hat (but you might
be asked what the benefits are of paying for something that's available for free under
another name.)

Beautifully, it was announced while I was in the editing stage of this
book that IBM have bought Red Hat, bringing my comment above
full circle. The universe is great sometimes.

Aside from the support, the business-like attitude that other businesses like, and the
contributions back to the community as a whole, Red Hat also offer something which
has been variously described as "a waste of time" and "crucial for this role."

https://centos.org
https://centos.org
https://centos.org
https://centos.org
https://centos.org
https://centos.org
https://centos.org

Introduction and Environment Setup Chapter 1

[14]

Exams are looked at with both affection and derision, depending on who you speak
to in the Linux community (as with many things, there's something of a holy war
about them). Red Hat offers two of the most popular, and many more to boot. You
can study for and become a Red Hat Certified System Administrator, followed by a
Red Hat Certified Engineer, which are widely seen as very acceptable qualifications
to have.

As a college dropout, I'm quite happy to have an RHCE qualification under my belt.

Some people see these exams as a way of getting past the first line of those hiring (as
in the people who scan your CV, and look for badges they recognize). Others see
them as proof that you know what you're doing around a Linux system due to the
fact that these exams are practical, (meaning they sit you in front of a computer and
give you a set of steps to finish.) Some people dismiss exams altogether, although
they're usually the ones who've never bothered trying the exam.

Take a look at https:/ /www. redhat. com, taking particular note of
the various packages on offer. They do have a developer account
too, which gives you access to services you would otherwise pay for
(as long as you don't try and sneak them into a production
environment!).

Installing VirtualBox
As I said in the previous section, I've chosen to mostly use CentOS for the recipes in
this book. Hopefully, this gives you a good baseline for learning about Linux
Administration, but also gives you a bit of a head start if you plan on going for any of
the Red Hat exams.

Instead of requiring you to have a spare laptop handy, or renting a server
somewhere, I'm going to advocate using VMs for testing and running through the
examples given.

https://www.redhat.com
https://www.redhat.com
https://www.redhat.com
https://www.redhat.com
https://www.redhat.com
https://www.redhat.com
https://www.redhat.com
https://www.redhat.com
https://www.redhat.com

Introduction and Environment Setup Chapter 1

[15]

VMs are exactly as they sound – a way of virtualizing computer hardware on one or a
cluster of physical machines, thus allowing you to test, break, and play to your heart's
content, without risking rendering your own computer unbootable.

There are many ways of creating a VM: macOS has xhyve, Windows has Hyper-V,
and Linux has a native implementation called Kernel Virtual Machine (KVM).

KVM (along with libvirt) is the technology that you will come across
most often in the Linux virtualization space. It forms the basis of
popular technologies, such as Proxmox and OpenStack, while
providing near-native speeds.

Another way of creating and managing VMs is a program called VirtualBox, which is
now developed by Oracle. The nice thing about this software, and the reason I shall
be using it here, is that it's cross-platform, being produced for macOS, Windows, and
Linux.

Installing VirtualBox on Ubuntu
I'm using Ubuntu to write this book, so I'll run through the basic way of installing
VirtualBox on an Ubuntu desktop.

This will be slightly different to installing it on other distributions, but a good number
of them package it for installation, and should provide a guide for installing it.

Command-line installation
Open your Terminal and run the following:

$ sudo apt install virtualbox

Using sudo will generally prompt you for your password, and you
won't see anything being printed to screen as you type.

You will likely be prompted to confirm installation of VirtualBox and its
dependencies (there may be a lot—it's a complex program and if you haven't updated
in a while, you may get a few dependency updates too).

Introduction and Environment Setup Chapter 1

[16]

Hit Y and Enter to continue. The following screenshot shows an example of the
installation if started from the command line:

Once done, you should have a working VirtualBox installation.

Graphical installation
If you'd like, you can also install VirtualBox through Ubuntu software.

Simply search for the software you desire, in this case, VirtualBox, and click through
to its store page.

Introduction and Environment Setup Chapter 1

[17]

Once there, click Install and the package will be installed, no Terminal required!

After installation, your screen will change to show Launch and Remove options.

Installing VirtualBox on macOS
Although I'm using Ubuntu, it's not the end of the world if you're not. macOS is a fine
OS too, and handily it supports VirtualBox.

In this recipe, we'll run through a couple of ways of installing VirtualBox in macOS.
You'll find that the layout is extremely similar, regardless of the OS you use.

Command-line installation
If you already have the command-line program brew installed, then getting
VirtualBox is as easy as running the following command:

$ brew cask install virtualbox

You may be prompted for a superuser password to complete the installation.

Homebrew is available from https:/ /brew. sh/ and is effectively
the package manager that macOS needs, but doesn't have out of the
box. I can't readily recommend blindly running scripts from
mysterious websites, so be sure you understand what's being done
(read the code) before you take the plunge and install brew.

Graphical installation
Oracle also provides an installation image for macOS, if you'd like to install it in the
more traditional way.

Simply navigate to https:/ /www. virtualbox. org/ wiki/ Downloads and select the OS
X hosts option.

This will prompt you to download the installer to your local system, which you can
unpack and install.

Running through the installation, you may be prompted for your superuser
password.

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Introduction and Environment Setup Chapter 1

[18]

Installing VirtualBox on Windows
If you're not using a Linux flavor on your computer, and you're not using macOS, it's
a good bet that you're running Windows (unless you've delved into FreeBSD on the
desktop or similar, in which case I can't help you here—we'd need an entire
afternoon).

If using Windows, I can suggest VirtualBox again, due to its cross-OS nature, and it
can again be installed from Oracle's site.

Graphical installation
Like the macOS installation, navigate to https:/ /www. virtualbox. org/ wiki/
Downloads and select the Windows hosts option:

This will download an executable that can be run.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Introduction and Environment Setup Chapter 1

[19]

It's worth noting that Windows can complain if you're attempting to
run multiple virtualization solutions at once. If you've previously
run Hyper-V, or Docker, and you experience issues attempting to
start VirtualBox machines, try disabling your other solutions first.

Installing our chosen distribution
manually
Phew, that was a journey, and we've not even started properly!

Next, we're going to look at setting up a VM manually. But fear not! We will also be
looking at automating this procedure with Vagrant to avoid having to perform
repetitive steps in the rest of the book.

Seriously, if you're already well-versed in installing CentOS, feel
free to skip this section entirely. I have provided Vagrantfiles
throughout the rest of this book for automating the boxes we're
going to work on.

Obtaining our CentOS installation media
The main way Linux distributions are distributed is in the form of ISO images. These
images can then be burned onto a DVD as appropriate, or mounted for a VM to boot
from.

Head over to https:/ / centos. org/ download/ and have a look at the options on offer.

I'm going to download the Minimal ISO, for reasons that will become clear shortly.

https://centos.org/download/
https://centos.org/download/
https://centos.org/download/
https://centos.org/download/
https://centos.org/download/
https://centos.org/download/
https://centos.org/download/
https://centos.org/download/
https://centos.org/download/
https://centos.org/download/

Introduction and Environment Setup Chapter 1

[20]

Clicking through should bring you to a mirror page:

This is a bandwidth-saving measure on part of the CentOS Project by prompting the
end user to download from any number of different hosts. They can spread the cost of
bandwidth out to volunteers.

Introduction and Environment Setup Chapter 1

[21]

What you tend to find is that these providers typically fall into two
categories, with exceptions. Generally, the images are provided by
universities, or hosting providers. The cynic in me thinks that the
hosting providers offer a mirror service as an easy source of
marketing, rather than some philanthropic gesture.

Choose a download location near to you, and wait for the download to complete.

You may note that one of the download options is via Torrent.
Torrenting is a great way of spreading out the cost of bandwidth to
multiple people, and allowing a small piece of the software to be
downloaded from multiple locations greatly reduces load on any
one source. However, it should be noted that some workplaces
watch out for this type of traffic on their networks due to the
reputation torrenting has.

Checking the checksum
Once downloaded (which may take a while, since even minimal is large), you will be
faced with an ISO image.

On my Ubuntu installation, I can see it in my Downloads folder:

$ ls ~/Downloads/
CentOS-7-x86_64-Minimal-1804.iso

One way to confirm our installation media and ensure that we've downloaded exactly
what we expect, is to compare the Sha256 sum of the downloaded file with a known-
good value. This both proves that it's the download we expect it to be, and also
checks that no corruption has occurred during the file download.

CentOS provides a release notes page that we can visit to find the Sha256 sum we're
comparing: https:/ / wiki. centos. org/ Manuals/ ReleaseNotes.

Click through to Release Notes for CentOS 7, which should bring you to the most
recent version of the release notes.

On this page, we can scroll down to Verifying Downloaded Installation Images,
which will list the current Sha256 sums for the download images.

https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes
https://wiki.centos.org/Manuals/ReleaseNotes

Introduction and Environment Setup Chapter 1

[22]

Always make sure that the site you're getting your known-good
Sha256 values from is itself legitimate.

In my case, I can see that the Sha256 value for the file I just downloaded is as follows:

714acc0aefb32b7d51b515e25546835e55a90da9fb00417fbee2d03a62801efd
CentOS-7-x86_64-Minimal-1804.iso

With this in hand, I can go back to where I listed out the file in my Terminal, and run
a basic command to check the Sha256 value of the downloaded image:

$ sha256sum CentOS-7-x86_64-Minimal-1804.iso
714acc0aefb32b7d51b515e25546835e55a90da9fb00417fbee2d03a62801efd
CentOS-7-x86_64-Minimal-1804.iso

Comparing the value from the CentOS website with the value from my downloaded
image confirms that they are the same.

The media is what we expected!

Sha256 checks can also be performed on Windows and macOS. On
macOS, this is accomplished using built-in tools, though Windows
may require other software.

Setting up our VM
Now that we have our media and VirtualBox is installed, it's time to run through
manually provisioning (technical term) our machine and installing CentOS.

In this section, we will be provisioning a small VM, but even that
will come with the cost of processing power, memory, and disk
space. Always ensure that you have the appropriate resources
available for the machine you're trying to create. In this case, at least
50 GB of free drive space and a minimum of 8 GB of memory is
advisable.

Introduction and Environment Setup Chapter 1

[23]

VirtualBox main window
Upon starting, you will be greeted with the VirtualBox main window. At the moment,
we're only interested in the New button in the top left. You need to click the New
button.

Next, you will be prompted to name your VM.

Call your first machine CentOS-1.

Notice how when you name your machine, the Type and Version automatically
detects what you've typed, and reconfigures the selection as appropriate.

In this case, it gives us a Type of Linux, and a Version of Red Hat (64-bit). This is
okay because of what we said before about CentOS and Red Hat Enterprise Linux
being very close.

Hit Next.

64-bit is the architecture of the OS, though the OS you install must
be supported by the CPU you have (most CPUs these days are
x86_64.) The common architectures were generally x86 (32-bit) and
x86_64 (64-bit) for years, but more recently the x86 variant has been
dying off. The most common installations these days are x86_64,
though ARM and aarch64 machines are becoming more
commonplace. In this book, we will only be using x86_64 machines.

Now, we have to configure the amount of memory to give our machine. If you're
constrained by this, you can put it to a lower value than the default of 1024 MB (1
GB), but 1,024 MB is a reasonable place to start, and we can always adjust it later if
needed.

Now, we'll be prompted to configure the hard disk for our virtual system.

Leave the default option of Create a virtual hard disk now selected, and click Create.

You'll be prompted to choose a type. Leave the default selected, that is, VDI
(VirtualBox Disk Image).

You'll be given the option of provisioning the disk over time (Dynamically allocated)
or all in one go (Fixed size). I tend to leave it as Dynamically allocated.

Introduction and Environment Setup Chapter 1

[24]

Next, you'll be prompted to choose a location and a size for the disk. I would advise
leaving the disk in the default location, and for the moment the default size of 8 GB
should be enough disk space to get started.

Hit Create.

If everything goes well, you will return to the main window, and a new VM should
be listed on the left, in the Powered Off state.

CentOS installation
Now that we have our VM, it's time to install our OS on it.

Clicking Start on the top of the main VirtualBox window, with your VM selected,
should prompt you to first select a startup disk.

I've navigated to my Downloads folder and chosen the downloaded image from
earlier.

Pressing Start will boot the machine from our media.

You will be presented with the option screen within the VM, with Test this media &
install CentOS 7 selected by default.

I usually hit the up arrow (within the VM window) to select only Install CentOS
7 and skip the media check, though you may wish to perform the test.

If you're using physical media to install a machine (a DVD or CD), it
might be a good idea to run a test of the media prior to installation.

Pressing Enter will continue the installation.

You will be prompted to choose your language. I choose English, because I'm
monolingual.

Introduction and Environment Setup Chapter 1

[25]

Once done, you will find yourself on the landing page of the most recent CentOS
installer:

Note the message at the bottom, suggesting that items marked with
the yellow icon need to be completed.

Because our date/time, keyboard, and language are all correct, we'll move on to the
next stages, but feel free to correct any of these settings if they're wrong for you.

Introduction and Environment Setup Chapter 1

[26]

Notice that under INSTALLATION SOURCE we've got Local media selected, and
under SOFTWARE SELECTION we've got Minimal Install. This is a product of us
selecting the minimal image earlier on, and gives us a good chance to talk about
installation over the internet.

First, we need to configure our network. Click on NETWORK & HOST NAME to do
this.

You should have a single Ethernet device, provided as part of the default
provisioning step when making our VM.

Toggle the ON/OFF toggle to the right of your device name, and check that the
network values are populated in a similar way to mine:

VirtualBox creates a NAT network by default, meaning that your VM doesn't sit on
the exact same network as the host computer. Instead, the VM exists in a network by
itself, but with a path to the outside world (via your host machine).

Press Done in the top left to complete our network setup (for now)!

Introduction and Environment Setup Chapter 1

[27]

Back on the main screen, click on INSTALLATION SOURCE:

Within this screen, you can see that the auto-detected media is actually our disk
image (sr0 being Linux's denotion of the disc drive).

Change the selected radio button to be On the network.

Populate the URL bar with the following:

mirror.centos.org/centos/7/os/x86_64/

Introduction and Environment Setup Chapter 1

[28]

You should end up with the following screenshot:

Press Done in the top left.

Once you're back on the main screen, it will be indicated that your software source
has changed, and you need to verify this by entering the SOFTWARE
SELECTION window. Proceed with this.

Introduction and Environment Setup Chapter 1

[29]

Have a read through the different options, but for now leave Minimal Install selected
and click Done:

The last thing to do from the main screen is set our INSTALLATION
DESTINATION. Click through to this screen.

Have a read of the options, but for now we're not going to bother with changing the
default partition layout, or encrypting our disk. You should also see that the default
selected disk is our 8 GB VirtualBox one.

Introduction and Environment Setup Chapter 1

[30]

Click Done (you shouldn't have had to make any changes, but the installer makes you
enter this screen at the very least):

We've finally finished our (fairly basic) configuration. Hit the Begin Installation
button at the bottom of the main screen.

Introduction and Environment Setup Chapter 1

[31]

You'll see the installation begin, and will be given the following screen while you
wait:

Click on the options at the top in turn, setting a root password and creating a user.

The root user is akin to the administrator on a Windows system; it's
all-powerful and can be dangerous in the wrong hands. Some
distributions don't even prompt you to set a root password on
installation, making you use your own user and su or sudo instead.

Introduction and Environment Setup Chapter 1

[32]

When making your user, flag them as an administrator too:

Clicking Done will take you back to the installation progress screen, where you may
be prompted through the rest of the installation, and eventually get asked to reboot
into your freshly installed system.

No sane person should ever have to produce that many screenshots.

Accessing and updating our VM
Now that we have our installed VM, we're going to log in and have a quick poke
around.

Introduction and Environment Setup Chapter 1

[33]

Logging in from the VirtualBox window
Clicking into our VM, as we did during installation, will allow us to type at the login
prompt:

We're going to use the user we created at installation time, rather than root.

Introduction and Environment Setup Chapter 1

[34]

Note that you also get a bit of information on login attempts since your last login. In
this case, I failed my first attempt at logging in, and it tells me this:

Congratulations – you've installed CentOS!

It's very rare to find a Linux server with a graphical user interface
(GUI) installed, though it does happen. Of the thousands of servers
I've worked with, I can count the number of times I've come across a
GUI on one hand. It's usually cause for momentary confusion and
distress, before concluding that someone had to have installed the
GUI by accident – there can be no other explanation.

Before we go further, we're going to run a quick command to find the IP address of
our machine:

$ ip a

Introduction and Environment Setup Chapter 1

[35]

ip a is a shorthand way of typing ip address which we will cover
more later.

This gives us a lot of network information, but crucially it gives us the inet address
of our network interface, 10.0.2.15:

Logging in from the host Terminal
Because using the VirtualBox interface is somewhat cumbersome (making things such
as copy and paste tricky), it makes sense that there's a more elegant way to connect
and interact with our machine.

Secure Shell (SSH) is the tool we're going to use for this, as it provides a fast and
secure way of connecting to remote machines.

Introduction and Environment Setup Chapter 1

[36]

Native SSH clients are available for macOS and all Linux
distributions. Windows has made some progress in the area too,
though I'm to understand that the easiest way of using SSH on
Windows is still to download a program called PuTTY.

Think of SSH as a Windows Remote Desktop Protocol. If you're new
to this world, only it's generally faster to use, owing to the fact it's
not got to stream a graphical connection at you. SSH is entirely text-
based.

Using our IP address from a moment ago, we're going to try and SSH to our VM,
from our host (the machine you're running VirtualBox on:)

$ ssh adam@10.0.2.15
ssh: connect to host 10.0.2.15 port 22: Connection refused

Oh no! Something is off!

We haven't connected, and the connection was apparently refused!

Making sure sshd is running
First, we're going to make sure that the server component of sshd is running by
logging onto our VM in VirtualBox and running the following:

$ sudo systemctl enable sshd
$ sudo systemctl start sshd

You should be prompted (at least once) for your user password that we set earlier.

What we're doing is enabling the sshd service to start when the server is booted with
the first command, and starting it right now with the second (so that we don't have to
reboot the VM).

Making sure that VirtualBox lets us through
Just starting sshd isn't enough to get us connecting to the VM from the host – we also
have to set up some Port Forwarding for the VirtualBox NAT network.

Port Forwarding is the method of manually specifying how traffic is
to traverse a NAT'd network. If you were playing Diablo 2 or
Warcraft III in the mid-2000s, you may have had great fun trying to
get Port Forwarding working with your home router.

Introduction and Environment Setup Chapter 1

[37]

From the main VirtualBox window, highlight your VM and click Settings at the
top. Head to the Network section and click the arrow by Advanced to drop down a
larger section. Click Port Forwarding:

In the new window that's popped up, click to add a new rule on the right, and
populate it with the settings from the following screenshot, substituting your Guest
IP if it differs:

Introduction and Environment Setup Chapter 1

[38]

Notice that we're effectively mapping 127.0.0.1:2222 on our host to
10.0.2.15:22 on our guest. We've set it up so that any connection attempt made to
the localhost address of our host machine, on port 2222, gets forwarded to the VM
on port 22.

2222 in the example given is entirely random – it could be 8222,
5123, 2020, and so on. I chose 2222 for convenience. You shouldn't
attempt to use ports lower than 1024 for this sort of thing, as these
are restricted to root-only access.

We can now try our SSH command again, tweaked for what we've just set up:

$ ssh adam@127.0.0.1 -p2222
The authenticity of host '[127.0.0.1]:2222 ([127.0.0.1]:2222)' can't
be established.
ECDSA key fingerprint is
SHA256:M2mQKN54oJg3B1lsjJGmbfF/G69MN/Jz/koKHSaWAuU.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[127.0.0.1]:2222' (ECDSA) to the list of
known hosts.
adam@127.0.0.1's password:

There are some things to break down about this command.

I've specified the username by using adam@ and I've told SSH to try connecting to the
localhost address 127.0.0.1, along with the port we've chosen, that is, 2222.

We're presented with the fingerprint of the host, which we'll talk more about later,
and which we accept.

We're then prompted to log in, using the password we set up in the VM, for our user:

Last login: Mon Aug 6 15:04:26 2018
[adam@localhost ~]$

Success!

We can now work on our VM as if it were a real server – just be mindful to make sure
that you're on your VM when running any commands.

Introduction and Environment Setup Chapter 1

[39]

Updating our VM
Now that we've got access to our machine, we're going to run one command to make
sure that we've got the latest version of all the installed software:

$ sudo yum update

When run, you may be presented with a long list of software to update. Typing Y for
confirmation and hitting Enter will work through the upgrade of this software, as well
as any dependent software that's needed. You may also be prompted to accept new or
updated GPG keys.

GPG is a book by itself – not an exciting book, but certainly a book.

If you've upgraded software that's constantly running, such as an
Apache web server, it can be a good idea to schedule a restart of that
service to make sure that the newer version is in use.

As a rule of thumb, the only things that should require a full system reboot after
being updated are the kernel and the init (initialization) system. This is a stark
difference to Windows, where rebooting seems to be what the OS is designed to do,
and actual work is just a by-product.

In my case, my kernel got updated. I'm able to confirm this by doing the following.

First, we list the installed versions of the kernel package:

$ yum info kernel
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
 * base: repo.uk.bigstepcloud.com
 * extras: mirror.sov.uk.goscomb.net
 * updates: mirrors.melbourne.co.uk
Installed Packages
Name : kernel
Arch : x86_64
Version : 3.10.0
Release : 862.el7
Size : 62 M
Repo : installed
From repo : anaconda
Summary : The Linux kernel

Introduction and Environment Setup Chapter 1

[40]

URL : http://www.kernel.org/
Licence : GPLv2
Description : The kernel package contains the Linux kernel (vmlinuz),
the core of any
 : Linux operating system. The kernel handles the basic
functions
 : of the operating system: memory allocation, process
allocation, device
 : input and output, etc.

Name : kernel
Arch : x86_64
Version : 3.10.0
Release : 862.9.1.el7
Size : 62 M
Repo : installed
From repo : updates
Summary : The Linux kernel
URL : http://www.kernel.org/
Licence : GPLv2
Description : The kernel package contains the Linux kernel (vmlinuz),
the core of any
 : Linux operating system. The kernel handles the basic
functions
 : of the operating system: memory allocation, process
allocation, device
 : input and output, etc.

Then, we check the version of the kernel currently in use, using uname:

$ uname -a
Linux localhost.localdomain 3.10.0-862.el7.x86_64 #1 SMP Fri Apr 20
16:44:24 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux

We can see from this that we're running version 3.10.0-862.el7, but we have
3.10.0-862.9.1.el7 too.

Rebooting the system causes the newer kernel to be selected at boot time, and
running uname again shows a different result:

$ uname -a
Linux localhost.localdomain 3.10.0-862.9.1.el7.x86_64 #1 SMP Mon Jul
16 16:29:36 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux

Huzzah – we're running the newer kernel!

Introduction and Environment Setup Chapter 1

[41]

Understanding how VMs differ
Earlier, we started talking about VMs and what they are. We're now going to look at a
couple of ways of working out if we're in a VM, from inside the machine itself.

I would generally do this if I'd got a new virtual private server (VPS) from a hosting
provider, and wanted to know what software was being used to virtualize my new
machine.

dmidecode
One of my favourite tools, dmidecode, can be used to dump a computer's desktop
management interface (DMI) table. In practice, this means that it can be used to find
out what kind of hardware you're running in a machine.

This command requires root access, so we'll be using sudo throughout these
examples.

First, we're going to list the valid types we can pass to dmidecode:

$ dmidecode --type
dmidecode: option '--type' requires an argument
Type number or keyword expected
Valid type keywords are:
 bios
 system
 baseboard
 chassis
 processor
 memory
 cache
 connector
 slot

Starting at the top, we're going to use bios and see if it gives us anything useful:

$ sudo dmidecode --type bios
dmidecode 3.0
Getting SMBIOS data from sysfs.
SMBIOS 2.5 present.

Handle 0x0000, DMI type 0, 20 bytes
BIOS Information

 Vendor: innotek GmbH
 Version: VirtualBox

Introduction and Environment Setup Chapter 1

[42]

 Release Date: 12/01/2006
 Address: 0xE0000
 Runtime Size: 128 kB
 ROM Size: 128 kB
 Characteristics:
 ISA is supported
 PCI is supported
 Boot from CD is supported
 Selectable boot is supported
 8042 keyboard services are supported (int 9h)
 CGA/mono video services are supported (int 10h)
 ACPI is supported

Instantly, we can see VirtualBox next to Version, which is a pretty strong hint that
we're dealing with a VM.

Next, we will choose something else, system:

$ sudo dmidecode --type system
dmidecode 3.0
Getting SMBIOS data from sysfs.
SMBIOS 2.5 present.

Handle 0x0001, DMI type 1, 27 bytes
System Information
 Manufacturer: innotek GmbH
 Product Name: VirtualBox
 Version: 1.2
 Serial Number: 0
 UUID: BDC643B8-8D4D-4288-BDA4-A72F606CD0EA
 Wake-up Type: Power Switch
 SKU Number: Not Specified
 Family: Virtual Machine

Again, the Product Name seen here is VirtualBox, and the Family is Virtual
Machine, both of which are pretty damning pieces of evidence.

Lastly, we're going to look at the Chassis Information:

$ sudo dmidecode --type chassis
dmidecode 3.0
Getting SMBIOS data from sysfs.
SMBIOS 2.5 present.

Handle 0x0003, DMI type 3, 13 bytes
Chassis Information
 Manufacturer: Oracle Corporation
 Type: Other

Introduction and Environment Setup Chapter 1

[43]

 Lock: Not Present
 Version: Not Specified
 Serial Number: Not Specified
 Asset Tag: Not Specified
 Boot-up State: Safe
 Power Supply State: Safe
 Thermal State: Safe
 Security Status: None

Oracle corporation is, again, a significant piece of information that leads us to believe
we're in a virtualized environment.

If we don't want a lot of other information, we can fine-tune our search using
dmidecode's -s option.

Running this option without an argument outputs a list of potential arguments we
can use:

$ sudo dmidecode -s
dmidecode: option requires an argument -- 's'
String keyword expected
Valid string keywords are:
 bios-vendor
 bios-version
 bios-release-date
 system-manufacturer
 system-product-name
 system-version
 system-serial-number
 system-uuid
 baseboard-manufacturer
 baseboard-product-name
 baseboard-version
 baseboard-serial-number
 baseboard-asset-tag
 chassis-manufacturer
 chassis-type
 chassis-version
 chassis-serial-number
 chassis-asset-tag
 processor-family
 processor-manufacturer
 processor-version
 processor-frequency

Introduction and Environment Setup Chapter 1

[44]

Here, we can instantly see bios-version, and as we know from earlier, it should be
VirtualBox:

$ sudo dmidecode -s bios-version
VirtualBox

These types of short-output commands are very useful for scripting, where
succinctness is sometimes desirable.

dmidecode is usually installed by default, at least on Ubuntu and
CentOS installations.

lshw
Should dmidecode not be available, you can also make use of lshw, a command for
listing hardware. Again, it makes use of the DMI table on a device.

Very quickly, we can use a format option of lshw to show the bus information of a
system:

$ sudo lshw -businfo
Bus info Device Class Description
===
 system VirtualBox
 bus VirtualBox
 memory 128KiB BIOS
 memory 1GiB System memory
cpu@0 processor Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz
pci@0000:00:00.0 bridge 440FX - 82441FX PMC [Natoma]
pci@0000:00:01.0 bridge 82371SB PIIX3 ISA [Natoma/Triton II]
pci@0000:00:01.1 scsi1 storage 82371AB/EB/MB PIIX4 IDE
scsi@1:0.0.0 /dev/cdrom disk CD-ROM
pci@0000:00:02.0 display VirtualBox Graphics Adapter
pci@0000:00:03.0 enp0s3 network 82540EM Gigabit Ethernet Controller
pci@0000:00:04.0 generic VirtualBox Guest Service
pci@0000:00:05.0 multimedia 82801AA AC'97 Audio Controller
pci@0000:00:06.0 bus KeyLargo/Intrepid USB
usb@1 usb1 bus OHCI PCI host controller
pci@0000:00:07.0 bridge 82371AB/EB/MB PIIX4 ACPI
pci@0000:00:0d.0 scsi2 storage 82801HM/HEM (ICH8M/ICH8M-E) SATA
Controller [AHCI mode]
scsi@2:0.0.0 /dev/sda disk 8589MB VBOX HARDDISK
scsi@2:0.0.0,1 /dev/sda1 volume 1GiB Linux filesystem partition

Introduction and Environment Setup Chapter 1

[45]

scsi@2:0.0.0,2 /dev/sda2 volume 7167MiB Linux LVM Physical Volume
partition
 input PnP device PNP0303
 input PnP device PNP0f03

This gives us information that instantly suggests a VM, such as the system, bus, and
display entries.

We also have an easy-to-read breakdown of the classes available, meaning that we
can query those directly, starting with disk in this example:

$ sudo lshw -c disk
 *-cdrom
 description: DVD reader
 product: CD-ROM
 vendor: VBOX
 physical id: 0.0.0
 bus info: scsi@1:0.0.0
 logical name: /dev/cdrom
 logical name: /dev/sr0
 version: 1.0
 capabilities: removable audio dvd
 configuration: ansiversion=5 status=nodisc
 *-disk
 description: ATA Disk
 product: VBOX HARDDISK
 vendor: VirtualBox
 physical id: 0.0.0
 bus info: scsi@2:0.0.0
 logical name: /dev/sda
 version: 1.0
 serial: VB5cbf266c-3015878d
 size: 8GiB (8589MB)
 capabilities: partitioned partitioned:dos
 configuration: ansiversion=5 logicalsectorsize=512
sectorsize=512 signature=000b6a88

Alternatively, if we think that's too much information, we could query the system
class:

$ sudo lshw -c system
localhost.localdomain
 description: Computer
 product: VirtualBox
 vendor: innotek GmbH
 version: 1.2
 serial: 0
 width: 64 bits

Introduction and Environment Setup Chapter 1

[46]

 capabilities: smbios-2.5 dmi-2.5 vsyscall32
 configuration: family=Virtual Machine uuid=BDC643B8-8D4D-4288-BDA4-
A72F606CD0EA

Quick sudo explanation
In the various commands that were given in the preceding recipe, we used sudo
repeatedly. This was so that we didn't have to log in as the root user to perform
various restricted actions.

sudo is a contraction of 'superuser do' because sudo used to be used
for running commands as the "superuser" only, nowadays you can
use it to run commands as various users.

Generally, if you attempt to run a command that you lack permissions to complete
successfully, you'll be greeted with an error:

$ less /etc/sudoers
/etc/sudoers: Permission denied

Here, I tried to have a look at the /etc/sudoers file, which also happens to be the
file that determines a user's sudo privileges.

Running this command with sudo is a different story. Instead, it opens the file for me,
dropping me into the less pager.

Toward the bottom of this file, we find the following block:

Allows people in group wheel to run all commands
%wheel ALL=(ALL) ALL

The wheel portion of this block is uncommented, and the text above that tells us what
that means.

So, the obvious next question is, am I in the wheel group?

The term wheel has ancient origins in old-school UNIX installations.
These, days it might be called admin or other. CentOS keeps it
classic by using wheel.

Introduction and Environment Setup Chapter 1

[47]

Thankfully, this is very easy to check – the file in question is always in the same
place: /etc/group.

Here, we print the contents of the group file to our screen, and look specifically for
wheel.

We see the following layout:

group_name:password:GID:user_list

We can see that the group_name is wheel, the password is a lower x, which means
that shadow passwords are being used, the group ID is 10, and the only user in this
group is myself:

$ sudo cat /etc/group | grep wheel
wheel:x:10:adam

We can even do this with a single word, that being the groups command, which
prints the groups that your current user is a member of:

$ groups
adam wheel

Being granted the ability to run superuser commands with sudo isn't the immediate
right of everyone on the system, and it's up to the individual company and
administration team to decide how that power is distributed.

There are places where everyone in operations has the power of sudo, and places
where one person has that power.

Using Vagrant to automatically provision
VMs
Going through the tedium of installing a new VM every time you want to test
something new, or create a sandbox to work in, can get old fast.

Because of this, various administrators and developers have come up with solutions
that make provisioning a VM (or several) a breeze.

Introduction and Environment Setup Chapter 1

[48]

If we take a moment to think about the advantages of this approach, it's easy to
highlight just a few benefits of automated VM provisioning:

It eliminates the time it takes to manually type answers into a VM window.
It allows for the automated running of software tests in a development
environment.
It allows for the sharing of text files that act as recipes for how to build a
VM, rather than the shifting of large VM images from station to station.
This is a form of Infrastructure as Code (IaC).

Kickstart
One method of automating the deployment of boxes are kickstart files, which are
frequently used in large deployments to automatically answer the questions that the
installer asks the user.

If you take a look in the /root/ folder of a CentOS VM, there's a good chance you'll
find a file called anaconda-ks.cfg, which is effectively the kickstart file for the
manual steps you took when installing the machine (anaconda being the name of the
installer).

These files are tweaked, or written from scratch, and then hosted on a web server, on
an installation network, ready to be picked up by an unconfigured machine.

Vagrant
Locally, kickstart files aren't really practical, and they're not quick to work with. We
need something that can be set up quickly and easily, but which is also very
powerful.

Enter Vagrant.

Developed by Hashicorp as an open source piece of software, Vagrant can be used for
automatically provisioning VMs, and even whole development environments.

Typically, somewhere, you might find a Vagrantfile (the name of the core
Vagrant... file...) is in a repository of some in-house application.

Introduction and Environment Setup Chapter 1

[49]

The developers working on the application pull down the repository to their local
machine, and use the Vagrant configuration file to spin up a local development
environment, which they can then use to test code changes or feature additions
without utilizing expensive development environments.

Vagrant is available for macOS, Linux, and Windows.

On my Ubuntu host, I install Vagrant like so:

$ sudo apt install vagrant

There's quite a few dependencies, totalling around 200 MB of used disk space
afterwards.

Ubuntu's packages are reasonably up to date, so we get a recent version:

$ vagrant --version
Vagrant 2.0.2

I'm quite particular about where I keep my files, so I'm going to create a dedicated
folder called Vagrant in my home directory, which I'll use for working with my
Vagrant VMs:

$ ls
 Desktop Downloads Pictures snap Videos
 Documents Music Public Templates 'VirtualBox VMs'
$ mkdir Vagrant
$ cd Vagrant/

Next, we will initialize a new Vagrantfile. The following command will do this
automatically:

$ vagrant init
$ ls
Vagrantfile

Have a look in the Vagrantfile, but don't make any changes yet. You'll see that a lot
of the options are listed, but commented out by default. This is a good way of
introducing you to what Vagrant is capable of.

Introduction and Environment Setup Chapter 1

[50]

Note that, by default, Vagrant will attempt to use a box called base, but will also
prompt you to look at https:/ /vagrantcloud. com/ search for other boxes:

 # Every Vagrant development environment requires a box. You can
search for
 # boxes at https://vagrantcloud.com/search.
 config.vm.box = "base"

Doing a search for CentOS on vagrantcloud reveals a nice default box we can use:
https://app.vagrantup. com/ centos/ boxes/ 7.

It also lists the providers that the box can be provisioned under. VirtualBox is one of
them, meaning it will work in our installation.

We need to change our Vagrantfile to point at this box. From the folder in which
your Vagrantfile exists, run the following:

$ sed -i 's#config.vm.box = "base"#config.vm.box = "centos/7"#g'
Vagrantfile

We've just used sed (a common tool for editing text on the command line, either in
files or on standard out) with the -i option, to modify our Vagrantfile in-place.
Opening the file now will show us that the base line has changed to point to
centos/7 instead.

Now, we can provision our VM with another simple command:

$ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Box 'centos/7' could not be found. Attempting to find and
install...
 default: Box Provider: virtualbox
 default: Box Version: >= 0
==> default: Loading metadata for box 'centos/7'
 default: URL: https://vagrantcloud.com/centos/7
==> default: Adding box 'centos/7' (v1804.02) for provider: virtualbox
 default: Downloading:
https://vagrantcloud.com/centos/boxes/7/versions/1804.02/providers/vir
tualbox.box
==> default: Successfully added box 'centos/7' (v1804.02) for
'virtualbox'!
<SNIP>
 default: No guest additions were detected on the base box for this
VM! Guest
 default: additions are required for forwarded ports, shared
folders, host only
 default: networking, and more. If SSH fails on this machine,

https://vagrantcloud.com/search
https://vagrantcloud.com/search
https://vagrantcloud.com/search
https://vagrantcloud.com/search
https://vagrantcloud.com/search
https://vagrantcloud.com/search
https://vagrantcloud.com/search
https://vagrantcloud.com/search
https://vagrantcloud.com/search
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7
https://app.vagrantup.com/centos/boxes/7

Introduction and Environment Setup Chapter 1

[51]

please install
 default: the guest additions and repackage the box to continue.
 default:
 default: This is not an error message; everything may continue to
work properly,
 default: in which case you may ignore this message.
==> default: Rsyncing folder: /home/adam/Vagrant/ => /vagrant

All being well, your VM image will start to download from vagrantcloud, and your
box will spin itself up in VirtualBox.

We can even see our VM in the VirtualBox main window:

Taking a look under Settings | Network and Port Forwarding shows how Vagrant
also automatically sets up access for the NAT's network, in a very similar way to the
manual way we did.

We can also connect to our new VM using a built-in Vagrant shortcut:

$ vagrant ssh
Last login: Tue Aug 7 09:16:42 2018 from 10.0.2.2
[vagrant@localhost ~]$

Introduction and Environment Setup Chapter 1

[52]

This means that we've provisioned and connected to a VM in four commands, in
summary:

$ vagrant init
$ sed -i 's#config.vm.box = "base"#config.vm.box = "centos/7"#g'
Vagrantfile
$ vagrant up
$ vagrant ssh
[vagrant@localhost ~]$

We can also destroy any VMs we create from within the same folder that we ran
against our Vagrantfile using one command:

$ vagrant destroy

I wrote about manually setting up the VM with VirtualBox (and
took all those screenshots) first, because it's good to get into the
habit of learning about how things are done manually prior to
automating the tedious bits. This same rule can be applied to most
software, because even when it takes longer, knowing how
something works under the hood makes troubleshooting much
easier later on.

Anecdote – try, try, and try again
You will find that in your career the concept of holy wars is dominant, and every new
generation of technology has its apologists and opponents. This is not least seen in the
distribution-wars, which has tribal factions staunchly defending their OS of choice. If
you ever find yourself in the position of choosing which distribution to install for a
company or project, take into consideration everything you've read here, and do your
own reading around before blindly accepting one person's opinion as truth.

That's not to say you should become tribal yourself – I've installed all of the preceding
distributions at one time or another, the first of which was Ubuntu.

Back in 2005, I learned about this thing called Linux.

Before then, I'd known Macs my entire life, as it was the brand my dad had decided
upon. I'd also cobbled together a single Windows machine for the purpose of playing
Diablo, though I can't say I ever enjoyed using the OS itself.

Introduction and Environment Setup Chapter 1

[53]

Everything changed when I spotted a computer magazine on holiday, and ended up
flipping through the various pages until I landed on a piece about Linux, which
captured my imagination immediately. Something different and quirky appealed to
my rebellious attitude, and as a result I ended up burning this thing called Ubuntu to
a CD (or several).

Back then, Canonical would freely send you Ubuntu CDs if you requested them, but I
was impatient, and burning disks was quicker.

I made a backup of everything I cared about on my computer, and set about working
my way through my first installation once I'd worked out exactly how to boot from a
CD. By all accounts it went well, and though I had to nip to another computer
occasionally (no smartphones, remember) to look up what certain options meant, I
eventually had a shiny new desktop OS installed.

The trouble started around this time.

My wireless card didn't work, the graphics seemed sluggish, and I ran a single update
before rebooting, which landed me not on a desktop, but at a command-line interface.

I had never seen a command-line interface before.

To this day, I have no idea how I ever managed to get a functional OS on that box,
and I was forever fighting a program called NdisWrapper to get my wireless to work,
or installing proprietary (though I didn't know the word at the time) graphics drivers,
which would break as soon as you upgraded the kernel (though again, I had no idea
that was what was happening at the time).

I somehow plodded along, soon getting bored of Ubuntu when I discovered different
distributions, and spending the next few months with a different desktop every week.
I distinctly remember running through Ubuntu, Debian, Fedora, OpenSUSE, and a
very, very early attempt at installing Gentoo, which I gave up on after about five
minutes.

I ended up on forums frequently, painstakingly copying errors into Google to try and
find other people who'd had the issues I was experiencing, and often discovering a
post where the poster had inconveniently announced they'd Fixed It! without
actually providing the solution they'd used.

All of this, as irritating as it was to me at the time, was a learning experience, and I
think my love of Linux and computing in general can be traced back to the first time I
installed Ubuntu. Prior to that date, computers had been games machines and that
was it.

Introduction and Environment Setup Chapter 1

[54]

Soon, I was using Linux Mint to bypass the school firewall, booting to a Live USB
drive, and ignoring all the feeble attempts at blocking that the school IT department
had enabled (for some reason, they believed Windows was the only OS in existence). I
still don't quite know how this worked, but the point was that it did.

Between bouts of World of Warcraft, Linux was something I tinkered with for years,
keeping up on the latest releases and installing other distributions to try
("distribution-hopping" frequently). I broke things, fixed them, got angry with Linux,
got angry with computers in general, but on the whole, I slowly improved.

Fast forward a little while and generally bad school results meant I bailed out without
finishing college, or going to university. I had very little in the way of qualifications,
but still had something of an aptitude for computing. I found and went on a course
that lasted a few months and resulted in a couple of noddy Microsoft certifications,
but which ultimately meant that I had a sparse CV that I could start submitting to
companies.

I was called by and went for an interview with a hosting provider based in
Manchester, and met with the man who's now the CTO. The interview was weird,
with us variously discussing taking computers apart, a bit of Linux, and a lot of
Counter Strike, as it turned out he'd played a lot in years past. I left feeling nervous,
but fairly amused at how it had gone.

Upon returning, after being called back in, I was fairly stunned to get offered the job
of Data Center Engineer, which while not a Linux-focused position, was more than I
could have hoped for given my level of education. It made me incredibly happy to be
employable, and I'm forever grateful to that company and interviewer for giving me a
chance.

The takeaway I'd like to present from this is that Linux is fairly great – it can give
even the most academically illiterate of us a decent career, and it's so vibrant and
forever evolving that there's always something new to learn. I've met some great
people, and learned some fascinating things on my journey, a lot of which I hope to
pass on in these pages.

I hope you find the rest of this book informative, whether you're a newcomer to Linux
administration, or you're someone experienced that's just checking for tips and tricks
you might not know.

2
Remote Administration with

SSH
The following recipes will be covered in this chapter:

Generating and using key pairs with ssh-keygen
SSH client arguments and options
Using a client-side SSH configuration file
Modifying the server-side SSH configuration file
Rotating host keys and updating known_hosts
Using local forwarding
Using remote forwarding
ProxyJump and bastion hosts
Using SSH to create a SOCKS Proxy
Understanding and using SSH agents
Running multiple SSH servers on one box

Introduction
In the first chapter, we SSH'd to our VM using one command:

$ ssh adam@127.0.0.1 -p2222
adam@127.0.0.1's password:
Last login: Mon Aug 6 17:04:31 2018 from gateway
[adam@localhost ~]$

Remote Administration with SSH Chapter 2

[56]

In this chapter, we're going to expand on this, looking at making connecting easier
with SSH key pairs; running over the security benefits of SSH; making changes to
both the client and server side configuration; setting up a port forward and reverse
port forward connections; learning about ProxyJump and bastion hosts, as well as
setting up a temporary proxy with SSH; and finally, we're going to look at SSH agents
and setting up an additional SSH server on our VM.

This chapter assumes that you have a rudimentary understanding of SSH.

Technical requirements
As introduced in the first chapter, we're going to use Vagrant and VirtualBox for all of
our work in this chapter and those going forward. This allows us to quickly provision
infrastructure for testing, and saves you the manual job of creating multiple VMs each
time.

If you really, really, don't want to use VirtualBox or Vagrant, then
you don't have to, and I've tried to keep the examples as generic as
possible, but you will probably find it much easier if you do.

I've put together the following Vagrantfile for use in this chapter:

-*- mode: ruby -*-
vi: set ft=ruby :

$provisionScript = <<-SCRIPT
sed -i 's#PasswordAuthentication no#PasswordAuthentication yes#g'
/etc/ssh/sshd_config
systemctl restart sshd
SCRIPT

Vagrant.configure("2") do |config|
 config.vm.provision "shell",
 inline: $provisionScript

 config.vm.define "centos1" do |centos1|
 centos1.vm.box = "centos/7"
 centos1.vm.network "private_network", ip: "192.168.33.10"
 centos1.vm.hostname = "centos1"
 centos1.vm.box_version = "1804.02"
 end

 config.vm.define "centos2" do |centos2|

Remote Administration with SSH Chapter 2

[57]

 centos2.vm.box = "centos/7"
 centos2.vm.network "private_network", ip: "192.168.33.11"
 centos2.vm.hostname = "centos2"
 centos2.vm.box_version = "1804.02"
 end

 config.vm.define "centos3" do |centos3|
 centos3.vm.box = "centos/7"
 centos3.vm.network "private_network", ip: "192.168.33.12"
 centos3.vm.hostname = "centos3"
 centos3.vm.box_version = "1804.02"
 end
end

Note something new about this Vagrantfile. We've included a
provision step, which runs the code assigned to the variable at the
top of the file. In this case, we're making some changes to the SSH
configuration of the default CentOS image, so our examples work as
we expect. We've put all three VMs on their own private network.

It would be advisable to create a folder called Chapter Two and copy this code into a
file called Vagrantfile or if you're using the code from GitHub, navigating into the
right folder.

Running vagrant up from inside the folder containing your Vagrantfile should
configure two VMs for testing.

Once provisioned, make sure that you can connect to the first by running the
following:

$ vagrant ssh centos1

Vagrant is great for testing purposes, but you shouldn't use it in a
production environment for deploying machines. Some of the
decisions that are made are for ease of use (such as those around the
default vagrant user in our image) and as a result, are not best
practices for a secure deployment.

Generating and using key pairs with ssh-
keygen
Passwords are great, but they're also terrible.

Remote Administration with SSH Chapter 2

[58]

Most people use weak passwords, and while I hope that's not you, there's always the
chance that someone in your team doesn't have the discipline you do, and resorts to
football99 or similar for connecting to your shared remote host.

With password access enabled, anyone might be able to connect to your server from
any country by brute-forcing their way into your machine, given enough time and
enough processing power.

I say "might" because as long as you use secure passwords of a
decent length, passwords can be hard to guess, even with the power
of a sun. Consult your company security policy when deciding these
things, or read up on the best practices at the time you're writing the
policy yourself.

Here's where keys come in.

SSH keys are based on the concept of public key cryptography. They come in two
parts: a public half, and a private half, the public part of which you can place onto
servers, and the private part of which you keep about your person, either on your
laptop, or maybe a secure USB stick (one that is itself encrypted and password
protected).

Despite the obvious suggestion of public and private half, I have
frequently seen people misunderstand this concept and share their
private half instead of the public one. This generally results in the
key being labelled as compromised, and the individual in question
being asked to generate a new pair, with a short chat about the
definition of private and public in the meantime.

Once your public half of a key is on your server, you can SSH to your remote host
using the local, private half of your key for authentication.

SSH keys can even offer a degree of ease, as most operating systems come with a
keychain of some sort that can be automatically unlocked on user-login, and which
has the private parts of your key safely stored. SSH'ing to a machine then becomes a
trivial affair where you can securely connect without being prompted at all!

We're going to generate an SSH key pair and use that pair to SSH between our
machines.

Remote Administration with SSH Chapter 2

[59]

Getting ready
To begin, ensure that you have two VMs configured with a private network between
each.

You can use the Vagrantfile in the Technical requirements section to accomplish this.

Connect to the first of your machines:

$ vagrant ssh centos1

Check that the IP address of centos1 is correctly configured, using the command ip
a from Chapter 1, Introduction and Environment Setup.

We expect it to be 192.168.33.10, under the eth1 device:

[vagrant@centos1 ~]$ ip a
<SNIP>
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 08:00:27:ac:f2:12 brd ff:ff:ff:ff:ff:ff
 inet 192.168.33.10/24 brd 192.168.33.255 scope global noprefixroute
eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:feac:f212/64 scope link
 valid_lft forever preferred_lft forever

You can also use hostname -I to get the IP address of a box, as seen below, but you
should note that you won't get an obvious interface designation:

$ hostname -I
10.0.2.15 192.168.33.10

Check that you can ping the IP address of centos2 from within centos1.

We set the second IP to 192.168.33.11:

$ ping 192.168.33.11
PING 192.168.33.11 (192.168.33.11) 56(84) bytes of data.
64 bytes from 192.168.33.11: icmp_seq=1 ttl=64 time=1.17 ms
64 bytes from 192.168.33.11: icmp_seq=2 ttl=64 time=0.997 ms
64 bytes from 192.168.33.11: icmp_seq=3 ttl=64 time=1.18 ms

We have network connectivity between our VMs!

Remote Administration with SSH Chapter 2

[60]

If you're unable to ping between machines, start by checking your
network settings within VirtualBox, and connect to each of your
machines using the vagrant ssh command to check the assigned
IP address.

How to do it…
We're going to go over the steps to generate and copy a key to a remote host, using
two types of key.

First, we're going to generate a more traditional Rivest-Shamir-Adleman (RSA) key,
and then we're going to generate a newer type of key, the Ed25519 key.

RSA example
First, we're going to generate our key, confirming the default location in which to
save the key, and providing a passphrase when prompted:

$ ssh-keygen -b 4096 -C "Example RSA Key"
Generating public/private rsa key pair.
Enter file in which to save the key (/home/vagrant/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/vagrant/.ssh/id_rsa.
Your public key has been saved in /home/vagrant/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:hAUNhTqXtfnBOkXMuIpxkvtTkM6NYRYxRbT5QWSVbOk Example RSA Key
The key's randomart image is:
+---[RSA 4096]----+
| =@*=+o.o |
| o++=+ = |
| o.=+*.o |
| * X.+.+.E |
| & *S+.. |
| o = = . |
| . . . |
| o |
| . |
+----[SHA256]-----+

Remote Administration with SSH Chapter 2

[61]

The randomart image in the preceding code is mostly for humans so
that keys can be validated by sight. Personally, I've never used it
(other than a little further along in this chapter,) but you might.

Next, we're going to copy our newly generated RSA key to centos2, providing the
password for centos2 when prompted:

The default password for the vagrant user on these boxes is
vagrant.

$ ssh-copy-id 192.168.33.11
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed:
"/home/vagrant/.ssh/id_rsa.pub"
The authenticity of host '192.168.33.11 (192.168.33.11)' can't be
established.
ECDSA key fingerprint is
SHA256:LKhW+WOnW2nxKO/PY5UO/ny3GP6hIs3m/ui6uy+Sj2E.
ECDSA key fingerprint is
MD5:d5:77:4f:38:88:13:e7:f0:27:01:e2:dc:17:66:ed:46.
Are you sure you want to continue connecting (yes/no)? yes
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s),
to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you
are prompted now it is to install the new keys
vagrant@192.168.33.11's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh '192.168.33.11'"
and check to make sure that only the key(s) you wanted were added.

Finally, we're going to check that we can access centos2, by means of the key we just
generated.

We will be prompted for the passphrase we set when the key was generated. Type it
in when required:

[vagrant@centos1 ~]$ ssh 192.168.33.11
Enter passphrase for key '/home/vagrant/.ssh/id_rsa':
[vagrant@centos2 ~]$

Remote Administration with SSH Chapter 2

[62]

Ed25519 example
As with our RSA example, we will start by generating a new key, this time specifying
the type as 'ed25519'.

Ed25519 keys are elliptical-curve based and a lot of very clever
people believe they offer superior security to RSA. The keys
themselves are also much shorter (which we'll touch on later,)
meaning if you've ever got to type one out, it's a lot less work.
Annoyingly you can't use the public half of an Ed25519 key for
encrypting files, as you can with an RSA public half, so there's a
trade off but it depends on your needs.

We will again accept the default location for where to save our key, and provide a
passphrase:

[vagrant@centos1 ~]$ ssh-keygen -t ed25519 -C "Example Ed25519 key"
Generating public/private ed25519 key pair.
Enter file in which to save the key (/home/vagrant/.ssh/id_ed25519):
/home/vagrant/.ssh/id_ed25519 already exists.
Overwrite (y/n)? y
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/vagrant/.ssh/id_ed25519.
Your public key has been saved in /home/vagrant/.ssh/id_ed25519.pub.
The key fingerprint is:
SHA256:nQVR7ZVJMjph093KHB6qLg9Ve87PF4fNnFw8Y5X0kN4 Example Ed25519 key
The key's randomart image is:
+--[ED25519 256]--+
| o*o+=+=|
| ..+.B*=|
| ooB Bo|
| . +o.B+E|
| S +.. +==|
| .. +.+=|
| .. o o|
| ... o.|
| o. +|
+----[SHA256]-----+

Remote Administration with SSH Chapter 2

[63]

We're going to copy our new key over to centos2. Note that we're also specifying the
id_ed25519.pub file as the one to copy over:

Again, the default password for these boxes is vagrant.

[vagrant@centos1 ~]$ ssh-copy-id -i .ssh/id_ed25519.pub 192.168.33.11
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed:
".ssh/id_ed25519.pub"
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s),
to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you
are prompted now it is to install the new keys
vagrant@192.168.33.11's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh '192.168.33.11'"
and check to make sure that only the key(s) you wanted were added

If you've run this example straight after the one before it, you may
be asked for the passphrase to your RSA key, instead of the
password to the box itself. This is fine, and it highlights the fact that
key-based authentication is attempted first. If this is the case for you,
simply provide the passphrase to your RSA key.

Once installed, attempt to SSH to centos2, specifying the private half of the Ed25519
key:

[vagrant@centos1 ~]$ ssh 192.168.33.11 -i .ssh/id_ed25519
Enter passphrase for key '.ssh/id_ed25519':
Last login: Wed Aug 8 10:06:33 2018 from 192.168.33.10
[vagrant@centos2 ~]$

How it works…
The principle of asynchronous keys and public key cryptography can be awkward for
people to get their head around. For the most part, you won't need to worry about the
mathematics of key generation—you should just know that you will always end up
with two keys, a public one and a private one.

Remote Administration with SSH Chapter 2

[64]

Dimble, an entirely fictional engineer who thinks it's a good idea to
store his private SSH key on a public GitLab server in a
repository named my stuff is a security risk, because he never
owned a dictionary, and believes that the word private means "share
it with the world", which it doesn't. He also disabled the passphrase
on his private key because he didn't like the fact there was an extra
step between him and his server. Don't be like Dimble—keep your
private key safe and secure.

The public and private key files
As hinted at previously, what we've done here is create two files, one half of which
can be freely passed around (the public half) and one half of which we keep safe
somewhere else (the private half).

By default, these files are located in the home directory of your user, in the hidden
.ssh folder:

[vagrant@centos1 ~]$ pwd
/home/vagrant
[vagrant@centos1 ~]$ ls -a
. .. .bash_history .bash_logout .bash_profile .bashrc .ssh
[vagrant@centos1 ~]$ ls .ssh
authorized_keys id_ed25519 id_ed25519.pub id_rsa id_rsa.pub
known_host

The public halves of our keys end in .pub, and the private halves don't have a file
extension.

Let's take a look at each of the four files:

[vagrant@centos1 ~]$ cat .ssh/id_rsa
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,9AFF0BD949B955DA3595262BB18E5BF7

n1K6zUfhIynq9dwRMAGlMuTU/7Ht3KgBuelsWy3mxJM+NxprFkhAV2cyEVhnJI+5
xgDkx7+6PcGVv/oQAH3pSICefZSJvHvnFLO+M7HKkcmdz9IYXlQC1gkeZwhS6708
<SNIP>
wTXVajpn0anc3TWDw78sZkLmoP5MEs14gJvyegmyLd8qAGvSmfXYNFgYh49hnX9E
vdAmtTJPqglcw0F1JVCOEevIWA/WoIkkTAgLuKvka5ZepKKnScwnRiAhKTVXCN3W
-----END RSA PRIVATE KEY-----

Remote Administration with SSH Chapter 2

[65]

The private half of our RSA key is a file that's sensitive, and as we made it 4096 bits
when we generated it, this file will be very long (hence my snip).

The public half of our RSA key is the file that's placed on remote machines. It is still
affected by the bit-length we specified, though it's nowhere near as lengthy as the
private half.

[vagrant@centos1 ~]$ cat .ssh/id_rsa.pub
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQCwR6+SAohzU9f1SAha634StlJaBGIZ+k5Rb6T6L4
VqxHIfRwCV+uciXbkTg8+lxiP8whGYEiDxfPveqW1xf87JYlWTT3ZT3gd3pfxY1+IgRB7j
5Ttd2RBCMeMYB9VJWLqib6K9oeHJyGzM39aJqE2AzxKxc+rXeXT16RlFxs7nDZwS9xV7Da
i9LB/Jez0pT8pLFVD/QRsGw0uMjMMSjmKqxPrDpHzZ3OUymB5AdyVfts4JTZINSrWdejPR
8G93pzH4S8ZYijhgpOnSuoyGhMnwAjwOJyNkkFOT1rKCuzpW33hr2c1pJSBPZTAx2/ZvB1
He2/UweBF2VeQpSruQB7tXkQMeXSQBpe+/zMqOLD82vake3M8mqNpFJoVG3afr9RcCXtqn
7cF3fDEqj7nNk0Em6/9akO2/tK5KInWhyOjKdV41ntB6IVPGJWOUBmnvf9HVpOMa8rxeb3
KpBqnn6z70rjMTKqHmAQ5BeCuVSezTl4xAUP940PbkHSm0mDeWYMi2AgbofKDGBmH/GGUn
3QeahhiLTXGzbIHszbXJdJ5dn30oWAPovW/gc0CeeHgUV7IwJ6wxVIz8jYKpjtDtIPYDs+
RJMrWo8qPnhHWxA6HVp42eUylh7eazPUzitfZ2SBQHe3ShbBHTh2wHcLcRoVgSMrMJmfQ7
Ibad5ZiWepobJw== Example RSA Key

Note that we've also got a comment at the end, Example RSA Key, which we
specified at generation time. This will usually be the user and machine hostname of
the box it's generated on, when no comment is explicitly passed.

[vagrant@centos1 ~]$ cat .ssh/id_ed25519
-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAACmFlczI1Ni1jYmMAAAAGYmNyeXB0AAAAGAAAABCV2EFqnw
9/2J52LIVBzp50AAAAEAAAAAEAAAAzAAAAC3NzaC1lZDI1NTE5AAAAIEGnqP8zTx50SwjP
+Fe26RdDx2W3/TQ+0ET8ylxfFB+aAAAAoJUzLk7IAaszO2npeAJIgfYmsqWCcgTM+EfF15
3A1iw4PruO+q8b3BxAjFZGK0tjFTSm3rkKtM9+JYTxOI+CSnEyqPnjnCjPODa7aF/X8GBt
RNkSKBlM7aROwpon0Z8UXH+Js8uyNOsKto+DS+BfVSKvshkQ6bNF/5DlU0fQcnRaYnVdyl
mIJUaPLdl/vKLwF+S4OyU87n8rac0ezjfAOhk=
-----END OPENSSH PRIVATE KEY-----

Then, there is our private (sensitive) Ed25519 key. Note that this file is much shorter
than its RSA counterpart, and this is because Ed25519 keys have a fixed length (this
also means that the -b flag is ignored at generation time).

[vagrant@centos1 ~]$ cat .ssh/id_ed25519.pub
ssh-ed25519
AAAAC3NzaC1lZDI1NTE5AAAAIEGnqP8zTx50SwjP+Fe26RdDx2W3/TQ+0ET8ylxfFB+a
Example Ed25519 key

Remote Administration with SSH Chapter 2

[66]

Here, we have our public Ed25519 file, so short that you could conceivably write it
onto a bit of paper and hand it to your colleague to copy onto a server (though they
really, really won't thank you for it, and will most likely not offer to make you a cup
of tea any time soon).

We also have our comment, Example Ed25519 key.

Obviously, printing the private halves of the keys that I've just
generated flies in the face of what I said about passing around
private keys, although it's for documentation, and I'm going to
destroy these VMs once I'm finished with them, so I felt adding
them here for clarity was important. DO NOT USE THESE KEYS.

The authorized_keys file
When you connect to your remote host, SSH validates the key ID you're providing
against a list of authorized_keys.

In our example, we used the ssh-copy-id command to place our key on the remote
server. What this actually does is put it in a specific file of the home user you're
connecting to.

On our centos2 host, we can find this file in the user's home directory, under .ssh:

[vagrant@centos2 ~]$ pwd
/home/vagrant
[vagrant@centos2 ~]$ ls .ssh/
authorized_keys

Looking inside this file reveals the following:

[vagrant@centos2 ~]$ cat .ssh/authorized_keys
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDNkm9JCaRa/5gunzDZ8xO2/xwRvUx03pITH6f4aY
ziY/j+7o39XnmNyLRVpvh16u9W75ANJeFpBD7lkevluvaFVRQnZGAhuIdGqLHBlGDnVzkz
cQGUFc/fcAc9rDAFGa0h7+BF18P0jpOMXfHQu8+7+cBjJ6cW+ztKerG2ali/JLtSHFirXa
VTkOKYkwYVfK7z7nmdMsSzgEOsfg5XrylI+ufhGdgWCKtweHsBeAVWjBBbvNaIwgdRVpB1
YmLkLgLN7NxRs53OuejwArLS6tvNS+ZBDiSX+was9gErrhGhZ1mdiOMbd3/oTfFEcOiRNO
v/+7Tk4P8fJbnO1dzM8Gid vagrant
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQCwR6+SAohzU9f1SAha634StlJaBGIZ+k5Rb6T6L4
VqxHIfRwCV+uciXbkTg8+lxiP8whGYEiDxfPveqW1xf87JYlWTT3ZT3gd3pfxY1+IgRB7j
5Ttd2RBCMeMYB9VJWLqib6K9oeHJyGzM39aJqE2AzxKxc+rXeXT16RlFxs7nDZwS9xV7Da
i9LB/Jez0pT8pLFVD/QRsGw0uMjMMSjmKqxPrDpHzZ3OUymB5AdyVfts4JTZINSrWdejPR
8G93pzH4S8ZYijhgpOnSuoyGhMnwAjwOJyNkkFOT1rKCuzpW33hr2c1pJSBPZTAx2/ZvB1

Remote Administration with SSH Chapter 2

[67]

He2/UweBF2VeQpSruQB7tXkQMeXSQBpe+/zMqOLD82vake3M8mqNpFJoVG3afr9RcCXtqn
7cF3fDEqj7nNk0Em6/9akO2/tK5KInWhyOjKdV41ntB6IVPGJWOUBmnvf9HVpOMa8rxeb3
KpBqnn6z70rjMTKqHmAQ5BeCuVSezTl4xAUP940PbkHSm0mDeWYMi2AgbofKDGBmH/GGUn
3QeahhiLTXGzbIHszbXJdJ5dn30oWAPovW/gc0CeeHgUV7IwJ6wxVIz8jYKpjtDtIPYDs+
RJMrWo8qPnhHWxA6HVp42eUylh7eazPUzitfZ2SBQHe3ShbBHTh2wHcLcRoVgSMrMJmfQ7
Ibad5ZiWepobJw== Example RSA Key
ssh-ed25519
AAAAC3NzaC1lZDI1NTE5AAAAIEGnqP8zTx50SwjP+Fe26RdDx2W3/TQ+0ET8ylxfFB+a
Example Ed25519 key

Here, we can see three keys, over three lines.

The first key is as follows:

[vagrant@centos2 ~]$ cat .ssh/authorized_keys | head -n1
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDNkm9JCaRa/5gunzDZ8xO2/xwRvUx03pITH6f4aY
ziY/j+7o39XnmNyLRVpvh16u9W75ANJeFpBD7lkevluvaFVRQnZGAhuIdGqLHBlGDnVzkz
cQGUFc/fcAc9rDAFGa0h7+BF18P0jpOMXfHQu8+7+cBjJ6cW+ztKerG2ali/JLtSHFirXa
VTkOKYkwYVfK7z7nmdMsSzgEOsfg5XrylI+ufhGdgWCKtweHsBeAVWjBBbvNaIwgdRVpB1
YmLkLgLN7NxRs53OuejwArLS6tvNS+ZBDiSX+was9gErrhGhZ1mdiOMbd3/oTfFEcOiRNO
v/+7Tk4P8fJbnO1dzM8Gid vagrant

This is the key that Vagrant uses to connect to the VMs. It's not one we created.

The second is as follows:

[vagrant@centos2 ~]$ cat .ssh/authorized_keys | head -n2 | tail -n1
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQCwR6+SAohzU9f1SAha634StlJaBGIZ+k5Rb6T6L4
VqxHIfRwCV+uciXbkTg8+lxiP8whGYEiDxfPveqW1xf87JYlWTT3ZT3gd3pfxY1+IgRB7j
5Ttd2RBCMeMYB9VJWLqib6K9oeHJyGzM39aJqE2AzxKxc+rXeXT16RlFxs7nDZwS9xV7Da
i9LB/Jez0pT8pLFVD/QRsGw0uMjMMSjmKqxPrDpHzZ3OUymB5AdyVfts4JTZINSrWdejPR
8G93pzH4S8ZYijhgpOnSuoyGhMnwAjwOJyNkkFOT1rKCuzpW33hr2c1pJSBPZTAx2/ZvB1
He2/UweBF2VeQpSruQB7tXkQMeXSQBpe+/zMqOLD82vake3M8mqNpFJoVG3afr9RcCXtqn
7cF3fDEqj7nNk0Em6/9akO2/tK5KInWhyOjKdV41ntB6IVPGJWOUBmnvf9HVpOMa8rxeb3
KpBqnn6z70rjMTKqHmAQ5BeCuVSezTl4xAUP940PbkHSm0mDeWYMi2AgbofKDGBmH/GGUn
3QeahhiLTXGzbIHszbXJdJ5dn30oWAPovW/gc0CeeHgUV7IwJ6wxVIz8jYKpjtDtIPYDs+
RJMrWo8qPnhHWxA6HVp42eUylh7eazPUzitfZ2SBQHe3ShbBHTh2wHcLcRoVgSMrMJmfQ7
Ibad5ZiWepobJw== Example RSA Key

This is our generated RSA key. Note that it's longer than the Vagrant default, owing
to the custom 4096 bit-length that we specified.

Our third key is as follows:

[vagrant@centos2 ~]$ cat .ssh/authorized_keys | tail -n1
ssh-ed25519

Remote Administration with SSH Chapter 2

[68]

AAAAC3NzaC1lZDI1NTE5AAAAIEGnqP8zTx50SwjP+Fe26RdDx2W3/TQ+0ET8ylxfFB+a
Example Ed25519 key

This is our Ed25519 key.

You could, if you so wished, manually copy public keys into the
authorized_keys file on the host you're connecting to. The ssh-
copy-id command we used is simply a convenient way of cutting
out a few of the extra steps.

There's more...
SSH is sensitive about the permissions that its files have.

You don't want your private key to be readable by any random user who might be on
your system, so as a result, plain SSH won't work if it thinks you have bad
permissions set.

Generally, this won't be an issue if you've just generated your keys, but if you later
move them between computers, you might find that you've spoiled the permissions
slightly.

A good rule of thumb is to assume locked-down settings:

[vagrant@centos1 ~]$ ls -lha .ssh/
total 28K
drwx------. 2 vagrant vagrant 134 Aug 8 14:05 .
drwx------. 3 vagrant vagrant 95 Aug 8 10:29 ..
-rw-------. 1 vagrant vagrant 389 Aug 7 16:40 authorized_keys
-rw-------. 1 vagrant vagrant 464 Aug 8 10:04 id_ed25519
-rw-r--r--. 1 vagrant vagrant 101 Aug 8 10:04 id_ed25519.pub
-rw-------. 1 vagrant vagrant 3.3K Aug 8 11:15 id_rsa
-rw-r--r--. 1 vagrant vagrant 741 Aug 7 16:43 id_rsa.pub
-rw-r--r--. 1 vagrant vagrant 535 Aug 8 11:39 known_hosts

In the above command, we can see that the public and private halves of the keys
(id_rsa keys and id_ed25519 keys) have different values.

The public halves of the keys (*.pub) have the value 644 (read/write, read, read):

-rw-r--r--.

The private halved of the keys have the value 600 (read/write, none, none):

-rw-------.

Remote Administration with SSH Chapter 2

[69]

To passphrase or not to passphrase
While you can generate a key without a passphrase, and there are valid use cases for
doing so (for example, in the case of automated deployments), it is considered a best
practice to generate your own key with a passphrase.

This does mean that if your key isn't unlocked in your keychain (which itself might be
unlocked when you log into your machine), you will be prompted for the passphrase
to unlock the key. You might consider this a hassle, but think of it in terms of the
security onion (multiple layers of security... it's not a great analogy, unless security
makes you cry.) If you lost your private key, the malicious person that picks it up
won't be able to use it to access your stuff.

If you do lose a private key, or leave it on a USB stick on a bus, you
should immediately rotate your keys by revoking the old one from
any location where the public half is installed, and generating a new
pair to use.

Additional flags
When we generated our keys, we also added a couple of flags.

As with any software, checking the manual page for the command you're running can
provide a sometimes overwhelming amount of additional detail:

$ man ssh-keygen

To save a little bit of a headache, I'm going to highlight some options that may be of
interest to you, starting with -b:

-b bits

We used the -b flag to specify a large amount of bits during the generation of our
RSA key. The minimum is 1024 and the default is 2048. Your place of business may
have requirements on the length of RSA keys.

Next, we have the comment flag:

-C comment

We used this to add a bit of description to our keys. It might be useful if you use
different keys for different things (this is my GitLab key, this is my personal server
key, this is my company server key, and so on).

Remote Administration with SSH Chapter 2

[70]

If you do need multiple keys, you may want to pass the name of your new key within
the generation command (as opposed to typing it out when prompted):

-f filename

We also have -l to print the fingerprint of a key, and/or the ASCII art if you so wish.
This can be very useful for verifying key pairs:

-l (or -lv for a pretty picture)

If you want to change the passphrase of a private half, but don't want to generate a
new key, you can use the -p option:

-p

To specify the type of key you wish to generate, you can use the -t option:

-t dsa | ecdsa | ed25519 | rsa

When choosing the type of key to generate, consider your requirements. RSA is
generally the most compatible, but your company may have other policies, or you
may have a personal preference.

I've come across two scenarios where Ed25519 keys couldn't be
used – one was an in-house script that required RSA for encrypting
files, and the other was OpenStack, at the time.

Finally, there's good old -v, providing verbose output since the early days:

-v

This can be passed multiple times, that is, -vvv is also valid, with each v increasing
the debug level.

See also
This section deliberately doesn't go into the minutia of SSH key exchange or the
different types of key (with the exception of the two used in our example). There are
excellent books on SSH that can provide a wealth of information, and the OpenSSH
developers themselves are constantly working on improvements to the software.
OpenSSH is only one implementation of SSH, but it is by far the most popular. It is
the default on every Linux distribution I've used, it's in use on macOS, and it's the
standard on the BSDs (especially OpenBSD, where it's developed).

Remote Administration with SSH Chapter 2

[71]

SSH client arguments and options
SSH is a powerful piece of software, as we've already discussed, and while it can be
used in a very simple way to enable access to your server, it is also extremely flexible.

In this section, we're going to look at common flags that are used with SSH in
environments that may have different requirements.

We will be using the same Vagrant boxes as before.

Getting ready
As with the previous section, confirm that both of your Vagrant boxes are enabled,
and connect to the first using the vagrant command:

$ vagrant ssh centos1

How to do it…
We're going to take a look at the basics of SSH first.

SSH using hostnames instead of IPs
In our examples so far, we've been using IP addresses to connect to our remote host.

SSH is also capable of connecting to hostnames.

First, we have to create a quick hosts entry so that we can resolve our name to an IP
address:

[vagrant@centos1 ~]$ echo "192.168.33.11 centos2" | sudo tee -a
/etc/hosts

The preceding code is a quick way to make a remote host resolvable
to a name. There's no guarantee that it will stick on some systems,
especially those where a third party controls the hosts file. In a
real-world scenario, it is highly likely you'll have some sort of DNS
setup that will make connecting to hostnames easier.

Remote Administration with SSH Chapter 2

[72]

We should now be able to SSH using the host's name:

[vagrant@centos1 ~]$ ssh centos2
The authenticity of host 'centos2 (192.168.33.11)' can't be
established.
ECDSA key fingerprint is
SHA256:LKhW+WOnW2nxKO/PY5UO/ny3GP6hIs3m/ui6uy+Sj2E.
ECDSA key fingerprint is
MD5:d5:77:4f:38:88:13:e7:f0:27:01:e2:dc:17:66:ed:46.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'centos2' (ECDSA) to the list of known
hosts.
Enter passphrase for key '/home/vagrant/.ssh/id_rsa':
Last login: Wed Aug 8 11:28:59 2018 from fe80::a00:27ff:fe2a:1652%eth1
[vagrant@centos2 ~]$

Note that we once again had to accept the fingerprint of the host we're connecting to.

SSHing to a different user
If the user you're connecting to is different to the one you're using locally (in our
examples, it's always vagrant and vagrant), then you can manually specify the
username on the command line.

The first way to do this is with the following syntax:

[vagrant@centos1 ~]$ ssh vagrant@centos2

The second way is with a flag:

[vagrant@centos1 ~]$ ssh centos2 -l vagrant

SSHing to a different port
If the SSH server you're connecting to is listening on a different port (this is quite
common), then you might have to specify the port in question.

The default is 22, but if you've changed this for whatever reason, you could also
specify the new port, for example, 2020:

[vagrant@centos1 ~]$ ssh centos2 -p2020

Remote Administration with SSH Chapter 2

[73]

Note this example won't work right now, because we haven't
changed the port the server is listening on.

SSHing to an IPv6 address
IPv6 addresses look a lot more imposing than they really are, and it's advisable that
you get to grips with them sooner rather than later (even if people have been
predicting the dominance of IPv6 for over a decade now).

For this example, we're going to find the IPv6 address of centos2 and connect to
that.

First, connect to centos2 and run the ip a command:

[vagrant@centos2 ~]$ ip a
<SNIP>
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 08:00:27:56:c5:a7 brd ff:ff:ff:ff:ff:ff
 inet 192.168.33.11/24 brd 192.168.33.255 scope global
noprefixroute eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fe56:c5a7/64 scope link
 valid_lft forever preferred_lft forever

I've highlighted the IPv6 address in the preceding code.

Back on centos1, let's connect using IPv6:

[vagrant@centos1 ~]$ ssh fe80::a00:27ff:fe56:c5a7%eth1
Enter passphrase for key '/home/vagrant/.ssh/id_rsa':
Last login: Wed Aug 8 11:44:34 2018 from 192.168.33.10
[vagrant@centos2 ~]$

Note that we've had to specify the network interface on the end of our command.
This is only necessary in the case of link-local addresses, and shouldn't be necessary
for global IPv6 addresses.

Remote Administration with SSH Chapter 2

[74]

A comparison to link-local addresses in the IPv6 world are subnets
in the IPv4 world, that is, link-local devices are those that can see
each other on a local network, via their link-local addresses (which
themselves are generated based on factors like the MAC address of
the interface that the address is on). They should always have the
link-local prefix (FE80::/10).

SSHing before running a command
While you'll mostly use SSH for connecting to remote boxes, it's also possible to run a
command on a remote host without having to linger there.

Here, we're running a command to print the hostname file on the remote box, while
staying on centos1:

[vagrant@centos1 ~]$ ssh 192.168.33.11 "cat /etc/hostname"
Enter passphrase for key '/home/vagrant/.ssh/id_rsa':
centos2
[vagrant@centos1 ~]$

This is especially useful for automation software, or scripts that you
want to run locally but which interact with remote machines.

SSH and X11 forwarding
Not generally used these days, but still useful in some select situations, X11
forwarding is the act of running a program on a remote box, and displaying said
program on your local machine.

You can set up your session using the following command:

[vagrant@centos1 ~]$ ssh centos2 -X

There are security implications of working with X11 forwarding.
Consult your distribution's manual page for information around
this, as the default behavior can differ from distribution to
distribution.

Remote Administration with SSH Chapter 2

[75]

Currently, this is only possible with X Window Manager setups, and
the more modern Wayland display server protocol doesn't have a
similar ability, due in part to wanting to keep things simple.

How it works…
SSH is a large and feature-rich program. When you manipulate how it behaves using
flags, you're modifying the default behavior to your own ends.

As with any command, they can be simple:

$ ssh 192.168.33.11

But they can also be complex:

$ ssh -Y -D9999 -J buser@BASTION:22 -L 8888:127.0.0.1:80
myself@centos2 -p4433

As an exercise, using the SSH manual page if you need to, see if you can work out
what this command will accomplish.

There's more…
SSH escape characters are an important additional element to note.

Occasionally, you can be connected to a system and your connection times out,
locking up your session.

This usually manifests in the form of an unblinking and unresponsive Terminal. You
generally can't hit Ctrl + D to log out, and can't type.

You would instead hit the following keys:

~.

While the key combination is officially listed as ~. it actually
requires the Enter key being pressed first (as in, newline), so it's
frequently written as \n~.

This tip is brought to you by an eagle-eyed technical editor!

Remote Administration with SSH Chapter 2

[76]

That's a tilde character (find it on your keyboard, usually using the Shift key),
followed by a dot.

Your session should immediately disconnect.

Check out the SSH manual page for more escape characters.

See also
Again, there's a lot more to SSH options than I've listed in this recipe, and we've yet to
cover a few that have their own sections in the rest of this chapter, but still there's a
considerable amount we won't be using here.

Take a look at the manual page for SSH on a boring Tuesday. I did.

Using a client-side SSH configuration file
While it's nice to be able to manipulate SSH using command-line arguments, it's also
nice to not have to bother.

If you've got a system you work on day in and day out, it can be beneficial to
configure your setup with your typical arguments on a permanent basis. This is
where the client-side SSH configuration file comes in.

On our example box, the default ssh_config file is located in the /etc/ssh/
directory. Open this file to have a look if you like, but don't make any changes yet.

Getting ready
As with the previous section, confirm that both of your Vagrant boxes are enabled,
and connect to the first using the vagrant command:

$ vagrant ssh centos1

To configure different options for our user, we're going to create an SSH
configuration file in our home directory.

This goes in the same place as most of our SSH files, ~/.ssh/.

Remote Administration with SSH Chapter 2

[77]

Whenever you see a ~ character, think of it as my home in your
head. Expanded, this location is /home/vagrant/.ssh/.

Create the file, lock down the permissions, and open it in your editor of choice—I'm
going to use vi.

Be sure to call it config:

[vagrant@centos1 ~]$ touch ~/.ssh/config
[vagrant@centos1 ~]$ chmod 600 ~/.ssh/config
[vagrant@centos1 ~]$ vi ~/.ssh/config

How to do it…
Within your config file, create the start of four blocks.

One should be a wildcard block (using *) and the other should be variations on the
name CentOS2 (note the capitals):

Host * !CentOS2-V6
 IdentityFile ~/.ssh/id_ed25519
 Port 22

Host CentOS2-V4
 Hostname 192.168.33.11
 User vagrant

Host CentOS2-V6
 Hostname fe80::a00:27ff:fe56:c5a7%%eth1
 IdentityFile ~/.ssh/id_rsa
 Port 22
 User vagrant

Host CentOS2-Hostname
 Hostname centos2
 User vagrant

Note that in the V6 entry, we actually use two percentage signs,
instead of the single one we used on the command line. This is so
that SSH doesn't misinterpret what we mean and try to read the
entry with a %e value.

Remote Administration with SSH Chapter 2

[78]

Inside these blocks, we've set a few basic options based on what we did previously on
the command line.

With these settings in place, we can save and exit our configuration file, and try to
connect to our specified hosts.

First, we're going to connect to our other VM on its IPv4 address:

[vagrant@centos1 ~]$ ssh CentOS2-V4
Enter passphrase for key '/home/vagrant/.ssh/id_ed25519':
Last login: Wed Aug 8 13:31:41 2018 from
fe80::a00:27ff:fe2a:1652%eth1
[vagrant@centos2 ~]$

Next, we're going to use our IPv6 address:

[vagrant@centos1 ~]$ ssh CentOS2-V6
Enter passphrase for key '/home/vagrant/.ssh/id_rsa':
Last login: Wed Aug 8 13:34:26 2018 from 192.168.33.10
[vagrant@centos2 ~]$

Finally, we're going to resolve the hostname of the host:

[vagrant@centos1 ~]$ ssh CentOS2-Hostname
Enter passphrase for key '/home/vagrant/.ssh/id_ed25519':
Last login: Wed Aug 8 13:34:04 2018 from
fe80::a00:27ff:fe2a:1652%eth1
[vagrant@centos2 ~]$

Most systems will also auto complete entries in the SSH config file.
Try it out yourself by typing ssh C and hitting Tab three times.

How it works…
Starting with the wildcard host entry (Host *), this is a global entry. Settings within
this block will apply to all hosts (except CentOS2-V6, which we'll get to soon):

Host * !CentOS2-V6
 IdentityFile ~/.ssh/id_ed25519
 Port 22

Remote Administration with SSH Chapter 2

[79]

Here, we've said that each and every host in this file will use our Ed25519 key to
connect, and we will always connect on port 22. This block should be used for global
settings in general. You can also omit it entirely if you desire:

Host CentOS2-V4
 Hostname 192.168.33.11
 User vagrant

In our first specific host block, which we've called CentOS2-V4, we specify the IPv4
address of the host, and the user to use.

Connecting to this entry with verbosity turned up looks like this:

[vagrant@centos1 ~]$ ssh -v CentOS2-V4
OpenSSH_7.4p1, OpenSSL 1.0.2k-fips 26 Jan 2017
debug1: Reading configuration data /home/vagrant/.ssh/config
debug1: /home/vagrant/.ssh/config line 1: Applying options for *
debug1: /home/vagrant/.ssh/config line 5: Applying options for
CentOS2-V4
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 58: Applying options for *
debug1: Connecting to 192.168.33.11 [192.168.33.11] port 22.
debug1: Connection established.
debug1: identity file /home/vagrant/.ssh/id_ed25519 type 4
<SNIP>
debug1: rekey after 134217728 blocks
debug1: SSH2_MSG_NEWKEYS sent
debug1: expecting SSH2_MSG_NEWKEYS
debug1: SSH2_MSG_NEWKEYS received
debug1: rekey after 134217728 blocks
debug1: SSH2_MSG_EXT_INFO received
debug1: kex_input_ext_info: server-sig-algs=<rsa-sha2-256,rsa-
sha2-512>
debug1: SSH2_MSG_SERVICE_ACCEPT received
debug1: Authentications that can continue: publickey,gssapi-
keyex,gssapi-with-mic,password
debug1: Next authentication method: gssapi-keyex
debug1: No valid Key exchange context
debug1: Next authentication method: gssapi-with-mic
debug1: Unspecified GSS failure. Minor code may provide more
information
No Kerberos credentials available (default cache:
KEYRING:persistent:1000)

debug1: Unspecified GSS failure. Minor code may provide more
information
No Kerberos credentials available (default cache:
KEYRING:persistent:1000)

Remote Administration with SSH Chapter 2

[80]

debug1: Next authentication method: publickey
debug1: Offering ED25519 public key: /home/vagrant/.ssh/id_ed25519
debug1: Server accepts key: pkalg ssh-ed25519 blen 51
Enter passphrase for key '/home/vagrant/.ssh/id_ed25519':
debug1: Authentication succeeded (publickey).
Authenticated to 192.168.33.11 ([192.168.33.11]:22).
debug1: channel 0: new [client-session]
debug1: Requesting no-more-sessions@openssh.com
debug1: Entering interactive session.
debug1: pledge: network
debug1: client_input_global_request: rtype hostkeys-00@openssh.com
want_reply 0
debug1: Sending environment.
debug1: Sending env LANG = en_GB.UTF-8
Last login: Wed Aug 8 13:46:27 2018 from 192.168.33.10

Within this blob of noise, we can see some crucial things, emboldened for your
convenience.

Firstly, we can see where SSH starts to read the configuration data from our config
file. It applies the settings for the wildcard entry, followed by those for this specific
host.

Later, we can see the prompt for the Ed25519 key specified in the host wildcard
block.

Finally, we can see that our session is authenticated to 192.168.33.11 (or the IPv4
address).

If we now take a look at the CentOS-V6 block, we start to see differences:

Host CentOS2-V6
 Hostname fe80::a00:27ff:fe56:c5a7%%eth1
 IdentityFile ~/.ssh/id_rsa
 Port 22
 User vagrant

Again, note the double percentage signs.

Remote Administration with SSH Chapter 2

[81]

First, you'll notice that we've got the port and a different IdentityFile entry
specified. This is due to the Host * block not applying to CentOS2-V6, as shown
here:

Host * !CentOS2-V6

This means that no settings from the wildcard block will apply to CentOS2-V6.

If we connect to our host, again in a verbose fashion, we see the following:

[vagrant@centos1 ~]$ ssh -v CentOS2-V6
OpenSSH_7.4p1, OpenSSL 1.0.2k-fips 26 Jan 2017
debug1: Reading configuration data /home/vagrant/.ssh/config
debug1: /home/vagrant/.ssh/config line 1: Skipping Host block because
of negated match for CentOS2-V6
debug1: /home/vagrant/.ssh/config line 9: Applying options for
CentOS2-V6
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 58: Applying options for *
debug1: Connecting to fe80::a00:27ff:fe56:c5a7%eth1
[fe80::a00:27ff:fe56:c5a7%eth1] port 22.
debug1: Connection established.
debug1: identity file /home/vagrant/.ssh/id_rsa type 1
debug1: key_load_public: No such file or directory
<SNIP>
debug1: Next authentication method: publickey
debug1: Offering RSA public key: /home/vagrant/.ssh/id_rsa
debug1: Server accepts key: pkalg rsa-sha2-512 blen 535
Enter passphrase for key '/home/vagrant/.ssh/id_rsa':
debug1: Authentication succeeded (publickey).
Authenticated to fe80::a00:27ff:fe56:c5a7%eth1
([fe80::a00:27ff:fe56:c5a7%eth1]:22).
debug1: channel 0: new [client-session]
debug1: Requesting no-more-sessions@openssh.com
debug1: Entering interactive session.
debug1: pledge: network
debug1: client_input_global_request: rtype hostkeys-00@openssh.com
want_reply 0
debug1: Sending environment.
debug1: Sending env LANG = en_GB.UTF-8
Last login: Wed Aug 8 13:50:39 2018 from
fe80::a00:27ff:fe2a:1652%eth1

What's specifically different are the lines about matching config, which this time
inform us that the wildcard block won't be applied because of the negated match for
CentOS2-V6.

Remote Administration with SSH Chapter 2

[82]

We can also see that id_rsa is being used this time instead, and we've specifically
connected to the IPv6 address of the host.

Lastly, let's look at CentOS2-Hostname:

[vagrant@centos1 ~]$ ssh -v CentOS2-Hostname
OpenSSH_7.4p1, OpenSSL 1.0.2k-fips 26 Jan 2017
debug1: Reading configuration data /home/vagrant/.ssh/config
debug1: /home/vagrant/.ssh/config line 1: Applying options for *
debug1: /home/vagrant/.ssh/config line 15: Applying options for
CentOS2-Hostname
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 58: Applying options for *
debug1: Connecting to centos2 [192.168.33.11] port 22.
debug1: Connection established.
debug1: identity file /home/vagrant/.ssh/id_ed25519 type 4
debug1: key_load_public: No such file or directory
debug1: identity file /home/vagrant/.ssh/id_ed25519-cert type -1
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_7.4
debug1: Remote protocol version 2.0, remote software version
OpenSSH_7.4
debug1: match: OpenSSH_7.4 pat OpenSSH* compat 0x04000000
debug1: Authenticating to centos2:22 as 'vagrant'
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug1: kex: algorithm: curve25519-sha256
<SNIP>
debug1: Next authentication method: publickey
debug1: Offering ED25519 public key: /home/vagrant/.ssh/id_ed25519
debug1: Server accepts key: pkalg ssh-ed25519 blen 51
Enter passphrase for key '/home/vagrant/.ssh/id_ed25519':
debug1: Authentication succeeded (publickey).
Authenticated to centos2 ([192.168.33.11]:22).
debug1: channel 0: new [client-session]
debug1: Requesting no-more-sessions@openssh.com
debug1: Entering interactive session.
debug1: pledge: network
debug1: client_input_global_request: rtype hostkeys-00@openssh.com
want_reply 0
debug1: Sending environment.
debug1: Sending env LANG = en_GB.UTF-8
Last login: Wed Aug 8 13:55:20 2018 from
fe80::a00:27ff:fe2a:1652%eth1

Again, note the matching of configuration, and the fact that we're connected to the
IPv4 address.

Remote Administration with SSH Chapter 2

[83]

We can do one more thing with this, which is up the verbosity on our connection,
getting to the next debug level, and hopefully seeing something else of note:

[vagrant@centos1 ~]$ ssh -vv CentOS2-Hostname
OpenSSH_7.4p1, OpenSSL 1.0.2k-fips 26 Jan 2017
debug1: Reading configuration data /home/vagrant/.ssh/config
debug1: /home/vagrant/.ssh/config line 1: Applying options for *
debug1: /home/vagrant/.ssh/config line 15: Applying options for
CentOS2-Hostname
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 58: Applying options for *
debug2: resolving "centos2" port 22
debug2: ssh_connect_direct: needpriv 0
debug1: Connecting to centos2 [192.168.33.11] port 22.
debug1: Connection established.

Here, we can see the second debug level (debug2) and specifically, we can see the
moment centos2 was given in the block and was resolved to an address.

There's more…
You might have noticed that in my examples, I used a mixture of upper and lower
characters for my names (for example, CentOS2-V4). I do this because it means that I
know when I'm using my SSH config file, and can be sure at a glance that I'm using
the settings I configured.

There's nothing stopping you from creating a block like so:

Host centos2
 Hostname 192.168.33.11
 User vagrant

This is perfectly valid, and the settings will be read as normal.

You can also do clever things such as specific domain matching. If you have to
manage two different sets of servers differentiated by their domains, you can do the
following:

Host *.examplecake.com
 Port 2222
 User Alie

Host *.examplebiscuit.co.uk
 Port 5252
 User Gingerbread

Remote Administration with SSH Chapter 2

[84]

Attempting to connect to hosts in either of these domains will result in specific
configuration options being used:

[vagrant@centos1 ~]$ ssh -v potato.examplecake.com
OpenSSH_7.4p1, OpenSSL 1.0.2k-fips 26 Jan 2017
debug1: Reading configuration data /home/vagrant/.ssh/config
debug1: /home/vagrant/.ssh/config line 1: Applying options for *
debug1: /home/vagrant/.ssh/config line 19: Applying options for
*.examplecake.com
debug1: Reading configuration data /etc/ssh/ssh_config

See also
The ssh_config manual page is worth a look, even if you only use it to fall asleep.

Modifying the server-side SSH
configuration file
For the last few sections, we've been focusing on the client configuration. We've
tweaked our connection string on the command line and we've written a
configuration file to be read automatically by SSH when connecting to our second
host.

In this section, we're going to take a look at the sshd_config file, or the server-side
of the configuration tango, on our second host.

We're going to make a few example and routine changes to get you familiar with the
concept.

Getting ready
Connect to both centos1 and centos2. Doing this from outside (in separate
windows, and using vagrant ssh) is best:

$ vagrant ssh centos1
$ vagrant ssh centos2

Place your Terminal windows side by side for easy viewing.

Remote Administration with SSH Chapter 2

[85]

There is a chance that you will break SSH access to your server in
this section, which is why I advise using Vagrant for your testing. If
you do make a mistake, don't worry – simply destroy your VMs and
start again.

How to do it…
On your centos2 machine, open /etc/ssh/sshd_config in your favorite editor.

This file is large, and can seem a little daunting the first time you open it up.

The options listed are most of the settings that the SSH server (sshd) will read when
it starts up, and apply to your running daemon.

Changing the default port
We're going to start with a simple one, that is, changing the default port on which the
SSH daemon runs:

If you want to change the port on a SELinux system, you have to tell
SELinux about this change.
semanage port -a -t ssh_port_t -p tcp #PORTNUMBER
#
#Port 22
#AddressFamily any
#ListenAddress 0.0.0.0
#ListenAddress ::

Change the preceding code so that the Port line is uncommented and now reads
2222:

#
Port 2222
#AddressFamily any
#ListenAddress 0.0.0.0
#ListenAddress ::

As the handy note before this block informs us, we also have to modify SELinux so
that it's aware that the SSH daemon will be trying to use a different port.

This file suggests that we use semanage, so let's do just that.

Remote Administration with SSH Chapter 2

[86]

First, we'll find which package provides semanage:

[vagrant@centos2 ~]$ sudo yum whatprovides semanage
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
 * base: mirror.vorboss.net
 * extras: mozart.ee.ic.ac.uk
 * updates: mozart.ee.ic.ac.uk
base/7/x86_64/filelists_db
| 6.9 MB 00:00:01
extras/7/x86_64/filelists_db
| 588 kB 00:00:00
updates/7/x86_64/filelists_db
| 2.4 MB 00:00:00
policycoreutils-python-2.5-22.el7.x86_64 : SELinux policy core python
utilities
Repo : base
Matched from:
Filename : /usr/sbin/semanage

Then, we'll install it:

[vagrant@centos2 ~]$ sudo yum install -y policycoreutils-python

Finally, we'll run the recommended command with our new port:

[vagrant@centos2 ~]$ sudo semanage port -a -t ssh_port_t -p tcp 2222

Once done, we can safely restart the SSH daemon:

[vagrant@centos2 ~]$ sudo systemctl restart sshd

This shouldn't kick you off the VM, as sshd is designed so that changes won't cause a
loss of access, even if those changes will stop you from logging on again (once you've
voluntarily disconnected.)

Try logging out now, and then logging back in again.

A forewarning: this should fail!

Fear not! Instead, connect to centos1 on your second Terminal (you should have two
connections open to centos1 at this point) and SSH back onto centos2 like so:

[vagrant@centos1 ~]$ ssh 192.168.33.11 -p2222

Congratulations! SSH is now running on a different port!

Remote Administration with SSH Chapter 2

[87]

You can confirm this from within the OS with the following command (which we'll
cover in greater detail later on:)

[vagrant@centos2 ~]$ ss -nl sport = :2222
Netid State Recv-Q Send-Q Local Address:Port
Peer Address:Port
tcp LISTEN 0 128 *:2222
:
tcp LISTEN 0 128 :::2222
:::*

Note that in the preceding code, we're printing both the IPv4 and
IPv6 values.

Changing the listen address
By default, SSH will listen on all addresses and interfaces:

#AddressFamily any
#ListenAddress 0.0.0.0
#ListenAddress ::

We're going to change this so that it's listening on only IPv4 and our eth1 address.

Change the preceding options to the following:

AddressFamily inet
ListenAddress 192.168.33.11
#ListenAddress ::

We've uncommented two of the options and changed their values.

In the preceding block, you may have noticed that ListenAddress
:: is also listed. Here, :: is the IPv6 equivalent of 0.0.0.0 in IPv4.

Restart the SSH daemon:

[vagrant@centos2 ~]$ sudo systemctl restart sshd

Remote Administration with SSH Chapter 2

[88]

Running our ss command from before, you may notice that the IPv6 option has
disappeared:

[vagrant@centos2 ~]$ ss -nl sport = :2222
Netid State Recv-Q Send-Q Local Address:Port
Peer Address:Port
tcp LISTEN 0 128 192.168.33.11:2222
:

If we now exit our session to centos2 (using Ctrl + D) and try to SSH to the IPv6 link-
local address, it will fail:

[vagrant@centos1 ~]$ ssh fe80::a00:27ff:fe56:c5a7%eth1 -p2222
ssh: connect to host fe80::a00:27ff:fe56:c5a7%eth1 port 2222:
Connection refused

A great success—we've squashed any possibility of trend-setters logging into our
server on IPv6!

On to a serious note for a minute, I've been hearing about the
demise of IPv4 and the rise of IPv6 for years, pretty much since I
started in computing. In that time, not much has changed, and both
carriers and service providers have continued to eke everything they
can out of IPv4, even introducing horrible things such as Carrier-
grade NAT. I do hope that IPv6 picks up steam, not least because
we're effectively out of IPv4 addresses to allocate.

Changing the daemon logging level
There are several levels that SSH can log at, dictated by the LogLevel setting:

Logging
#SyslogFacility AUTH
SyslogFacility AUTHPRIV
#LogLevel INFO

The possibilities are QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG, DEBUG1, DEBUG2,
and DEBUG3.

The SSH daemon manual lists the DEBUG options as all violating the
privacy of users, and therefore it is not recommended that you use
them.

Remote Administration with SSH Chapter 2

[89]

We're going to bump this up to VERBOSE:

Logging
#SyslogFacility AUTH
SyslogFacility AUTHPRIV
LogLevel VERBOSE

Restart the SSH daemon:

[vagrant@centos2 ~]$ sudo systemctl restart sshd

Now, let's have a look at what difference that made.

Here's our secure log at INFO level:

[vagrant@centos2 ~]$ sudo grep "1137" /var/log/secure
Aug 7 16:40:44 localhost sshd[1137]: Accepted publickey for vagrant
from 10.0.2.2 port 53114 ssh2: RSA
SHA256:1M4RzhMyWuFS/86uPY/ce2prh/dVTHW7iD2RhpquOZA
Aug 7 16:40:45 localhost sshd[1137]: pam_unix(sshd:session): session
opened for user vagrant by (uid=0)

And here's our secure log at VERBOSE level:

[vagrant@centos2 ~]$ sudo grep "5796" /var/log/secure
Aug 8 15:00:00 localhost sshd[5796]: Connection from 192.168.33.10
port 39258 on 192.168.33.11 port 2222
Aug 8 15:00:00 localhost sshd[5796]: Postponed publickey for vagrant
from 192.168.33.10 port 39258 ssh2 [preauth]
Aug 8 15:00:02 localhost sshd[5796]: Accepted publickey for vagrant
from 192.168.33.10 port 39258 ssh2: ED25519
SHA256:nQVR7ZVJMjph093KHB6qLg9Ve87PF4fNnFw8Y5X0kN4
Aug 8 15:00:03 localhost sshd[5796]: pam_unix(sshd:session): session
opened for user vagrant by (uid=0)
Aug 8 15:00:03 localhost sshd[5796]: User child is on pid 5799

Disallowing root login
Some distributions deny root login by default, and this is widely considered a good
idea. Here, we have a user (vagrant) that we can use to get around so that we don't
need to log in as root.

Find the line with PermitRootLogin:

#LoginGraceTime 2m
#PermitRootLogin yes
#StrictModes yes

Remote Administration with SSH Chapter 2

[90]

Change it to no:

#LoginGraceTime 2m
PermitRootLogin no
#StrictModes yes

Restart the SSH daemon:

[vagrant@centos2 ~]$ sudo systemctl restart sshd

This does not disallow local root login, so in a pinch, you can still
connect to a console (or plug a keyboard and mouse into the
physical machine) and log in with the root user locally.

Disabling passwords (force key use)
Because we've got our public keys on this host, we no longer need to allow password-
based access.

Find the PasswordAuthentication line:

#PermitEmptyPasswords no
PasswordAuthentication yes

Change this line to no:

#PermitEmptyPasswords no
PasswordAuthentication no

Restart the SSH daemon:

[vagrant@centos2 ~]$ sudo systemctl restart sshd

The eagle-eyed among you will have noticed that I already flipped
this setting once, in the Vagrantfile at the start of this chapter.
This was to allow us to use Vagrant as a learning experience, and we
are effectively reversing the reversal right now.

Setting a message of the day (motd)
Providing your PrintMotd setting is set to yes, you can have users see the contents
of /etc/motd when they log in.

Remote Administration with SSH Chapter 2

[91]

First, ensure that it is set to yes in the SSH daemon config:

#PermitTTY yes
PrintMotd yes
#PrintLastLog yes

Next, restart the SSH daemon, and then modify the /etc/motd file to something
sensible. Alternatively, you can use the following command:

sudo sh -c 'echo "This is a testing system, how did you get here?" >
/etc/motd'

This message will now be printed whenever you log in.

This feature is usually used by companies to warn bad actors who
are attempting to gain access to their systems. Occasionally, it's used
by bored system administrators to quote Futurama at you.

The UseDNS setting
The last option I'm going to cover is the UseDNS entry, as it's a source of pain for quite
a few people:

#UseDNS yes
UseDNS no

Here, we can see that UseDNS has been explicitly set to no in our configuration file.
This is the default.

When set to no, the SSH daemon will not look up the remote host name, and check
that the remote IP maps back to the expected IP, based on that host name.

To confuse you further, here's the manual entry of UseDNS :

"Specifies whether sshd(8) should look up the remote host name, and to check that
the resolved host name for the remote IP address maps back to the very same IP
address.
If this option is set to no (the default) then only addresses and not host names may
be used in ~/.ssh/authorized_keys from and sshd_config Match Host directives."

What this means is that when UseDNS is set to yes, and the machine you're
connecting from doesn't have a reverse DNS entry set, SSH will try and match the IP
it expects with what it's seeing, and likely fail to do so.

Remote Administration with SSH Chapter 2

[92]

In practice, all this means is that if your DNS is broken on the box
you're trying to connect to, you have to wait around like a lemon for
a bit while the DNS request times out, and eventually let you in. To
frustrate matters further, this feature is almost useless out of the box,
as highlighted in this mailing list email: https:/ /lists. centos.
org/ pipermail/ centos- devel/ 2016- July/ 014981. html.

AllowUsers
We've already denied the root user access to our system, but what if we wanted to
take this a step further and specify the users we want to grant access to?

For that, we need the AllowUsers setting.

This is rarely a default setting, or even commented out in the sshd_config file, so
we're going to add it to the bottom:

PermitTTY no
ForceCommand cvs server
AllowUsers vagrant

Restart the SSH daemon:

[vagrant@centos2 ~]$ sudo systemctl restart sshd

Now, you've got a system that only the vagrant user will be able to SSH to. You can
also add multiple names to this list, or even substitute this whitelist for a blacklist,
with DenyUsers.

If we want, we can work on a group basis (instead of individual usernames) with
AllowGroups and DenyGroups.

How it works…
Now that we've been through and changed a few common settings, we're going to
have a quick look at what happens when you restart the SSH daemon.

SSH's systemd unit file will look similar to this, though your system may vary:

[vagrant@centos2 ~]$ cat /etc/systemd/system/multi-
user.target.wants/sshd.service
[Unit]
Description=OpenSSH server daemon

https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html
https://lists.centos.org/pipermail/centos-devel/2016-July/014981.html

Remote Administration with SSH Chapter 2

[93]

Documentation=man:sshd(8) man:sshd_config(5)
After=network.target sshd-keygen.service
Wants=sshd-keygen.service

[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/sshd
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s

[Install]
WantedBy=multi-user.target

By default, we can see that the binary used is /usr/sbin/sshd with $OPTIONS
passed from elsewhere (in this case the EnvironmentFile value, as listed
previously).

Reading the manual for sshd, we find the following section:

The -f config_file option (https:/ /man.openbsd. org/ sshd) is described as
follows:

"Specifies the name of the configuration file. The default is /etc/ssh/sshd_config.
sshd refuses to start if there is no configuration file."

Here, we have the answer of why sshd_config is read by default—it's baked in.

There's more…
We've only covered some of the basic options people tend to change when
configuring the SSH daemon for their own environment, but most administrators
don't bother making any changes at all, leaving whatever the configured defaults are.

See also
To get a better understanding of all the daemon options available to you, read
through the sshd_config manual page and take a look at the page for the sshd
executable, too.

https://man.openbsd.org/sshd
https://man.openbsd.org/sshd
https://man.openbsd.org/sshd
https://man.openbsd.org/sshd
https://man.openbsd.org/sshd
https://man.openbsd.org/sshd
https://man.openbsd.org/sshd
https://man.openbsd.org/sshd
https://man.openbsd.org/sshd
https://man.openbsd.org/sshd
https://man.openbsd.org/sshd

Remote Administration with SSH Chapter 2

[94]

Rotating host keys and updating
known_hosts
One thing we've not mentioned yet are host keys, and the known_hosts file.

This is something that is often overlooked, so I'd like to take a few minutes to go over
these otherwise-ignored treasures.

In this section, we will inspect what happens when you first SSH to a new machine,
and then we will change the keys of that machine to see what problems this causes us.

Getting ready
Connect to centos1 and centos2 in different sessions:

$ vagrant ssh centos1
$ vagrant ssh centos2

If you're working on a fresh setup, SSH to centos2 from centos1 and accept the
host key when you're presented with it.

Log back out of centos2:

[vagrant@centos1 ~]$ ssh 192.168.33.11
The authenticity of host '192.168.33.11 (192.168.33.11)' can't be
established.
ECDSA key fingerprint is
SHA256:D4Tu/OykM/iPayCZ2okG0D2F6J9H5PzTNUuFzhzl/xw.
ECDSA key fingerprint is
MD5:4b:2a:42:77:0e:24:b4:9c:6e:65:69:63:1a:57:e9:4e.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.33.11' (ECDSA) to the list of
known hosts.
vagrant@192.168.33.11's password:
[vagrant@centos2 ~]$ logout
Connection to 192.168.33.11 closed.
[vagrant@centos1 ~]$

We've now got an entry in our known_hosts file, as shown here:

[vagrant@centos1 ~]$ cat .ssh/known_hosts
192.168.33.11 ecdsa-sha2-nistp256
AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBOK52r7ZJ8hwU34Rza
Y3AD7HitT6UP2qBv3WK8lWEELSoeTsmJ4+zO8QiuULp3cCQBKYqi55Z60Vf/hsEMBoULg=

Remote Administration with SSH Chapter 2

[95]

Note that this IP and key are found on centos2:

[vagrant@centos2 ~]$ cat /etc/ssh/ssh_host_ecdsa_key.pub
ecdsa-sha2-nistp256
AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBOK52r7ZJ8hwU34Rza
Y3AD7HitT6UP2qBv3WK8lWEELSoeTsmJ4+zO8QiuULp3cCQBKYqi55Z60Vf/hsEMBoULg=

We can prove this easily by having a look at the key's fingerprint on both machines,
and comparing the ASCII art.

On centos2, this is as follows:

[vagrant@centos2 ~]$ ssh-keygen -lv -f /etc/ssh/ssh_host_ecdsa_key.pub
256 SHA256:D4Tu/OykM/iPayCZ2okG0D2F6J9H5PzTNUuFzhzl/xw no comment
(ECDSA)
+---[ECDSA 256]---+
| . . o. |
| . . o. o.. |
| o . =. . + o. |
|. o o.+. B . |
|. + +..S. o o E.|
|. + +o. oo. . .o|
|.+ o +o ... o|
|o.o . +* |
|. o=*= |
+----[SHA256]-----+

And from the known_hosts file on centos1 is as follows:

[vagrant@centos1 ~]$ ssh-keygen -lv -f .ssh/known_hosts
256 SHA256:D4Tu/OykM/iPayCZ2okG0D2F6J9H5PzTNUuFzhzl/xw 192.168.33.11
(ECDSA)
+---[ECDSA 256]---+
| . . o. |
| . . o. o.. |
| o . =. . + o. |
|. o o.+. B . |
|. + +..S. o o E.|
|. + +o. oo. . .o|
|.+ o +o ... o|
|o.o . +* |
|. o=*= |
+----[SHA256]-----+

That's genuinely the first time I've ever used the -v option to get the
ASCII art out of a key for comparison purposes.

Remote Administration with SSH Chapter 2

[96]

How to do it…
Now that we've confirmed our setup, we're going to change the host keys on
centos2 and see what happens.

On centos2, run the following:

[vagrant@centos2 ~]$ sudo mv /etc/ssh/ssh_host_ecdsa_key*
/home/vagrant/
[vagrant@centos2 ~]$ ls
ssh_host_ecdsa_key ssh_host_ecdsa_key.pub

We've just moved the keys we accepted as gospel on centos1.

Our session stays up because we're already authenticated and
connected. If we were to disconnect at this point, we would have to
accept a different set of keys (we moved the ECDSA keys, but there's
still Ed25519 host keys available, which SSH would pick up
instead).

Now, we're going to generate a new set of keys by using the catchall -A flag:

[vagrant@centos2 ~]$ sudo ssh-keygen -A
ssh-keygen: generating new host keys: RSA1 DSA ECDSA

We can confirm these exist by checking the directory:

[vagrant@centos2 ~]$ ls -l /etc/ssh/ssh_host_ecdsa_key*
-rw-------. 1 root root 227 Aug 8 16:30 /etc/ssh/ssh_host_ecdsa_key
-rw-r--r--. 1 root root 174 Aug 8 16:30
/etc/ssh/ssh_host_ecdsa_key.pub

Log out of centos2 and try to log back in again:

[vagrant@centos1 ~]$ ssh 192.168.33.11
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle
attack)!
It is also possible that a host key has just been changed.
The fingerprint for the ECDSA key sent by the remote host is
SHA256:vdJTJW4ewGtOAdQXCXJ+cbjvrNm9787/CQQnCeM9fjc.
Please contact your system administrator.
Add correct host key in /home/vagrant/.ssh/known_hosts to get rid of
this message.

Remote Administration with SSH Chapter 2

[97]

Offending ECDSA key in /home/vagrant/.ssh/known_hosts:1
ECDSA host key for 192.168.33.11 has changed and you have requested
strict checking.
Host key verification failed.
[vagrant@centos1 ~]$

SSH tries to save you from doing something bad. Because it's already aware of the IP
you're trying to connect to, and has a known_hosts entry for it, it compares the
known key it has on file with that of the box.

Since we've just regenerated the keys on the box, we've been presented with a
horrible-looking error.

It's worth getting over the mental block of just scoffing and working
around this error. Try to lend yourself five seconds of thought and
confirm that the error is expected. Too often, I've seen people
immediately grumble when faced with this message and bypass it
straight away. If you've already accepted the key on a box once, you
shouldn't see a warning about it again, this can mean that the box
has been tampered with, or your connection is being "man in the
middle'd." Be vigilant!

Clear the old key (the line location of which is emboldened in the preceding code)
from our known_hosts file:

[vagrant@centos1 ~]$ ssh-keygen -R 192.168.33.11
Host 192.168.33.11 found: line 1
/home/vagrant/.ssh/known_hosts updated.
Original contents retained as /home/vagrant/.ssh/known_hosts.olds

You should now be able to SSH to centos2 again and accept the new key:

[vagrant@centos1 ~]$ ssh 192.168.33.11
The authenticity of host '192.168.33.11 (192.168.33.11)' can't be
established.
ECDSA key fingerprint is
SHA256:vdJTJW4ewGtOAdQXCXJ+cbjvrNm9787/CQQnCeM9fjc.
ECDSA key fingerprint is
MD5:c3:be:16:5b:62:7f:4d:9c:0b:15:c0:cd:d6:87:d6:d6.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.33.11' (ECDSA) to the list of
known hosts.
vagrant@192.168.33.11's password:
Last login: Wed Aug 8 16:26:50 2018 from 192.168.33.10
[vagrant@centos2 ~]$

Remote Administration with SSH Chapter 2

[98]

How it works…
The ssh-keygen command we used is a quick way of placing expected host keys in
the default location. Because we'd removed the key we expected to be there, we
would have failed to connect to our host, and been prompted with the horrible error
we saw previously:

<SNIP>
debug1: Server host key: ecdsa-sha2-nistp256
SHA256:zW4PXt4o3VRA/OiePUc4VoxBY50us9vl2vemgcrLduA
debug3: hostkeys_foreach: reading file
"/home/vagrant/.ssh/known_hosts"
debug3: record_hostkey: found key type ECDSA in file
/home/vagrant/.ssh/known_hosts:1
debug3: load_hostkeys: loaded 1 keys from 192.168.33.11
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
<SNIP>

In the preceding snippet, we can see SSH checking our known_hosts file, then
getting the key from the remote host, and finally throwing a fit.

To reconnect to the host, we simply had to remove the offending entry from the
known_hosts file on our client-side, and then attempt our connection again.

We used -R to remove the offending key, but you can use any
method to do so as it's just a text file. If you wish you can even
empty the entire known_hosts file, but this will also mean you'll
have to accept keys for every box you've ever connected to, once
again.

There's more…
So, what happens if you remove all the host keys from the server?

This is what you get:

[vagrant@centos2 ~]$ sudo rm /etc/ssh/ssh_host_*
[vagrant@centos2 ~]$ logout
Connection to 192.168.33.11 closed.
[vagrant@centos1 ~]$ ssh 192.168.33.11
ssh_exchange_identification: read: Connection reset by peer

Remote Administration with SSH Chapter 2

[99]

At this point, you can either re-provision your VM, or log on via the console and
generate new keys.

Technical requirements
Confirm that both of your Vagrant boxes are enabled, and connect to both using the
vagrant command.

If you've previously changed the SSH configuration file, it might be an idea to destroy
your boxes and re-provision them first:

$ vagrant ssh centos1
$ vagrant ssh centos2

Using local forwarding
Local forwarding is the act of mapping local TCP ports or Unix sockets onto remote
ports or sockets. It's commonly used when either accessing a system securely (by
requiring the user to first SSH to the box, thus encrypting their connection), or for
troubleshooting problems.

In this section, we're going to start a small webserver on centos2, which we're
going to connect to from centos1, first by connecting to the IP and port directly, and
then by a connection to a mapped local port, utilizing port forwarding.

Getting ready
On centos2, run the following command:

[vagrant@centos2 ~]$ python -m SimpleHTTPServer 8888
Serving HTTP on 0.0.0.0 port 8888 ...

You've just created a small, Python-based web server, listening on every address at
port 8888.

You can confirm this by running a curl command from centos1:

[vagrant@centos1 ~]$ curl 192.168.33.11:8888
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>

Remote Administration with SSH Chapter 2

[100]

<body>
<h2>Directory listing for /</h2>
<hr>

.bash_logout
.bash_profile
.bashrc
.ssh/

<hr>
</body>
</html>

Note the listing of the home directory contents from centos2.

On centos2, you should see your connection (200 response):

[vagrant@centos2 ~]$ python -m SimpleHTTPServer 8888
Serving HTTP on 0.0.0.0 port 8888 ...
192.168.33.10 - - [09/Aug/2018 10:47:13] "GET / HTTP/1.1" 200 -

Python's built-in web server module is very handy for testing. I used
it here because it's available out of the box in our installation, but I
wouldn't use it in a production environment, as there are better (and
faster) alternatives.

To confirm we've not yet got anything listening locally on port 9999, perform another
curl command from centos1:

[vagrant@centos1 ~]$ curl 127.0.0.1:9999
curl: (7) Failed connect to 127.0.0.1:9999; Connection refused

How to do it…
We're going to locally forward connections to the local port 9999 to the remote port
8888.

On the command line
Run the following from centos1:

[vagrant@centos1 ~]$ ssh -f -L 9999:127.0.0.1:8888 192.168.33.11 sleep
120

Remote Administration with SSH Chapter 2

[101]

You may be prompted for your password (depending on what you've done in terms
of key setup) and then be dropped back to the centos1 prompt.

Our SSH connection will stay up for two minutes.

Now, we run a curl, checking that our forwarding is working:

[vagrant@centos1 ~]$ curl 127.0.0.1:9999
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>
<body>
<h2>Directory listing for /</h2>
<hr>

.bash_history
.bash_logout
.bash_profile
.bashrc
.ssh/

<hr>
</body>
</html>

Success! Here, we're curling the localhost IP address of centos1 on our forwarded
port and we're getting the directory listing from centos2!

Using an SSH config file
If we wanted to create this forwarding setup each time we connected to centos2, we
can add the option to our SSH configuration file.

Add the emboldened line in the following code:

Host * !CentOS2-V6
 IdentityFile ~/.ssh/id_ed25519
 Port 22

Host CentOS2-V4
 Hostname 192.168.33.11
 LocalForward 9999 127.0.0.1:8888
 User vagrant

Host CentOS2-V6
 Hostname fe80::a00:27ff:fe56:c5a7%%eth1
 IdentityFile ~/.ssh/id_rsa

Remote Administration with SSH Chapter 2

[102]

 Port 22
 User vagrant

Host CentOS2-Hostname
 Hostname centos2
 User vagrant

Now, if you SSH to the host specified, you will create a forwarded connection
without having to specify it:

[vagrant@centos1 ~]$ ssh -f CentOS2-V4 sleep 120
[vagrant@centos1 ~]$ curl 127.0.0.1:9999
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>
<body>
<h2>Directory listing for /</h2>
<hr>

.bash_history
.bash_logout
.bash_profile
.bashrc
.ssh/

<hr>
</body>
</html>

You're not limited to one LocalForward entry per host—you can have several.

How it works…
When you use the -L flag with SSH, you're specifying that any connection attempts
made to the local machine, on the first port listed, are to be forwarded to the remote
host and port.

Let's break down the command:

[vagrant@centos1 ~]$ ssh -f -L 9999:127.0.0.1:8888 192.168.33.11 sleep
120

First, the -f and sleep 120 at the end of the command are a quick way to create a
session and background it while we perform our test:

-f ... sleep 120

Remote Administration with SSH Chapter 2

[103]

In the real world, you're not limited to just one Terminal window,
and generally, you'll find yourself opening a session to a remote
host in one window while you work in another.

The second part is the interesting bit:

-L 9999:127.0.0.1:8888

Here, we're saying that local port 9999 should have any connection requests
forwarded to the remote host on 127.0.0.1:8888.

Because of the way we created our web server, the following is also valid syntax:

-L 9999:192.168.33.11:8888

This is because our remote web server was listening on all addresses, so instead of
sending our request to the remote localhost address, we're just using the eth1
address instead.

I've frequently seen setups where less secure programs are run on
the localhost address only, meaning that if you want to access the
program, you have to SSH to the remote host first.

You're also not limited to cURL and the command line—you could
navigate to http://127.0.0.1:9999 in your web browser, and it
would still work.

There's more…
Tips and tricks for SSH are somewhat endless, but the following can be good to
practice.

Watching our SSH session
If you want to see when your SSH tunnel has closed, run the following:

[vagrant@centos1 ~]$ ps aux | grep "ssh -f" | grep -v grep
vagrant 3525 0.0 0.2 82796 1196 ? Ss 11:03 0:00 ssh -
f -L 9999:127.0.0.1:8888 192.168.33.11 sleep 120

Remote Administration with SSH Chapter 2

[104]

Upon disconnection, this process will end:

[vagrant@centos1 ~]$ ps aux | grep "ssh -f" | grep -v grep
[vagrant@centos1 ~]$

Connecting to systems beyond the remote host
LocalForwarding can even be used to access hosts that the remote machine can see,
but your local one can't.

Consider the following configuration entry:

Host *
 IdentityFile ~/.ssh/id_ed25519
 Port 22

Host CentOS2-V4
 Hostname 192.168.33.11
 LocalForward 7777 192.168.33.12:6666
 User vagrant

In this example, centos2 can see the host with the IP 192.168.33.12, and the
server it's got listening on port 6666.

When we connect to centos2 and create our tunnel, we can connect locally to
127.0.0.1:7777, viewing the web server on 192.168.33.12:6666.

This is widely used in conjunction with bastion hosts, which we will
look at soon.

See also
Forwarding local connection attempts to a remote host can be an extremely useful
troubleshooting and access control method.

Take a look at the SSH manual page for more detail and expansion on the options
listed in this recipe.

The SSH manual page can be brought up on most Linux systems using the following
command:

$ man ssh

Remote Administration with SSH Chapter 2

[105]

Using remote forwarding
In the previous section, we looked at the ability to forward local connection attempts
to a remote machine.

In this section, we're going to look at something very similar: remote forwarding.

With remote forwarding, connection attempts made to a specified address and port
on a remote machine are passed back through the SSH tunnel you've set up, and are
processed on the local machine (your client).

Start on centos1.

Before we start it's worth noting that remote forwarding is a great
way to punch holes out of networks, which means that it can also be
a nightmare for security professionals charged with maintaining a
network. With great power comes great etc.

Getting ready
Confirm that both of your Vagrant boxes are enabled, and connect to both:

$ vagrant ssh centos1
$ vagrant ssh centos2

How to do it…
First, we're going to start by using our single command at our prompt, and then we'll
look at how to set up the connection every time you SSH to a machine using the SSH
config file.

On the command line
On centos1, run the following:

[vagrant@centos1 ~]$ ssh -R 5353:127.0.0.1:22 192.168.33.11

Once connected to centos2, run the following:

[vagrant@centos2 ~]$ ssh 127.0.0.1 -p5353

Remote Administration with SSH Chapter 2

[106]

You will probably be prompted to add a host key, and then be prompted for a
password. We're connecting back to centos1, so provide the default Vagrant
password.

You should be left at the centos1 command-line prompt:

vagrant@127.0.0.1's password:
Last login: Thu Aug 9 12:29:56 2018 from 127.0.0.1
[vagrant@centos1 ~]$

Using an SSH config file
As with LocalForward, we can also use an SSH config file for RemoteForward
connections, too:

Host *
 IdentityFile ~/.ssh/id_ed25519
 Port 22

Host CentOS2-V4
 Hostname 192.168.33.11
 LocalForward 9999 127.0.0.1:8888
 RemoteForward 5353 127.0.0.1:22
 User vagrant

Here, you can see the exact setup we used in the command line section, only specified
in the config file, so that it's always available without having to type the flags out
each time:

[vagrant@centos1 ~]$ ssh CentOS2-V4
[vagrant@centos2 ~]$ ssh 127.0.0.1 -p5353
[vagrant@centos1 ~]$

How it works…
What we actually do here is... odd:

We SSH to centos2, while saying that any connection attempts made to1.
port 5353 on the remote machine (centos2) are to be passed back over the
SSH session to our client (centos1).
We then run SSH on our remote machine (centos2), specifying the2.
localhost address and the port that we're passing back to
centos1, 127.0.0.1:5353.

Remote Administration with SSH Chapter 2

[107]

The connection attempt is passed back over our established SSH session to3.
centos1, where the SSH server accepts the connection request.
As a result, we're locally SSH'ing to centos1 by specifying the local4.
address and remote forwarded port on centos2.

Confused? I was the first time someone explained this to me.

To better understand this, we can use the w command.

On centos1, this gives us the following:

[vagrant@centos1 ~]$ w
 12:47:50 up 2:10, 2 users, load average: 0.00, 0.02, 0.05
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
vagrant pts/0 10.0.2.2 10:38 6.00s 1.07s 0.08s ssh -R
5353:127.0.0.1:22 192.168.33.
vagrant pts/1 127.0.0.1 12:44 6.00s 0.07s 0.05s w

Here, we can see our default Vagrant connection (from 10.0.2.2), but we can also
see a local connection.

Apparently, we've SSH'd to our machine from the localhost address (127.0.0.1).
This is actually the SSH session we established on centos2 using the following
command:

[vagrant@centos2 ~]$ ssh 127.0.0.1 -p5353

On centos2, the w command gives us the following:

[vagrant@centos2 ~]$ w
 12:48:08 up 2:09, 2 users, load average: 0.00, 0.01, 0.05
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
vagrant pts/0 10.0.2.2 10:43 0.00s 0.92s 0.04s w
vagrant pts/1 192.168.33.10 12:44 24.00s 0.07s 0.04s ssh
127.0.0.1 -p5353

Here, we can see our default Vagrant connection (from 10.0.2.2), but we can also
see the remote connection from centos1 (192.168.33.10).

There's more…
It's not just SSH that this can be used with. In the same way, we can forward ports
from the remote session to our local machine – we have a wealth of options available
to us.

Remote Administration with SSH Chapter 2

[108]

Let's start and background a simple web server on centos1:

[vagrant@centos1 ~]$ python -m SimpleHTTPServer 8888 &
[1] 6010

Now, let's SSH to centos2, while stating that any requests made on the remote
machine to 127.0.0.1:7777 are passed back along the established SSH session to
centos1:

[vagrant@centos1 ~]$ ssh -R 7777:127.0.0.1:8888 192.168.33.11

On centos2, we should now be able to curl 127.0.0.1:7777 and see the contents
of Vagrant's home directory on centos1:

[vagrant@centos2 ~]$ curl 127.0.0.1:7777
127.0.0.1 - - [09/Aug/2018 12:56:43] "GET / HTTP/1.1" 200 -
 <!DOCTYPE
html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>
<body>
<h2>Directory listing for /</h2>
<hr>

.bash_history
.bash_logout
.bash_profile
.bashrc
.ssh/

<hr>
</body>
</html>

Success!

See also
While it may seem that this has limited uses, as far as nifty tricks go, you might find
some curious cases for it in your career.

I have used this on one or two occasions, when DNS has been broken on a remote
machine, and I've instead forwarded DNS requests back over an established SSH
connection.

Remote Administration with SSH Chapter 2

[109]

ProxyJump and bastion hosts
We're going to take a look at one very new SSH option, a slightly older SSH option,
and the concept of bastion hosts (or jump boxes) in this recipe.

We need three machines because we're going to use one machine as the "gateway" to
another.

Getting ready
Set up your three VMs, preferably using the Vagrantfile at the top of this chapter.

Connect to each box, and then check that from centos1, you can ping centos2 and
centos3:

[vagrant@centos1 ~]$ ping 192.168.33.11
PING 192.168.33.11 (192.168.33.11) 56(84) bytes of data.
64 bytes from 192.168.33.11: icmp_seq=1 ttl=64 time=2.54 ms
64 bytes from 192.168.33.11: icmp_seq=2 ttl=64 time=1.09 ms
64 bytes from 192.168.33.11: icmp_seq=3 ttl=64 time=0.929 ms
^C
--- 192.168.33.11 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2009ms
rtt min/avg/max/mdev = 0.929/1.524/2.548/0.728 ms
[vagrant@centos1 ~]$ ping 192.168.33.12
PING 192.168.33.12 (192.168.33.12) 56(84) bytes of data.
64 bytes from 192.168.33.12: icmp_seq=1 ttl=64 time=0.743 ms
64 bytes from 192.168.33.12: icmp_seq=2 ttl=64 time=1.15 ms
64 bytes from 192.168.33.12: icmp_seq=3 ttl=64 time=1.12 ms
^C
--- 192.168.33.12 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2015ms
rtt min/avg/max/mdev = 0.743/1.008/1.157/0.187 ms

These are on 192.168.33.11 and 192.168.33.12 if you're using the supplied
Vagrantfile.

How to do it…
From centos1, run the following command:

[vagrant@centos1 ~]$ ssh -J vagrant@192.168.33.11:22 192.168.33.12

Remote Administration with SSH Chapter 2

[110]

You may be prompted to accept keys and also be asked for your password.

You will find yourself on centos3, having jumped through centos2:

[vagrant@centos3 ~]$

Using an SSH config file
The same trick can be used by specifying the ProxyJump option in your SSH config
file:

Host *
 IdentityFile ~/.ssh/id_ed25519
 Port 22

Host CentOS2-V4
 Hostname 192.168.33.11
 User vagrant

Host CentOS3-V4
 Hostname 192.168.33.12
 User vagrant
 ProxyJump CentOS2-V4

You can now SSH to centos3 via centos2:

[vagrant@centos1 ~]$ ssh CentOS3-V4
vagrant@192.168.33.11's password:
vagrant@192.168.33.12's password:
Last login: Thu Aug 9 14:15:03 2018 from 192.168.33.11
[vagrant@centos3 ~]$

How it works…
The -J and ProxyJump options are a way to connect through a specified host, to a
host beyond.

The manual entry from the official manual pages (https:/ /man. openbsd. org/ssh) for
-J [user@]host[:port] is as follows:

Connect to the target host by first making a ssh connection to the jump host
described by destination and then establishing a TCP forwarding to the ultimate
destination from there. Multiple jump hops may be specified separated by comma
characters. This is a shortcut to specify a ProxyJump configuration directive.

https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh

Remote Administration with SSH Chapter 2

[111]

The manual entry from https:/ /man. openbsd. org/ ssh_config for ProxyJump is as
follows:

Specifies one or more jump proxies as either [user@]host[:port] or an ssh URI.
Multiple proxies may be separated by comma characters and will be visited
sequentially. Setting this option will cause ssh(1) to connect to the target host by
first making a ssh(1) connection to the specified ProxyJump host and then
establishing a TCP forwarding to the ultimate target from there.

If we use the -v flag with SSH, we can see what happens in more detail:

[vagrant@centos1 ~]$ ssh -v CentOS3-V4
OpenSSH_7.4p1, OpenSSL 1.0.2k-fips 26 Jan 2017
debug1: Reading configuration data /home/vagrant/.ssh/config
debug1: /home/vagrant/.ssh/config line 1: Applying options for *
debug1: /home/vagrant/.ssh/config line 8: Applying options for
CentOS3-V4
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 58: Applying options for *
debug1: Setting implicit ProxyCommand from ProxyJump: ssh -v -W %h:%p
CentOS2-V4
debug1: Executing proxy command: exec ssh -v -W 192.168.33.12:22
CentOS2-V4
<SNIP>
debug1: permanently_drop_suid: 1000
OpenSSH_7.4p1, OpenSSL 1.0.2k-fips 26 Jan 2017
debug1: Reading configuration data /home/vagrant/.ssh/config
debug1: /home/vagrant/.ssh/config line 1: Applying options for *
debug1: /home/vagrant/.ssh/config line 4: Applying options for
CentOS2-V4
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 58: Applying options for *
debug1: Connecting to 192.168.33.11 [192.168.33.11] port 22.
debug1: Connection established.
debug1: key_load_public: No such file or directory
<SNIP>
debug1: kex_input_ext_info: server-sig-algs=<rsa-sha2-256,rsa-
sha2-512>
debug1: SSH2_MSG_SERVICE_ACCEPT received
debug1: Authentications that can continue: publickey,gssapi-
keyex,gssapi-with-mic,password
debug1: Next authentication method: gssapi-keyex
debug1: No valid Key exchange context
debug1: Next authentication method: gssapi-with-mic
debug1: Unspecified GSS failure. Minor code may provide more
information
No Kerberos credentials available (default cache:

https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config
https://man.openbsd.org/ssh_config

Remote Administration with SSH Chapter 2

[112]

KEYRING:persistent:1000)

debug1: Unspecified GSS failure. Minor code may provide more
information
No Kerberos credentials available (default cache:
KEYRING:persistent:1000)

debug1: Next authentication method: publickey
debug1: Trying private key: /home/vagrant/.ssh/id_rsa
debug1: Trying private key: /home/vagrant/.ssh/id_dsa
debug1: Trying private key: /home/vagrant/.ssh/id_ecdsa
debug1: Trying private key: /home/vagrant/.ssh/id_ed25519
debug1: Next authentication method: password
vagrant@192.168.33.11's password:
debug1: Authentication succeeded (password).
Authenticated to 192.168.33.11 ([192.168.33.11]:22).
debug1: channel_connect_stdio_fwd 192.168.33.12:22
debug1: channel 0: new [stdio-forward]
debug1: getpeername failed: Bad file descriptor
debug1: Requesting no-more-sessions@openssh.com
debug1: Entering interactive session.
debug1: pledge: network
debug1: client_input_global_request: rtype hostkeys-00@openssh.com
want_reply 0
debug1: Remote protocol version 2.0, remote software version
OpenSSH_7.4
debug1: match: OpenSSH_7.4 pat OpenSSH* compat 0x04000000
debug1: Authenticating to 192.168.33.12:22 as 'vagrant'
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug1: kex: algorithm: curve25519-sha256
debug1: kex: host key algorithm: ecdsa-sha2-nistp256
debug1: kex: server->client cipher: chacha20-poly1305@openssh.com MAC:
<implicit> compression: none
debug1: kex: client->server cipher: chacha20-poly1305@openssh.com MAC:
<implicit> compression: none
debug1: kex: curve25519-sha256 need=64 dh_need=64
debug1: kex: curve25519-sha256 need=64 dh_need=64
debug1: expecting SSH2_MSG_KEX_ECDH_REPLY
<SNIP>
vagrant@192.168.33.12's password:
debug1: Authentication succeeded (password).
Authenticated to 192.168.33.12 (via proxy).
debug1: channel 0: new [client-session]
debug1: Requesting no-more-sessions@openssh.com
debug1: Entering interactive session.
debug1: pledge: proc
debug1: client_input_global_request: rtype hostkeys-00@openssh.com

Remote Administration with SSH Chapter 2

[113]

want_reply 0
debug1: Sending environment.
debug1: Sending env LANG = en_GB.UTF-8
Last login: Thu Aug 9 14:22:08 2018 from 192.168.33.11
[vagrant@centos3 ~]$

Emboldened in the preceding output, we can see the key steps that take place during
the connection sequence:

SSH reads the configuration for the host we're connecting to.1.
SSH realises it has to use a ProxyJump host to access the specifed box.2.
SSH translates the ProxyJump option into the equivalent ProxyCommand3.
entry.
SSH reads the configuration for the ProxyJump host.4.
SSH connects and authenticates against the ProxyJump host.5.
SSH uses its established connection to the ProxyJump to connect to the6.
destination host.
SSH notes that it's authenticated to the destination host (via proxy).7.

There's more…
Now that you know the basics of ProxyJump, let's take a look at some scenarios you
may find useful.

More than once, using ProxyJump in the following ways listed has saved me literally
milliseconds of time!

Multiple hosts
While the example given previously is relatively simple, it's worth noting that you
can do some pretty complex things with ProxyJump.

You can list hosts, as the manual page suggests, and you can also chain hosts, as
follows:

Host *
 Port 22

Host CentOS2-V4
 Hostname 192.168.33.11
 User vagrant

Remote Administration with SSH Chapter 2

[114]

Host CentOS3-V4
 Hostname 192.168.33.12
 User vagrant
 ProxyJump CentOS2-V4

Host CentOS4-V4
 Hostname 192.168.33.14
 User vagrant
 ProxyJump CentOS3-V4

The advantage of ProxyJump itself should be obvious: using this technique, you can
create a setup where it only takes one command from your local machine to access a
remote and otherwise inaccessible box.

Generally, you might use ProxyJump in an environment with one ingress server.

ProxyJump also makes forwarding ports easier. If you add a
LocalForward line to CentOS4-V4 in the preceding code, SSH will
take care of handling the traffic through the ProxyJump hosts, too!
This can be especially handy as it stops you having to forward ports
manually, potentially through several hosts.

ProxyCommand
What we saw in our debug message was SSH translating the fairly simple ProxyJump
entry into a ProxyCommand line.

ProxyCommand is the more traditional way of setting up this kind of forwarding, but
not only is it syntactically more irritating, it's also messy.

Consider the following example:

Host *
 Port 22

Host CentOS2-V4
 Hostname 192.168.33.11
 User vagrant

Host CentOS3-V4
 Hostname 192.168.33.12
 User vagrant
 ProxyCommand ssh -v -W %h:%p CentOS2-V4

Looks more awkward, doesn't it? But it works in the same way.

Remote Administration with SSH Chapter 2

[115]

This can be useful on older distributions, which maybe haven't received the
ProxyJump feature yet.

If you ever forget the syntax for ProxyCommand and you have a box
around that supports ProxyJump, remember that the
ProxyCommand syntax is printed for you in the SSH -v debug we
created before.

Bastion hosts
All of this is great, but why would you need this if you're managing servers?
Especially servers you control...

Consider your environment.

In the office, you might have access to every machine the company has under its
dominion, because you're sat on a LAN segment that has unfettered access to every
other network segment.

Remotely, you might have a VPN machine on the border of your network, to which
you need to initially establish a connection before you're able to SSH to other
machines.

Bastion hosts are something you might consider, and they can be used in conjunction
with a VPN.

You, as the system administrator, can decide that you'd like a single point of ingress
for people SSH'ing to machines to easily log traffic and maybe manage keys – perhaps
because you're just vindictive and want everyone's config file to be that much longer?

Work with your network team, consult your company's policies, and design a
network that you can easily maintain, and that others won't mind using.

Your company may have specific security policies in place that limit
what you're allowed to do. Remember, it's not about what you can
do, it's about what you should do. No one will congratulate you for
being clever when you're being marched out of the office for
bypassing security. By all means highlight security problems when
you see them, just don't exploit them.

Remote Administration with SSH Chapter 2

[116]

Using SSH to create a SOCKS Proxy
SSH is great.

I never get tired of talking about how great it is, and it would be remiss of me to not
mention one of its best features: the ability to quickly and easily set up a SOCKS
proxy.

In the previous sections, we forwarded individual ports, but what if we were using a
bastion host to connect to a slew of different websites within a network? Would you
like to add tens of lines to your SSH config file? Or manually type out each port and
mapping every time?

I didn't think so.

That's where the -D flag comes in.

See -D [bind_address:]port in the SSH manual page (https:/ /man. openbsd.
org/ssh):

Specifies a local "dynamic" application-level port forwarding. This works by
allocating a socket to listen to port on the local side, optionally bound to the specified
bind_address. Whenever a connection is made to this port, the connection is
forwarded over the secure channel, and the application protocol is then used to
determine where to connect to from the remote machine. Currently the SOCKS4
and SOCKS5 protocols are supported, and ssh will act as a SOCKS server. Only
root can forward privileged ports. Dynamic port forwardings can also be specified in
the configuration file.
IPv6 addresses can be specified by enclosing the address in square brackets. Only the
superuser can forward privileged ports. By default, the local port is bound in
accordance with the GatewayPorts setting. However, an explicit bind_address may
be used to bind the connection to a specific address. The bind_address of "localhost"
indicates that the listening port be bound for local use only, while an empty address
or '*' indicates that the port should be available from all interfaces.

What this means is that with a single command, you can set up a connection that you
can then forward traffic through (from a web browser, or other applications that
support SOCKS proxies). You don't have to punch holes through firewalls, and you
don't have to manually map ports.

https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh
https://man.openbsd.org/ssh

Remote Administration with SSH Chapter 2

[117]

SOCKS itself is an internet protocol, and quite an old one at that,
though we still actively use SOCKS5, which was approved by the
Internet Engineering Task Force in 1996! It's like any other proxy
server, allowing you to exchange packets over a connection; in this
case, our SSH tunnel. Applications may choose to natively support
SOCKS proxies or not, but a lot of commons ones will (Firefox, for
example).

Let's get started.

Getting ready
For this section, we're going to be using centos1 and centos2.

Make sure that you have a connection open to both machines:

$ vagrant ssh centos1
$ vagrant ssh centos2

On centos2, let's set up our small web server again:

[vagrant@centos2 ~]$ python -m SimpleHTTPServer 8888 &
[1] 7687

How to do it…
Connect to centos1, where we'll first set up our SOCKS proxy using just one
command, and then look at how to start the proxy each time we SSH to the box.

On the command line
Let's establish our SSH session and disconnect from the established session at the
same time:

[vagrant@centos1 ~]$ ssh -f -D9999 192.168.33.11 sleep 120
vagrant@192.168.33.11's password:
[vagrant@centos1 ~]$

Once established (until the sleep runs out), we can use our proxy to query anything
and everything that centos2 can see via the SSH session.

Remote Administration with SSH Chapter 2

[118]

Let's check out our web server on centos2, from centos1:

[vagrant@centos1 ~]$ all_proxy="socks5://127.0.0.1:9999" curl
127.0.0.1:8888
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>
<body>
<h2>Directory listing for /</h2>
<hr>

.bash_history
.bash_logout
.bash_profile
.bashrc
.lesshst
.mysql_history
.ssh/

<hr>
</body>
</html>
[vagrant@centos1 ~]$

Brilliant! We've run a cURL against a localhost address, but by passing it through the
proxy, our request has been run against centos2 instead!

Using an SSH config file
The same can be accomplished, as shown previously, by using an SSH config file:

Host *
 Port 22

Host CentOS2-V4
 Hostname 192.168.33.11
 User vagrant
 DynamicForward 9999

We can now be confident our proxy will be available each time we connect:

[vagrant@centos1 ~]$ ssh -f CentOS2-V4 sleep 120

And again, look at the contents of the web server:

[vagrant@centos1 ~]$ all_proxy="socks5://127.0.0.1:9999" curl
127.0.0.1:8888
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>

Remote Administration with SSH Chapter 2

[119]

<title>Directory listing for /</title>
<body>
<h2>Directory listing for /</h2>
<hr>

.bash_history
.bash_logout
.bash_profile
.bashrc
.lesshst
.mysql_history
.ssh/

<hr>
</body>
</html>

Just to prove we were really using our proxy, let's try the curl command without an
established session (you will have to wait for SSH to time out, or kill the process if it's
not already died):

[vagrant@centos1 ~]$ all_proxy="socks5://127.0.0.1:9999" curl
127.0.0.1:8888
curl: (7) Failed connect to 127.0.0.1:9999; Connection refused

How it works…
When you add the -D option to SSH, or add the DynamicForward option to your SSH
config file, you're telling SSH that you want to specify a port on your local side that
will forward any requests received to it over your SSH connection.

Let's break down our commands:

[vagrant@centos1 ~]$ ssh -f -D9999 192.168.33.11 sleep 120

First, as we did previously, we've used -f and sleep to keep a connection open, while
dropping us back to the centos1 prompt once a connection is established:

-f ... sleep 120

We've also specified our -D option, with a randomly chosen port:

-D9999

Remote Administration with SSH Chapter 2

[120]

I use 9999 through force of habit, but occasionally I mix it up a bit
by using 7777, or even 6666 if I'm feeling really wild. You may use
whichever port you wish (above 1024, as those below this can only
be used by root.)

Once we're established, we use the following command to check our proxy is
available for use:

[vagrant@centos1 ~]$ all_proxy="socks5://127.0.0.1:9999" curl
127.0.0.1:8888

Breaking this down into its two parts, we start with the variable we're setting for just
this run:

all_proxy="socks5://127.0.0.1:9999"

cURL uses all_proxy as a way of setting the SOCKS proxy for its run.

In your browser, you may find the option to set a SOCKS server under settings, and in
some other applications, SOCKS proxies can be configured when required. Gnome's
network manager looks like this:

The other part of our command is curl:

curl 127.0.0.1:8888

Remote Administration with SSH Chapter 2

[121]

With our all_proxy setting, cURL knows to use the SOCKS proxy on port 9999 for
its connections, meaning that when we query 127.0.0.1:8888, we're sending that
request over our SSH session to resolve on centos2.

Neat!

There's more…
If you want to take it one step further, have a look at using tcpdump on your remote
side to check out traffic traversing your network:

[vagrant@centos2 ~]$ sudo tcpdump port 8888 -ilo -n

You should see traffic come through:

<SNIP>
15:18:48.991652 IP 127.0.0.1.54454 > 127.0.0.1.ddi-tcp-1: Flags [F.],
seq 79, ack 618, win 700, options [nop,nop,TS val 16534669 ecr
16534658], length 0
15:18:48.991677 IP 127.0.0.1.ddi-tcp-1 > 127.0.0.1.54454: Flags [.],
ack 80, win 683, options [nop,nop,TS val 16534669 ecr 16534669],
length 0
<SNIP>

Understanding and using SSH agents
One thing we touched on briefly was the concept of an SSH agent.

When you SSH to a server (after setting up a key) and you're prompted for a
passphrase, what you're actually doing is decrypting the private key part of your
public-private key pair (the id_rsa file by default), so that it can be used to verify
that you are who you say you are against the remote host. It can get tedious to do this
each time you SSH to a server, especially if you're managing hundreds or thousands
of constantly changing boxes.

That's where SSH agents come in. They're somewhere for your now-decrypted
private key to live, once you've given it the passphrase, for the duration of your
session.

Once you've got your private key loaded into your agent, the agent is then
responsible for presenting the key to any servers you connect to, without you having
to type your passphrase again, saving valuable seconds and finger strain.

Remote Administration with SSH Chapter 2

[122]

Most desktop Linux distributions will start an SSH agent of some sort within your
user session, sometimes unlocking your private keys when you log in to your user
account.

macOS has a specific SSH config file option for UseKeychain (https:/ /developer.
apple.com/library/ archive/ technotes/ tn2449/ _index. html):

"On macOS, specifies whether the system should search for passphrases in the
user's keychain when attempting to use a particular key. When the passphrase is
provided by the user, this option also specifies whether the passphrase should be
stored into the keychain once it has been verified to be correct. The argument must
be "yes" or "no". The default is "no"."

If you're running macOS on your desktop, you might consider this option.

On my Ubuntu laptop installation, looking for a running agent reveals this:

$ env | grep SSH
SSH_AUTH_SOCK=/run/user/1000/keyring/ssh
SSH_AGENT_PID=1542

Looking for this process ID shows me what's running as my ssh-agent:

adam 1542 0.0 0.0 11304 320 ? Ss Aug04 0:02 /usr/bin/ssh-agent
/usr/bin/im-launch env GNOME_SHELL_SESSION_MODE=ubuntu gnome-session -
-session=ubuntu

In this section, we're going to start an SSH agent on centos1 and load a key into it.

Getting ready
As with the previous section, confirm that both of your Vagrant boxes are enabled
and connect to the first using the vagrant command:

$ vagrant ssh centos1

Ensure you have an SSH key available on centos1. Re-read the previous section on
generating an SSH key if you need to:

[vagrant@centos1 ~]$ ls .ssh/
authorized_keys config id_ed25519 id_ed25519.pub known_hosts

https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html
https://developer.apple.com/library/archive/technotes/tn2449/_index.html

Remote Administration with SSH Chapter 2

[123]

Copy your key to centos2 if you haven't already, accepting the host key if you need
to:

[vagrant@centos1 ~]$ ssh-copy-id 192.168.33.11
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed:
"/home/vagrant/.ssh/id_ed25519.pub"
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s),
to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you
are prompted now it is to install the new keys
vagrant@192.168.33.11's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh '192.168.33.11'"
and check to make sure that only the key(s) you wanted were added.

[vagrant@centos1 ~]$

Check that attempting to log into centos2 prompts you for your key passphrase:

[vagrant@centos1 ~]$ ssh 192.168.33.11
Enter passphrase for key '/home/vagrant/.ssh/id_ed25519':

Make sure you're on centos1 to begin.

How to do it…
Start by running the ssh-agent command:

[vagrant@centos1 ~]$ ssh-agent
SSH_AUTH_SOCK=/tmp/ssh-9On2mDhHTL8T/agent.6693; export SSH_AUTH_SOCK;
SSH_AGENT_PID=6694; export SSH_AGENT_PID;
echo Agent pid 6694;

You can see it's printed several environment variables and the process ID it's running
on.

We can confirm this is the case:

[vagrant@centos1 ~]$ pidof ssh-agent
6694

Remote Administration with SSH Chapter 2

[124]

Copy the various variables that have been provided for you and paste them into the
same window:

[vagrant@centos1 ~]$ SSH_AUTH_SOCK=/tmp/ssh-9On2mDhHTL8T/agent.6693;
export SSH_AUTH_SOCK;
[vagrant@centos1 ~]$ SSH_AGENT_PID=6694; export SSH_AGENT_PID;
[vagrant@centos1 ~]$

Now, run the ssh-add command and fill in your key's passphrase when prompted:

[vagrant@centos1 ~]$ ssh-add
Enter passphrase for /home/vagrant/.ssh/id_ed25519:
Identity added: /home/vagrant/.ssh/id_ed25519 (vagrant@centos1)
[vagrant@centos1 ~]$

You can see that it informs you that it's added your identity.

SSH to centos2, and prepare to be amazed when you're not prompted for your
passphrase:

[vagrant@centos1 ~]$ ssh 192.168.33.11
Last login: Thu Aug 9 15:36:02 2018 from 192.168.33.10
[vagrant@centos2 ~]$

You may think that you don't mind typing in your passphrase once
or twice a day, and you'd be fine to think that, but if you're logging
into a machine that infrequently, you're probably a very lucky
system administrator. Where SSH agents excel is when you want to
log into tens or hundreds of machines, or even if you're using a
ProxyJump box, and don't feel like typing your passphrase any
more times than is necessary.

To kill a running agent, use -k:

[vagrant@centos1 ~]$ ssh-agent -k
unset SSH_AUTH_SOCK;
unset SSH_AGENT_PID;
echo Agent pid 6694 killed;

I have seen cases where companies don't like the use of SSH agents,
and mandate passwords or passphrases each time. Check you're not
violating some obscure security policy to make your life easier.

Remote Administration with SSH Chapter 2

[125]

Then, run the suggested unset commands to remove the variables we set before:

[vagrant@centos1 ~]$ unset SSH_AUTH_SOCK;
[vagrant@centos1 ~]$ unset SSH_AGENT_PID;

Simply logging out of your session won't stop the ssh-agent
program from running. Be mindful of this if you choose to use it.
Likewise, you shouldn't run an agent on a remote host shared
between multiple people – it's best kept to your personal machine. If
you plan on using an SSH agent, read up on current security
practices.

How it works…
When we initially run ssh-agent, the agent itself is started in the background, and
we're given the necessary environment variables for SSH. After they're set, running
SSH will cause it to read these variables.

If we add a couple of -vv flags to SSH, we can see it find our key in the agent:

debug2: key: /home/vagrant/.ssh/id_ed25519 (0x55b11351c410), agent

Without the agent loaded, but with the key present, it looks like this:

debug2: key: /home/vagrant/.ssh/id_ed25519 (0x55dea5015410)

The SSH environment variables are also read by ssh-add, which we used to add our
key to the agent. To quote the manual page:

"The authentication agent must be running and the SSH_AUTH_SOCK
environment variable must contain the name of its socket for ssh-add to work."

When you've got one key or more in an agent, SSH will try to use these keys to
authenticate against remote hosts, removing the need to type your password each
time.

There's more…
If you want to add the agent start command to a script (say .bashrc), you may want
to automatically evaluate the environment variables given to you. ssh-
agent assumes you're starting it this way.

Remote Administration with SSH Chapter 2

[126]

In the manual page for ssh-agent, you even get this tip.

"There are two main ways to get an agent set up: The first is that the agent starts a
new sub‐command into which some environment variables are exported, eg ssh-
agent xterm &. The second is that the agent prints the needed shell commands
(either sh(1) or csh(1) syntax can be generated) which can be evaluated in the
calling shell, eg eval 'ssh-agent -s' for Bourne-type shells such as sh(1) or ksh(1)
and eval 'ssh-agent -c' for csh(1) and derivatives."

In practice, this means that it's easiest to start the agent like so:

[vagrant@centos1 ~]$ eval $(ssh-agent)
Agent pid 6896

Here, we're using a Bash sub-shell to start and read the agent's output.

ssh-add
ssh-add has a few decent options available, some of which are handy to know about.

-l will allow you to see loaded identities, along with their fingerprints:

[vagrant@centos1 ~]$ ssh-add -l
256 SHA256:P7FdkmbQQFoy37avbKBfzMpEhVUaBY0TljwYJyNxzUI vagrant@centos1
(ED25519)

-D will allow you to remove all identities (and -d can be used to remove specific
ones):

[vagrant@centos1 ~]$ ssh-add -D
All identities removed.

-x will lock an agent, while -X will unlock it:

[vagrant@centos1 ~]$ ssh-add -l
256 SHA256:P7FdkmbQQFoy37avbKBfzMpEhVUaBY0TljwYJyNxzUI vagrant@centos1
(ED25519)
[vagrant@centos1 ~]$ ssh-add -x
Enter lock password:
Again:
Agent locked.
[vagrant@centos1 ~]$ ssh-add -l
The agent has no identities.
[vagrant@centos1 ~]$ ssh-add -X
Enter lock password:
Agent unlocked.

Remote Administration with SSH Chapter 2

[127]

[vagrant@centos1 ~]$ ssh-add -l
256 SHA256:P7FdkmbQQFoy37avbKBfzMpEhVUaBY0TljwYJyNxzUI vagrant@centos1
(ED25519)

AddKeysToAgent
When using an agent, you might like the SSH config file option AddKeysToAgent,
which will automatically add used keys to your ssh-agent for future use.

Consider the following; we're starting with no keys in our agent:

[vagrant@centos1 ~]$ ssh CentOS2-V4
Enter passphrase for key '/home/vagrant/.ssh/id_ed25519':
Last login: Thu Aug 9 15:58:01 2018 from 192.168.33.10
[vagrant@centos2 ~]$ logout
Connection to 192.168.33.11 closed.
[vagrant@centos1 ~]$ ssh CentOS2-V4
Last login: Thu Aug 9 16:12:04 2018 from 192.168.33.10
[vagrant@centos2 ~]$

Note that the first time, we're prompted for our key's passphrase. The second time,
we're not.

It is now loaded into our agent:

[vagrant@centos1 ~]$ ssh-add -l
256 SHA256:P7FdkmbQQFoy37avbKBfzMpEhVUaBY0TljwYJyNxzUI vagrant@centos1
(ED25519)

This is all handled by one config option:

[vagrant@centos1 ~]$ cat .ssh/config
Host *
 Port 22
 AddKeysToAgent yes

See also
There are other SSH agents, other than the default one supplied with OpenSSH
(which we used here.) There are also some systems that use more pieces (such as
PAM on most desktop distributions.) Have a read around and see if you can work out
how your distro of choice does things.

Remote Administration with SSH Chapter 2

[128]

Running multiple SSH servers on one box
Sometimes, it can be a requirement to run multiple SSH servers on one box. You may
want to use one for regular, day-to-day activities, and the other server for backups or
automation.

In this case, it's perfectly possible to run two distinct versions of the SSH server at
once.

We're going to use centos2 for this, setting up a secondary SSH server on port 2020.

Getting ready
If you haven't already, I would advise destroying your previous Vagrant boxes and
deploying new ones for this.

Once new boxes are created, connect to both:

$ vagrant ssh centos1
$ vagrant ssh centos2

Install policycoreutils-python on centos2, for semanage later:

[vagrant@centos2 ~]$ sudo yum -y install policycoreutils-python

How to do it…
First, we're going to make a copy of our initial configuration file:

[vagrant@centos2 ~]$ sudo cp /etc/ssh/sshd_config
/etc/ssh/sshd_config_2020

Then, we're going to make a couple of changes:

[vagrant@centos2 ~]$ sudo sed -i 's#\#Port 22#Port 2020#g'
/etc/ssh/sshd_config_2020
[vagrant@centos2 ~]$ sudo sed -i 's#\#PidFile
/var/run/sshd.pid#PidFile /var/run/sshd_2020.pid#g'
/etc/ssh/sshd_config_2020

Now, we're going to copy our systemd unit file:

[vagrant@centos2 ~]$ sudo cp /usr/lib/systemd/system/sshd.service
/etc/systemd/system/sshd_2020.service

Remote Administration with SSH Chapter 2

[129]

Then, we're going to make some changes here:

[vagrant@centos2 ~]$ sudo sed -i 's#OpenSSH server daemon#OpenSSH
server daemon on port 2020#g' /etc/systemd/system/sshd_2020.service
[vagrant@centos2 ~]$ sudo sed -i
's#EnvironmentFile=/etc/sysconfig/sshd#EnvironmentFile=/etc/sysconfig/
sshd_2020#g' /etc/systemd/system/sshd_2020.service

Copy the old environment file to a new one:

[vagrant@centos2 ~]$ sudo cp /etc/sysconfig/sshd
/etc/sysconfig/sshd_2020

Then, point this environment file to our new configuration file:

[vagrant@centos2 ~]$ sudo sed -i 's#OPTIONS="-u0"#OPTIONS="-u0 -f
/etc/ssh/sshd_config_2020"#g' /etc/sysconfig/sshd_2020

Tell SELinux we're going to be running an SSH daemon on 2020:

[vagrant@centos2 ~]$ sudo semanage port -a -t ssh_port_t -p tcp 2020

Tell systemd we've made changes:

[vagrant@centos2 ~]$ sudo systemctl daemon-reload

Start and enable our second server:

[vagrant@centos2 ~]$ sudo systemctl enable sshd_2020
Created symlink from /etc/systemd/system/multi-
user.target.wants/sshd_2020.service to
/etc/systemd/system/sshd_2020.service.
[vagrant@centos2 ~]$ sudo systemctl start sshd_2020

Check it's running by SSH'ing from centos1:

[vagrant@centos1 ~]$ ssh 192.168.33.11
The authenticity of host '192.168.33.11 (192.168.33.11)' can't be
established.
ECDSA key fingerprint is
SHA256:I67oI3+08lhdO2ibnoC+z2hzYtvfi9NQAmGxyzxjsI8.
ECDSA key fingerprint is
MD5:03:68:ed:a2:b5:5d:57:88:61:4e:86:28:c3:75:28:fa.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.33.11' (ECDSA) to the list of
known hosts.
vagrant@192.168.33.11's password:
Last login: Thu Aug 9 16:24:50 2018 from 10.0.2.2
[vagrant@centos2 ~]$ logout

Remote Administration with SSH Chapter 2

[130]

Connection to 192.168.33.11 closed.
[vagrant@centos1 ~]$ ssh 192.168.33.11 -p2020
vagrant@192.168.33.11's password:
Last login: Thu Aug 9 16:40:55 2018 from 192.168.33.10
[vagrant@centos2 ~]$

Remember when we were looking at host keys before? What we can
see in the preceding code is that both the port 22 server and 2020
server are sharing host keys, as we were only asked to accept them
once.

How it works…
All we've done here is duplicate a few files and made some sensible changes to
ensure that the two processes don't interact with each other very much.

First, we created the following file:

/etc/ssh/sshd_config_2020

We then ran a couple of sed commands to change some values. Specifically, we
modified the port the server would listen on, and the process ID file it would use (the
PID modification is frequently overlooked).

Next, we copied the systemd unit file that comes with the OpenSSH server package
on CentOS, tweaking it slightly by changing the description and pointing it to a
different environment file.

We put the resulting unit file (sshd_2020.service) in a different
location to the original to differentiate it from a supplied default.

We copied the environment file and made a modification to pass a new option to the
SSH daemon when it's started. This new option was a different configuration file (the
one we started off making):

OPTIONS="-u0 -f /etc/ssh/sshd_config_2020"

We then updated our SELinux policy to make it aware of the new server's intentions,
reloaded systemd's running configuration, and both enabled and started our server.

Remote Administration with SSH Chapter 2

[131]

Your milage may vary in terms of the standard location for
configuration and environment files. This can change between major
distro releases, and some settings frequently differ between different
distributions.

There's more…
If you're interested in seeing both servers running, there's a few methods of doing so.

On centos2, start with ss:

[vagrant@centos2 ~]$ sudo ss -tna -4
State Recv-Q Send-Q Local Address:Port
Peer Address:Port
LISTEN 0 128 *:2020
:
LISTEN 0 128 *:111
:
LISTEN 0 128 *:22
:
LISTEN 0 100 127.0.0.1:25
:
ESTAB 0 0 10.0.2.15:22
10.0.2.2:59594

We can also use systemd's built-in commands:

[vagrant@centos2 ~]$ PAGER= systemctl | grep sshd
 sshd.service
loaded active running OpenSSH server daemon
 sshd_2020.service
loaded active running OpenSSH server daemon on port 2020

And lastly, we can use good old ps:

[vagrant@centos2 ~]$ ps aux | grep sshd
root 856 0.0 0.8 112796 4288 ? Ss 16:52 0:00
/usr/sbin/sshd -D -u0 -f /etc/ssh/sshd_config_2020
root 858 0.0 0.8 112796 4292 ? Ss 16:52 0:00
/usr/sbin/sshd -D -u0

Remote Administration with SSH Chapter 2

[132]

Summary
While I've spent this chapter describing some brilliant things that SSH is capable of
and singing its praises throughout, it's worth highlighting that it's still software, and
it's also constantly evolving. Because it's software, it can have bugs and unexpected
behavior, though the developers behind it are some of the best, what with it being
part of the OpenBSD suite of software.

If you take anything away from this chapter, make it the following:

Use key-based authentication
Disable root login over SSH
Use a local SSH config file for connecting to remote machines

I'd highly recommend signing up to the various SSH mailing lists if you're a bit sad
like I am, and keeping an eye out for new features that might capture your
imagination. ProxyJump hasn't been around for long, and it's very handy.

I do recall instances that SSH wound me up in some form or other, such as the time I
spent a long hour or two bashing my head against a desk, trying to work out why
SSH just wouldn't read a private RSA file, only to discover that it needed the public
half to be in the same folder too, on the local machine. That's a considerable amount
of time I won't get back, but it's a mistake I won't make twice.

That said, I can also share many more instances where SSH has downright impressed
me, and made my life easier. It's basically the Swiss Army knife of system
administration, and not just because it's usually the way you connect to a box.

People use SSH for administration, transferring backups, moving files between boxes,
automation using tools such as Ansible, wrapping other connections inside, and
much more.

I once saw an implementation of OpenSSH atop Windows, because
the people running the Windows servers were Unix people, and
distrusted RDP. They used to SSH to the box, local forwarding the
RDP session on 127.0.0.1:3389 and connecting to RDP through
the SSH session... it was slow...

Remote Administration with SSH Chapter 2

[133]

It's solid, secure, and a pleasure to use. It works on Linux, macOS, the BSDs, Solaris,
and even Windows!

Here's a big thanks to SSH, and OpenSSH specifically.

Some things we didn't discuss in this chapter were ciphers, message
integrity codes, key exchange algorithms, and so on. Primarily, this
is because these subjects are nearly a book in themselves, and are
definitely out of scope for what we're doing here. I generally trust
the maintainers of the various packages to choose sensible defaults,
but there's no harm in reading up on security independently, should
you feel compelled.

3
Networking and Firewalls

The following recipes will be covered in this chapter:

Determining our network configuration
More examples of using the IP suite
Adding and configuring network interfaces
Modern domain name resolution on Linux
Configuring NTP and the problems we face
Listing firewall rules on the command line
Adding firewall rules on the command line
Determining the running services and ports in use
Debugging with iftop
Round-up-firewalls and networks

Introduction
Now that we know the ins and outs of SSH and connecting to our machines, whether
it be the local VMs or remote servers, we're going to take a look at the most obvious
part of the security onion (the firewall) and the Linux network stack in general.

Traditionally, firewall administration was handled by the iptables and associated
commands, and indeed you'll be hard pressed to find system administrators who
don't instantly install the iptables suite of tools on every server they find (that
doesn't have it installed already).

On modern installations, firewall-cmd (CentOS) and ufw (Ubuntu) can be found
installed in place of, or in addition to, traditional tools. These are an attempt to make
the firewall process a more painless experience, though purists will defend iptables
to the death.

Networking and Firewalls Chapter 3

[135]

No matter the user space (the name given to programs that operate outside the
kernel, at the user level) tool used, all of the changes we make are being made using
the Netfilter kernel framework. Indeed, a replacement for iptables and Netfilter,
called nft, has been available in the kernel for some time, though it's not widely used
at the moment.

iptables is something of a catchall name, at least informally.
Technically, iptables is used for IPv4, ip6tables is used for IPv6,
ebtables is used for Ethernet frames, and arptables is used for ARP.

Alongside our journey into the confusing world of firewalls, we're going to create a
network interface and configure it with both static and dynamic IP allocation.

Technical requirements
We're again going to use Vagrant and VirtualBox for our work. We'll configure three
virtual machines.

I've put together the following Vagrantfile for use in this chapter:

-*- mode: ruby -*-
vi: set ft=ruby :

$provisionScript = <<-SCRIPT
sed -i 's#PasswordAuthentication no#PasswordAuthentication yes#g'
/etc/ssh/sshd_config
systemctl restart sshd
SCRIPT

Vagrant.configure("2") do |config|

 config.vm.provision "shell",
 inline: $provisionScript

 config.vm.define "centos1" do |centos1|
 centos1.vm.box = "centos/7"
 centos1.vm.network "private_network", ip: "192.168.33.10"
 centos1.vm.network "private_network", ip: "192.168.44.10",
auto_config: false
 centos1.vm.hostname = "centos1"
 centos1.vm.box_version = "1804.02"
 end

Networking and Firewalls Chapter 3

[136]

 config.vm.define "centos2" do |centos2|
 centos2.vm.box = "centos/7"
 centos2.vm.network "private_network", ip: "192.168.33.11"
 centos2.vm.network "private_network", ip: "192.168.44.11",
auto_config: false
 centos2.vm.hostname = "centos2"
 centos2.vm.box_version = "1804.02"
 end

 config.vm.define "ubuntu1" do |ubuntu1|
 ubuntu1.vm.box = "ubuntu/bionic64"
 ubuntu1.vm.hostname = "ubuntu1"
 ubuntu1.vm.box_version = "20180927.0.0"
 end

end

It would be advisable to create a folder called Chapter Three and copy this code
into a file called Vagrantfile. Running vagrant up from inside the folder
containing your Vagrantfile should configure two VMs for testing. Once
provisioned, make sure that you can connect to the first by running the following
command:

$ vagrant ssh centos1

For this section, ensure that your centos1 VM is running, and connect to it. This
section assumes you know networking at a basic level, in the sense that you
understand the differences between a static and dynamic IP address, and you know
roughly how public and private IP addresses differ.

Determining our network configuration
If you ever find yourself working with physical equipment in a data center, you may
wind up plonked in front of a box at some point, with only a username and
password. You will have to use these credentials to discover the box's IP information
so that another individual in an ivory tower somewhere can connect to it remotely.

The individual in the ivory tower will sometimes be paid better than
you for lounging around in a chair all day pressing a keyboard. My
advice is to not dwell on this, or you'll end up bitter and grumpy
ahead of your years.

Networking and Firewalls Chapter 3

[137]

Getting ready
Connect to centos1 if you haven't already.

$ vagrant ssh centos1

For the purposes of demonstration, ensure that ifconfig is installed too:

$ sudo yum install net-tools

How to do it…
In this short section, we're going to discover what IP address our box has, what
network it's on, and we're going to learn how it's configured in the way it is.

Discerning the IP
On a modern box, this is done with ip, which we'll go into greater depth with later:

$ ip address show

You can shorten ip commands to make them quicker to type (as we
did in the previous chapter,) but in the preceding code I've used the
full expression as it better expresses what we're doing.

This command will give you information about all the interfaces on your system. In
the case of our VMs, it looks like this:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 52:54:00:c9:c7:04 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global noprefixroute
dynamic eth0
 valid_lft 85733sec preferred_lft 85733sec
 inet6 fe80::5054:ff:fec9:c704/64 scope link
 valid_lft forever preferred_lft forever

Networking and Firewalls Chapter 3

[138]

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 08:00:27:4b:03:de brd ff:ff:ff:ff:ff:ff
 inet 192.168.33.10/24 brd 192.168.33.255 scope global
noprefixroute eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fe4b:3de/64 scope link
 valid_lft forever preferred_lft forever
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 08:00:27:50:a5:cb brd ff:ff:ff:ff:ff:ff

We know lo is the loopback address, which will always have the 127.0.0.1/8
setup, or some other address in that range.

If you know the device you want explicitly, you can also specify it. In the following
code, we've done this with eth1:

$ ip address show dev eth1

Within the printed block, we're looking for the IPv4 address, which is listed as being
in the inet family:

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 08:00:27:0d:d9:0c brd ff:ff:ff:ff:ff:ff
 inet 192.168.33.10/24 brd 192.168.33.255 scope global
noprefixroute eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fe0d:d90c/64 scope link
 valid_lft forever preferred_lft forever

We have the IP, 192.168.33.10, and we know the subnet it's in, /24
(255.255.255.0).

If you're a bit lazier and want to save on eye movement, you could use something like
the following in a scrip to get this information:

$ ip address show dev eth1 | grep "inet " | awk '{ print $2 }'
192.168.33.10/24

Networking and Firewalls Chapter 3

[139]

The preceding code is one of many, many ways in which you could
write a one-liner to generate the output you desire. Linux is flexible,
and you might choose to reach the same output in a completely
different way. It doesn't overly matter how you do it, but if it's
something you plan on sharing, doing it in a succinct and readable
style is often best.

Discerning the IP (deprecated method)
On older systems, or those managed by stick-in-the-mud admins, you might also use
ifconfig to find the IP and subnet.

Simply running ifconfig will print all relevant information:

$ ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
 inet6 fe80::5054:ff:fec9:c704 prefixlen 64 scopeid 0x20<link>
 ether 52:54:00:c9:c7:04 txqueuelen 1000 (Ethernet)
 RX packets 14404 bytes 12885029 (12.2 MiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 5672 bytes 409079 (399.4 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.33.10 netmask 255.255.255.0 broadcast 192.168.33.255
 inet6 fe80::a00:27ff:fe4b:3de prefixlen 64 scopeid 0x20<link>
 ether 08:00:27:4b:03:de txqueuelen 1000 (Ethernet)
 RX packets 8 bytes 3164 (3.0 KiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 17 bytes 1906 (1.8 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth2: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 ether 08:00:27:50:a5:cb txqueuelen 1000 (Ethernet)
 RX packets 43 bytes 14706 (14.3 KiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 112 bytes 19336 (18.8 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1000 (Local Loopback)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0

Networking and Firewalls Chapter 3

[140]

 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

As with IP, it's trivial to dump the information about a specific interface.

As we can see in the following code, we're looking again at the specifics of eth1:

$ ifconfig eth1
eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.33.10 netmask 255.255.255.0 broadcast
192.168.33.255
 inet6 fe80::a00:27ff:fe0d:d90c prefixlen 64 scopeid
0x20<link>
 ether 08:00:27:0d:d9:0c txqueuelen 1000 (Ethernet)
 RX packets 24 bytes 4268 (4.1 KiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 20 bytes 2116 (2.0 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

I use the word deprecated for this, but that's generally only true for
the Linux world. In the BSDs and macOS, ifconfig is still very
much the only show in town, and it's still being actively improved
and maintained.

Discerning the gateway address
Once we have the IP address of the box and the subnet, we might want to know
which device our machine is using to talk to the outside world.

This is the default route that traffic takes out of your box.

Using the ip command, this is easy to discover:

$ ip route
default via 10.0.2.2 dev eth0 proto dhcp metric 102
10.0.2.0/24 dev eth0 proto kernel scope link src 10.0.2.15 metric 102
192.168.33.0/24 dev eth1 proto kernel scope link src 192.168.33.10
metric 100

Note the default via section.

Networking and Firewalls Chapter 3

[141]

Discerning the gateway address (deprecated
method)
With net-tools installed, we can also use the route command to find our default
route out:

$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref
Use Iface
default gateway 0.0.0.0 UG 102 0
0 eth0
10.0.2.0 0.0.0.0 255.255.255.0 U 102 0
0 eth0
192.168.33.0 0.0.0.0 255.255.255.0 U 100 0
0 eth1

How it works…
When you use ip or ifconfig, you're querying the network devices that the kernel
is aware of, and which it's currently managing the traffic for.

If you don't see your network device in the list output by either of
the common commands, it's likely that your kernel doesn't have a
driver for the device in question. This is rare these days, but can
happen for custom networking gear, whereupon the vendor should
supply a kernel module for use with it.

ip itself is more than just one command: it's a suite, meaning that when we used the
ip address command here, we were only using a subsection of the tools available to
us.

When you use ip route or the route command, you're actually querying the
distribution's routing table.

There's more…
Knowing the basics of how your network is configured is great, but that's usually
only step one.

Here, I'll cover some rudimentary network troubleshooting.

Networking and Firewalls Chapter 3

[142]

Checking connectivity
Just knowing what device our box is using as its gateway is one thing, but actually
being able to reach it is another thing entirely.

If you're standing before a box, there's a good chance you've been summoned to try
and work out what's not working. Trying to ping the gateway is a good first step:

$ ping 10.0.2.2
PING 10.0.2.2 (10.0.2.2) 56(84) bytes of data.
64 bytes from 10.0.2.2: icmp_seq=1 ttl=64 time=0.768 ms
64 bytes from 10.0.2.2: icmp_seq=2 ttl=64 time=0.333 ms
64 bytes from 10.0.2.2: icmp_seq=3 ttl=64 time=0.637 ms

Here, our gateway device responded, but if yours doesn't, or you get Destination
Host Unreachable, then there's a good chance something is going wrong (or you've
been given duff information by your colleague in the ivory tower—always check this
first).

In the following code, we're checking the status of the interface itself, again using the
ip command:

$ ip address show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000

You may be interested to know why we have three UP values here.

The initial UP value inside the chevrons is if the interface is physically up. The
LOWER_UP value, also inside the chevrons, is shown if a cable is physically connected
and up. The state UP value outside the chevrons is if the interface is
administratively up, which can be changed to DOWN through software.

Checking what route our box will take
It's also possible that connectivity might be failing because your box is trying to talk
out of the wrong interface. We can check this with ip again.

First, let's look at which route we're going to take when communicating with the
wider world.

Networking and Firewalls Chapter 3

[143]

In the following code, we're checking how our box would attempt to talk to the
device with the IP 1.1.1.1. It shows us that we would go to this IP via the gateway
address, 10.0.2.2, and our eth0 interface:

$ ip route get 1.1.1.1
1.1.1.1 via 10.0.2.2 dev eth0 src 10.0.2.15
 cache

Now, let's see what route we'll take if we're communicating with our gateway. Here,
we can see a direct connection (no via) also going out of eth0:

$ ip route get 10.0.2.2
10.0.2.2 dev eth0 src 10.0.2.15
 cache

So far, so good, but what about if we want to talk to the other VM on our private
network?

$ ip route get 192.168.33.11
192.168.33.11 dev eth1 src 192.168.33.10
 cache

eth1 would be used, which makes perfect sense given it's on the same network.

Hang on a moment—our own IP is in this subnet too, so what happens if we try to
communicate with ourselves?

$ ip route get 192.168.33.10
local 192.168.33.10 dev lo src 192.168.33.10
 cache <local>

Ah! Clever! We're still using the loopback address (dev lo) to talk to our local IP
address, because Linux knows that this IP is ours.

As with the preceding example, Linux occasionally does things that
might surprise you, especially if you're coming from a Windows or
BSD administration world. Take the lo interface—it's not just
127.0.0.1, but the entire /8 range. You can ping anywhere from
127.0.0.1 to 127.255.255.254 on a typical Linux system, and
get a response from your local machine.

You can even ping 127.1 and get a legitimate response, but I'll
leave it as an exercise for the reader to determine why this might be.

Networking and Firewalls Chapter 3

[144]

See also
Take a look at the ip and ip-address manual pages.

Personally, I would focus on learning about the ip suite, instead of
the old net-tools, because if you're trying to work on a networking
problem, there's a good chance you won't be able to install net-tools
in a pinch.

More examples of using the ip suite
We're going to use ip from here on out due to its modern nature.

This section assumes that you know networking at a basic level, in the sense that you
understand the differences between a static and dynamic IP address, and know
roughly how public and private IP addresses differ.

Getting ready
In this section, we're going to make a few changes to our networking. If at any point
you find yourself kicked out of your VM, remember The Hitchhiker's Guide to the
Galaxy and don't panic—simply destroy your VMs and start again.

Begin on the centos1 command line.

$ vagrant ssh centos1

How to do it…
In this section, we're going to use the ip suite to change some basic elements of our
networking stack, such as adding another IP address, or shutting down an interface
entirely.

Adding and removing an IP against an interface
This can be accomplished with the ip address command, but does require root.

Networking and Firewalls Chapter 3

[145]

In this example, I chose another IP in the 192.168.33.0/24 subnet, which I know
isn't in use:

In the real world, it's good practice to ping an IP first, even if you
believe it's free to use.

$ sudo ip address add 192.168.33.22/24 dev eth1

Checking our eth1 interface, we can now see the secondary IP:

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 08:00:27:0d:d9:0c brd ff:ff:ff:ff:ff:ff
 inet 192.168.33.10/24 brd 192.168.33.255 scope global
noprefixroute eth1
 valid_lft forever preferred_lft forever
 inet 192.168.33.22/24 scope global secondary eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fe0d:d90c/64 scope link
 valid_lft forever preferred_lft forever

Upon a reboot, this change will be lost. We will talk about adding IP
information permanently in the section titled 'Adding and
configuring network interfaces'.

If we want to remove an IP, we again use ip, this time replacing the add instruction
with a del instruction:

$ sudo ip address del 192.168.33.22/24 dev eth1

Shutting down and bringing up an interface
administratively
To work with the interface itself, we need to use another element of the ip suite, this
being ip link. Note again the use of sudo:

$ sudo ip link set eth1 down

Checking our interfaces, we can see that the interface is in the DOWN state:

3: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast state DOWN
group default qlen 1000

Networking and Firewalls Chapter 3

[146]

 link/ether 08:00:27:0d:d9:0c brd ff:ff:ff:ff:ff:ff
 inet 192.168.33.10/24 brd 192.168.33.255 scope global
noprefixroute eth1
 valid_lft forever preferred_lft forever

You will find yourself unable to ping this host from centos2.

To bring an interface back up, simply run the following:

$ sudo ip link set eth1 up

Note that if you add another IP to an interface on a temporary basis
before bringing an interface down and up, your temporary
additional IP will not be remembered.

Adding a new route to our routing table
If we're working in a network with non-obvious destinations, we might need to add a
specific route to our setup.

This is generally seen in cluster scenarios and setups where a route
may be accessible via another channel, but may not be advertised by
that same channel.

In the following code, we're going to tell our VM that if it wants to talk to any address
on the 172.16.0.0/12 network, it must send traffic via eth1 and gateway
192.168.33.11 (which is our centos2 VM):

$ sudo ip route add 172.16.0.0/12 via 192.168.33.11 dev eth1

Checking our routing table, we can see if our route is in place:

$ ip route
default via 10.0.2.2 dev eth0 proto dhcp metric 100
10.0.2.0/24 dev eth0 proto kernel scope link src 10.0.2.15 metric 100
172.16.0.0/12 via 192.168.33.11 dev eth1
192.168.33.0/24 dev eth1 proto kernel scope link src 192.168.33.10
metric 101

Networking and Firewalls Chapter 3

[147]

How it works…
Again, we're using the ip suite to interact with the various network elements of our
machine. Frequently, these commands can be used for troubleshooting and testing of
environmental changes, prior to your making those changes permanent.

In the adding or removing of IP addresses to interfaces, you can create a situation
where an interface has multiple IP addresses for use with different applications.

Before the days of SNI, it wasn't uncommon to see multiple IP
addresses in use on web servers so that each HTTPS site could have
its own IP assignment.

In the shutting down or bringing up of network interfaces, we're first telling our
system to administratively down an interface, rather than physically unplugging an
Ethernet cable. If you down an interface, then check your
/var/log/messages file—you should see something like the following:

Aug 12 12:38:09 centos1 NetworkManager[566]: <info> [1534077489.1507]
device (eth1): state change: activated -> unavailable (reason
'carrier-changed', sys-iface-state: 'managed')
Aug 12 12:38:09 centos1 dbus[545]: [system] Activating via systemd:
service name='org.freedesktop.nm_dispatcher' unit='dbus-
org.freedesktop.nm-dispatcher.service'
Aug 12 12:38:09 centos1 systemd: Starting Network Manager Script
Dispatcher Service...
Aug 12 12:38:09 centos1 dbus[545]: [system] Successfully activated
service 'org.freedesktop.nm_dispatcher'
Aug 12 12:38:09 centos1 systemd: Started Network Manager Script
Dispatcher Service.
Aug 12 12:38:09 centos1 nm-dispatcher: req:1 'down' [eth1]: new
request (3 scripts)
Aug 12 12:38:09 centos1 nm-dispatcher: req:1 'down' [eth1]: start
running ordered scripts...

Here, we can see the network manager running through a series of steps, upon its
realization that the device's state has changed.

Network manager dispatcher is the service that controls what
happens when an interfaces goes down or comes up. Take a look in
/etc/NetworkManager/dispatcher.d/ if you're interested in
learning more.

Networking and Firewalls Chapter 3

[148]

Lastly, when we added a route to our routing table, we were telling the kernel's
underlying routing subsystem to send packets for the network 172.16.0.0/12
through our eth1 interface, with a gateway address of 192.168.33.11.

I have frequently found myself modifying the routing table of
devices, though most of that was done for cluster setups in phone
PBX environments. It may not be something you do day-to-day, but
it's worth knowing!

There's more…
If you want to see our routed traffic that's hitting centos2, log onto your second VM
and make sure that tcpdump is installed:

$ sudo yum install -y tcpdump

Next, ensure that your extra route from the before is in place on centos1, and start a
ping going to any address in the range:

$ ping 172.16.0.3
PING 172.16.0.3 (172.16.0.3) 56(84) bytes of data.

Back on centos2, start tcpdump against our eth1 interface:

$ sudo tcpdump -i eth1

You should start to see ICMP echo requests from centos1, without a response:

12:48:26.735055 IP 192.168.33.10 > 172.16.0.3: ICMP echo request, id
1696, seq 1, length 64
12:48:27.736195 IP 192.168.33.10 > 172.16.0.3: ICMP echo request, id
1696, seq 2, length 64
12:48:28.738030 IP 192.168.33.10 > 172.16.0.3: ICMP echo request, id
1696, seq 3, length 64
12:48:29.743270 IP 192.168.33.10 > 172.16.0.3: ICMP echo request, id
1696, seq 4, length 64
12:48:30.747098 IP 192.168.33.10 > 172.16.0.3: ICMP echo request, id
1696, seq 5, length 64
12:48:31.750916 IP 192.168.33.10 > 172.16.0.3: ICMP echo request, id
1696, seq 6, length 64
12:48:32.752634 IP 192.168.33.10 > 172.16.0.3: ICMP echo request, id
1696, seq 7, length 64

Networking and Firewalls Chapter 3

[149]

Back on centos1, stop your ping (Ctrl + C) and note the packets transmitted and
packets lost:

--- 172.16.0.3 ping statistics ---
8 packets transmitted, 0 received, 100% packet loss, time 7019ms

Because we had nowhere for centos2 to route our packet to, and centos2 isn't
actually set up as a router, the packets simply went unanswered, and centos1
remained friendless—poor centos1.

See also
If you're interested in using Linux as a router, this is perfectly possible with a sysctl
change and potentially a bit of masquerading on the part of the firewall. While out of
scope for this book, it is something you may find yourself needing in the future.

Adding and configuring network
interfaces
In this section, we're going to look at how multiple network interfaces may be
configured in a system, and we will discuss how this might be utilized in the real
world (such as for backup traffic).

Getting ready
We're going to use our second network, which is new to this chapter. If you're using
the Vagrantfile from before, you're already set up with this network. If you're
running your own system, add another NIC to each of your virtual machines on the
same network.

Use Vagrant to connect to centos1.

$ vagrant ssh centos1

Networking and Firewalls Chapter 3

[150]

Check that the eth2 interface is available to you. It should look similar to the
following:

$ ip link show eth2
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP mode DEFAULT group default qlen 1000
 link/ether 08:00:27:7d:f3:6b brd ff:ff:ff:ff:ff:ff

How to do it…
We will look at adding network information permanently using configuration files so
that our configuration isn't lost following a reboot (as would be the case if we used
the ip suite and temporary allocation).

Configuring a new interface
Start by creating a configuration file for eth2:

$ sudo touch /etc/sysconfig/network-scripts/ifcfg-eth2

Next, populate it using the following:

$ sudo tee /etc/sysconfig/network-scripts/ifcfg-eth2 << HERE
BOOTPROTO=none
ONBOOT=yes
IPADDR=192.168.44.10
NETMASK=255.255.255.0
DEVICE=eth2
PEERDNS=no
HERE

The tee command is used here. It enables reading from standard
input and outputting to a destination of our choosing, in this case, a
file.

Now, restart your interface as an individual:

$ sudo ifdown eth2
$ sudo ifup eth2

Networking and Firewalls Chapter 3

[151]

Alternatively, restart networking in general:

$ sudo systemctl restart network

It's generally a good rule of thumb to be the least disruptive when
working with components that make up a greater whole. Even in a
dev environment, it's a good habit to get into.

How it works…
All we've done here is created an interface script that your system can use to correctly
configure an interface at boot time.

Let's go through the options we added to our file.

BOOTPROTO=none

This setting stands for boot-time protocol and we've set it to none instead of
dhcp or bootp.

In a DHCP environment, you want an address to be assigned automatically by your
DHCP server. Here, we're setting a static address, so we state the following.

ONBOOT=yes

This one might seem obvious, but the default behaviour of an interface is to not
initialize at boot. With this setting, we ensure that the network interface is brought up
with the system.

IPADDR=192.168.44.10
NETMASK=255.255.255.0

Somewhat self-explanatory, but these options are the IP address and the subnet mask
of the network we're configuring. Here, I chose another /24 network, a few octets
above our eth1 configuration.

DEVICE=eth2

This option is used to specify which hardware interface our configuration will apply
to. It's worth noting that these interface names can be both generic (eth0, eth1, and
so on) and network card name-specific (they might not always be eth<something>).

PEERDNS=no

Networking and Firewalls Chapter 3

[152]

Defaulting to yes in a DHCP environment, this option ensures that our system
doesn't try to modify /etc/resolv.conf when the interface is brought up.

There's more…
The Ethernet interface configuration file (ifcfg-eth2) has a few other options that
can be taken into account when setting up your network. Check whether it's possible
to make a configuration change for your desired outcome, prior to wrapping
networking in any scripts.

Interface bonds can also be created and configured in interface configuration files for
use when a machine has two physical connections to the same destination to protect
against either failure of the interface or cable.

I have seen exactly one bad Cat-5e cable in the entirety of my
professional life—cables are physical, and don't spontaneously
break.

One thing we didn't do was specify that the interface in question wasn't to be
managed by a network manager (the network management daemon).

You can see which interfaces are and aren't being managed by the network manager
using the simple nmcli device command:

$ nmcli device
DEVICE TYPE STATE CONNECTION
eth0 ethernet connected System eth0
eth1 ethernet connected System eth1
eth2 ethernet connected System eth2
lo loopback unmanaged --

We can change this, if we'd rather the network manager does not interfere, by adding
a configuration option to our ifcfg-eth2 file:

BOOTPROTO=none
ONBOOT=yes
IPADDR=192.168.44.10
NETMASK=255.255.255.0
DEVICE=eth2
PEERDNS=no
NM_CONTROLLED=no

Networking and Firewalls Chapter 3

[153]

Now, go down and up your interface once more:

$ sudo ifdown eth2
$ sudo ifup eth2

Then, check out nmcli once again, this time taking note of the unmanaged status:

$ nmcli device
DEVICE TYPE STATE CONNECTION
eth0 ethernet connected System eth0
eth1 ethernet connected System eth1
eth2 ethernet unmanaged --
lo loopback unmanaged --

If you're curious, take a look at the nmtui command for an interactive way to
configure network interfaces that the network manager is aware of.

See also
Have a think about where it might be useful for additional networks to be in place. A
good and common example is for backup networks, where companies will set up a
dedicated network that's specifically for backup traffic.

Backups range in size, but can easily be gigabytes and even terabytes sometimes, so it
makes sense to give them an entirely independent network of their own.

You can also manage traffic priority with things such as Quality of
Service (QoS) settings on larger and enterprise networks. This can
be a valid solution if you would rather deal with the software
administration overhead of dealing with such scenarios. Generally,
I'm a fan of simple, and though it definitely costs more to have
physical equipment, it's less to manage in the long run.

Modern domain name resolution on Linux
In this section, we're going to look at domain name resolution, and specifically the
software installed on a typical CentOS box that enables the lookup of addresses when
presented with a domain.

We'll look at /etc/resolv.conf and domain name resolution methods on current
generation Linux systems (such as network manager). We're going to test the
connection to our DNS server, and run DNS queries to see if it's working.

Networking and Firewalls Chapter 3

[154]

This section assumes a basic understanding of domain names and IP addresses.

Getting ready
Connect to centos1 and check that your domain resolution is already working by
pinging an address.

I'm in the UK, so I default to using the BBC for my tests:

$ ping bbc.co.uk
PING bbc.co.uk (151.101.0.81) 56(84) bytes of data.
64 bytes from 151.101.0.81 (151.101.0.81): icmp_seq=1 ttl=63 time=30.4
ms

If yours isn't working for whatever reason, destroy and recreate your VMs.

Once you're sure you can ping a domain, install dig (and the myriad of other tools
that come along with this package):

$ sudo yum install -y bind-utils

How to do it…
Here, we're going to run through some basic troubleshooting steps, designed to help
you determine where a problem might be.

Querying a domain
To query a domain name on Linux, dig can be used:

$ dig bbc.co.uk

; <<>> DiG 9.9.4-RedHat-9.9.4-61.el7 <<>> bbc.co.uk
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6288
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;bbc.co.uk. IN A

Networking and Firewalls Chapter 3

[155]

;; ANSWER SECTION:
bbc.co.uk. 227 IN A 151.101.0.81
bbc.co.uk. 227 IN A 151.101.64.81
bbc.co.uk. 227 IN A 151.101.128.81
bbc.co.uk. 227 IN A 151.101.192.81

;; Query time: 24 msec
;; SERVER: 10.0.2.3#53(10.0.2.3)
;; WHEN: Sun Aug 12 14:20:28 UTC 2018
;; MSG SIZE rcvd: 102

Here, we can see that the server being used for domain resolution (emboldened) is
10.0.2.3, which just so happens to be VirtualBox providing a resolution service.

We also see the ANSWER SECTION which, as the name might suggest, is the answer to
our query. We can reach bbc.co.uk at any of those addresses (currently).

Checking the domain resolution settings
The source of truth when it comes to DNS configuration on a system is generally the
resolver file, /etc/resolv.conf, although increasingly this file isn't used directly,
and is instead managed by external programs.

In the case of CentOS, the resolv.conf file is managed by our friend network
manager, and on other systems, it might be systemd-resolved.

Have a look at your resolv.conf file:

$ cat /etc/resolv.conf
Generated by NetworkManager
search discworld
nameserver 10.0.2.3

search in the previous code is the search list for hostname lookup.
It's generated by looking at the domain the box is sitting on.
nameserver is the value of our DNS resolver, in this case, the
VirtualBox default.

This tells us that the network manager is the program that's populated our file.

Networking and Firewalls Chapter 3

[156]

We can then use nmcli to list the DNS server it knows about:

$ nmcli -f ipv4.dns,ipv4.ignore-auto-dns connection show System\ eth0
ipv4.dns: --
ipv4.ignore-auto-dns: no

With the preceding code, we're using nmcli with two filters,
ipv4.dns and ipv4.ignore-auto-dns, to check our default interface
(the eth0 system, in this case).

The value of ipv4.dns isn't set, meaning that it's unlikely to be reading the value
from a configuration directive on the interface.

The value of ipv4.ignore-auto-dns is set, and we can tell from the no value that
we're not ignoring the auto DNS allocation from the DHCP server.

Changing the domain resolution settings
To use a DNS server of our choosing, we should use nmcli.

In the following code, we're setting our own DNS server value (1.1.1.1) and we're
flipping the truth value of ipv4.ignore-auto-dns from no to yes:

$ sudo nmcli connection modify System\ eth0 ipv4.dns "1.1.1.1"
ipv4.ignore-auto-dns "yes"

Note how both of these fields can be modified on one line.

Reload the interface configuration using the following:

$ sudo nmcli connection up System\ eth0

Look in /etc/resolv.conf for good measure, just to check:

$ cat /etc/resolv.conf
Generated by NetworkManager
nameserver 1.1.1.1

Then, run dig:

$ dig bbc.co.uk

; <<>> DiG 9.9.4-RedHat-9.9.4-61.el7 <<>> bbc.co.uk
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 10132

Networking and Firewalls Chapter 3

[157]

;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1452
;; QUESTION SECTION:
;bbc.co.uk. IN A

;; ANSWER SECTION:
bbc.co.uk. 210 IN A 151.101.0.81
bbc.co.uk. 210 IN A 151.101.64.81
bbc.co.uk. 210 IN A 151.101.128.81
bbc.co.uk. 210 IN A 151.101.192.81

;; Query time: 23 msec
;; SERVER: 1.1.1.1#53(1.1.1.1)
;; WHEN: Sun Aug 12 14:46:05 UTC 2018
;; MSG SIZE rcvd: 102

1.1.1.1 is a new and trendy DNS service from Cloudflare and
APNIC. This isn't an endorsement, it's just really easy to remember.

How it works…
When you request the destination of a domain on your system, what you're actually
doing is sending a request to your configured resolver, which returns the address it
(or further upstream systems) knows about.

In our case, we can see this request happening by connecting two Terminals to
centos1.

On our first Terminal, we're going to install and start tcpdump on eth1:

$ sudo yum install tcpdump -y
$ sudo tcpdump -i eth0 -n port 53

Once set up, hop to a second connection and run your dig against the BBC (or
whichever British broadcaster of choice you've gone with):

$ dig bbc.co.uk

Networking and Firewalls Chapter 3

[158]

Flip back to your first window, and you should see the results of your request:

14:58:50.303421 IP 10.0.2.15.51686 > 1.1.1.1.domain: 19866+ [1au] A?
bbc.co.uk. (38)
14:58:50.331999 IP 1.1.1.1.domain > 10.0.2.15.51686: 19866 4/0/1 A
151.101.0.81, A 151.101.64.81, A 151.101.128.81, A 151.101.192.81
(102)

We asked our name server what address bbc.co.uk lived at, and in the response, we
got a few IP addresses to connect to. Neat, huh?

There's more…
This section obviously made changes using network manager, but that's not to say
this is the only way. It's possible to stop the network manager from hijacking and
trying to control your DNS.

It's possible to set dns=none in the main section of the NetworkManager.conf file,
as detailed in its man page:

 "none: NetworkManager will not modify resolv.conf. This implies
 rc-manager unmanaged"

Seen in the configuration file at /etc/NetworkManager/NetworkManager.conf, it
would look like this:

[main]
#plugins=ifcfg-rh,ibft
dns=none

Restarting NetworkManager at this point would stop it from trying to modify
/etc/resolv.conf in the future.

This can be useful if you want something else to manage your system's DNS, even if
it's just a script you've written to plonk your DNS servers in /etc/resolv.conf.

It's possible to not use NetworkManager at all, disabling it as a
daemon and doing everything in the old script fashion. In fact, it's
really easy, but in my opinion it's worth getting to grips with how
things are done by default these days.

DNS is usually done in pairs, and it's a good idea to have a backup DNS server in
case the first one goes to pot. Strange things can start to happen when your DNS fails.

Networking and Firewalls Chapter 3

[159]

See also
We actually used nmcli here to make changes to configuration files. We can
physically see those changes by looking at the eth0 configuration file before and after
our DNS changing command.

Before looks like this:

$ cat /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE="eth0"
BOOTPROTO="dhcp"
ONBOOT="yes"
TYPE="Ethernet"
PERSISTENT_DHCLIENT="yes"

While after is a bit more verbose:

$ cat /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes
TYPE=Ethernet
PERSISTENT_DHCLIENT="yes"
PROXY_METHOD=none
BROWSER_ONLY=no
DNS1=1.1.1.1
DEFROUTE=yes
PEERDNS=no
IPV4_FAILURE_FATAL=no
IPV6INIT=no
NAME="System eth0"
UUID=5fb06bd0-0bb0-7ffb-45f1-d6edd65f3e03

One thing we didn't cover is IPv6, but the principles are the same as IPv4.

Take a look at how IPv6 servers are configured, and how they end up in
/etc/resolv.conf.

Configuring NTP and the problems we
face
In this section, we're going to look at the network time protocol (NTP), and the
default setup for a typical installation.

Networking and Firewalls Chapter 3

[160]

This section assumes a basic understanding of time.

Depending on how much Pratchett you read, your understanding of
time may or may not be linear.

We're going to look at a few things. First, we're going to look at what NTP is, what
software we use to set it up, and how to test whether your system is using it.

Starting at the top, NTP runs on port 123, and it's the protocol that's used for keeping
time in computer systems in sync. This is generally important because we want things
like log-timestamps to be consistent between machines, transactions between boxes to
have the correct time on both sides, and things like authentication to actually work.

Really though, misconfigured or incorrect time on a system can
present a host of problems, not all of them obvious. If you ever find
yourself using the phrase "this makes no sense," check the date
information on your box, as a good portion of the time it'll be
wrong. Funnily, a lot of systems depend on time being correct to
work.

Getting ready
We're going to use centos1 and centos2. centos1 is going to act as our client, and
centos2 is going to act as our server. For this section, ensure that you have a
connection open to both machines.

Again, if not already available, install tcpdump on both boxes:

$ sudo yum install -y tcpdump
$ sudo yum install -y tcpdump

How to do it…
The NTP client/server on CentOS and other systems is chrony these days,
replacing the more traditional NTP implementations.

There's two main components, chronyc (the command-line tool) and chronyd (the
daemon, which itself can act as a client or server).

Networking and Firewalls Chapter 3

[161]

Checking if NTP is running
First, a basic check is to confirm the date is what you expect it to be, with the date
command:

$ date
Mon 13 Aug 10:05:31 UTC 2018

Note that the preceding date information is set to universal time
coordinated (UTC). This is increasingly being used as distributed
computing takes hold. Servers don't have to be locked to one
geographical region, and if you've got a thousand boxes over
multiple geographical locations, you might choose to unify their
time and manage specific differences in other software instead (such
as a web app being responsible for writing the timestamp for the
location its user is located at, for example).

To check whether chronyd itself is running, use systemctl:

$ systemctl status chronyd
● chronyd.service - NTP client/server
 Loaded: loaded (/usr/lib/systemd/system/chronyd.service; enabled;
vendor preset: enabled)
 Active: active (running) since Mon 2018-08-13 07:20:48 UTC; 2h
43min ago
 Docs: man:chronyd(8)
 man:chrony.conf(5)
 Process: 576 ExecStartPost=/usr/libexec/chrony-helper update-daemon
(code=exited, status=0/SUCCESS)
 Process: 556 ExecStart=/usr/sbin/chronyd $OPTIONS (code=exited,
status=0/SUCCESS)
 Main PID: 570 (chronyd)
 CGroup: /system.slice/chronyd.service
 └─570 /usr/sbin/chronyd

Checking if NTP traffic is flowing
To confirm that NTP traffic is actually flowing, the catchall method is to check the
port with tcpdump. NTP uses port 123, which is very easy to remember (there may
be a quiz on this).

We know that default traffic should use eth0 for communication, so that's what we'll
specify:

$ sudo tcpdump port 123 -i eth0

Networking and Firewalls Chapter 3

[162]

Soon, you should see your client trying to talk to upstream servers, asking for time
information:

10:07:33.229507 IP centos1.37284 > ntp3.wirehive.net.ntp: NTPv4,
Client, length 48
10:07:33.266188 IP ntp3.wirehive.net.ntp > centos1.37284: NTPv4,
Server, length 48
10:07:39.411433 IP centos1.49376 > 5751b502.skybroadband.com.ntp:
NTPv4, Client, length 48
10:07:39.453834 IP 5751b502.skybroadband.com.ntp > centos1.49376:
NTPv4, Server, length 48

If you've not got tcpdump installed, you can also use chronyc.

Let's see what servers we're talking to by using the chronyc sources command:

$ chronyc sources
210 Number of sources = 4
MS Name/IP address Stratum Poll Reach LastRx Last sample
==
=========
^* 85.199.214.100 1 6 377 18 +266us[+309us]
+/- 7548us
^- clocka.ntpjs.org 2 6 377 17 -126us[-126us]
+/- 37ms
^- linnaeus.inf.ed.ac.uk 3 6 377 17 -80us[-80us]
+/- 74ms
^+ 85.199.214.101 1 6 377 17 +166us[+166us]
+/- 7583us

We can get more granular information on the status of our client too by looking at the
details it knows about from its last sync. In the following example, we can see that
our time is very far off what's expected:

$ chronyc tracking
Reference ID : 5751B502 (5751b502.skybroadband.com)
Stratum : 3
Ref time (UTC) : Mon Aug 13 17:39:17 2018
System time : 26450.427734375 seconds slow of NTP time
Last offset : -0.000067056 seconds
RMS offset : 777.442565918 seconds
Frequency : 1.700 ppm slow
Residual freq : -0.120 ppm
Skew : 3.203 ppm
Root delay : 0.052811030 seconds
Root dispersion : 0.006966238 seconds
Update interval : 60.0 seconds
Leap status : Normal

Networking and Firewalls Chapter 3

[163]

Assuming that your time isn't ridiculously far out, the output may look as follows.
Here, the amount of time difference between upstream and us is negligible:

$ chronyc tracking
Reference ID : 55C7D666 (85.199.214.102)
Stratum : 2
Ref time (UTC) : Sun Aug 19 10:55:55 2018
System time : 0.000031875 seconds slow of NTP time
Last offset : -0.000032510 seconds
RMS offset : 0.003755528 seconds
Frequency : 6.102 ppm slow
Residual freq : -0.009 ppm
Skew : 3.659 ppm
Root delay : 0.014116751 seconds
Root dispersion : 0.000280226 seconds
Update interval : 64.4 seconds
Leap status : Normal

Enabling an NTP client
Assuming that your system isn't using chronyd, and its date is sliding constantly,
you can enable it manually.

The configuration file for chronyd is located at /etc/chrony.conf. The following is
the default configuration file, with the commented out sections removed:

server 0.centos.pool.ntp.org iburst
server 1.centos.pool.ntp.org iburst
server 2.centos.pool.ntp.org iburst
server 3.centos.pool.ntp.org iburst

driftfile /var/lib/chrony/drift

makestep 1.0 3

rtcsync

logdir /var/log/chrony

Once in place, if it's not already in place and running, systemd is used to maintain
the service:

$ sudo systemctl enable chronyd
$ sudo systemctl start chronyd

Networking and Firewalls Chapter 3

[164]

Do check that a rogue admin hasn't taken it upon themselves to
install openntpd, or a different daemon, to try and manage NTP.
You can check this by using the preceding tcpdump commands, or
seeing if anything is running on port 123.

Enabling an NTP server
Maybe the network you're managing is very restricted, and it takes ages to get
network changes done. In this case, you might have a pool of servers that are
designated as NTP providers for the rest of your estate.

In this case, you will need to configure chronyd to allow connections from other
clients. We'll use centos2 for the server.

On centos2, add a line to the bottom of our chrony.conf file to allow access from
our eth1 network (192.168.33.0):

$ sudo tee --append /etc/chrony.conf << HERE
allow 192.168.33.0/24
HERE

Restart chronyd with the new changes:

$ sudo systemctl restart chronyd

Now, on the system that's to be the client, centos1, perform the following steps.

First, modify our chrony.conf file by commenting out the existing server lines:

$ sudo sed -i 's/server/#server/g' /etc/chrony.conf

Next, add the required configuration directives for pointing to centos2:

$ sudo tee --append /etc/chrony.conf << HERE
server 192.168.33.11 iburst
allow 192.168.33.11
HERE

Restart chronyd on centos1:

$ sudo systemctl restart chronyd

You now have a server configured, and a client connected to it.

Networking and Firewalls Chapter 3

[165]

How it works…
NTP works in a client-server fashion, in which the client device (centos1, in our
case) asks the server device (centos2) for an accurate time reading, which it then
applies to the local machine.

When we wanted to make our own server, it was relatively trivial. On the server side,
we only needed the line stipulating which clients could sync with centos2:

allow 192.168.33.0/24

On the client side, we needed to first remove the servers it was talking to (using sed
to comment out the default pool lines), and then we added our new source-of-time as
our configured server by using the following configuration lines:

server 192.168.33.11 iburst
allow 192.168.33.11

The server option is the address (or DNS name, if configured) of our source-of-truth.
The iburst option simply makes the first few requests faster so that the sync can
happen quicker after starting.

If we start tcpdump running on centos2, after it's been configured as a server, and
then restart chronyd on centos1, we should see traffic flowing:

$ sudo tcpdump port 123 -i eth1
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on eth1, link-type EN10MB (Ethernet), capture size 262144
bytes
11:35:51.370634 IP 192.168.33.10.44912 > centos2.ntp: NTPv4, Client,
length 48
11:35:51.370965 IP centos2.ntp > 192.168.33.10.44912: NTPv4, Server,
length 48
11:35:53.394843 IP 192.168.33.10.52976 > centos2.ntp: NTPv4, Client,
length 48
11:35:53.395162 IP centos2.ntp > 192.168.33.10.52976: NTPv4, Server,
length 48
11:35:55.414496 IP 192.168.33.10.42977 > centos2.ntp: NTPv4, Client,
length 48
11:35:55.414659 IP centos2.ntp > 192.168.33.10.42977: NTPv4, Server,
length 48
11:35:57.437187 IP 192.168.33.10.45651 > centos2.ntp: NTPv4, Client,
length 48
11:35:57.437539 IP centos2.ntp > 192.168.33.10.45651: NTPv4, Server,
length 48

Networking and Firewalls Chapter 3

[166]

We can see our client machine (.10) requesting time from centos2, and then
centos2 responding on the next line.

This also works to highlight the iburst option in action. Note the
two-second differences between packet communication.

If we now take another look at chronyc tracking on the client, we should see
normal details:

$ chronyc tracking
Reference ID : C0A8210B (192.168.33.11)
Stratum : 3
Ref time (UTC) : Sun Aug 19 11:37:01 2018
System time : 0.000000264 seconds fast of NTP time
Last offset : -0.000468330 seconds
RMS offset : 0.000468330 seconds
Frequency : 6.604 ppm slow
Residual freq : -5.715 ppm
Skew : 7.044 ppm
Root delay : 0.016203152 seconds
Root dispersion : 0.000595987 seconds
Update interval : 64.2 seconds
Leap status : Normal

The preceding code may take a second to populate. If you're particularly quick off the
mark, try again in a few seconds.

You can again use the chronyc sources command to check that the client is talking
to the right server:

$ sudo chronyc sources
210 Number of sources = 1
MS Name/IP address Stratum Poll Reach LastRx Last sample
==
=========
^* 192.168.33.11 2 6 377 48 +53us[+106us]
+/- 7783us

There's more…
Sometimes, your time is out of sync, and it isn't automatically fixing itself. This can
happen if your time is simply too far away from what it should be, as most systems
refuse to do sudden and abrupt jerks.

Networking and Firewalls Chapter 3

[167]

This can be resolved by using another chrony command:

$ sudo chronyc makestep
200 OK

Be wary, though—this command can have unexpected side effects. Sometimes,
programs detect sudden jerks, and will forcibly kill themselves to avoid issues.

If you want to tell how busy your server is, you can also use serverstats on the
command line:

$ sudo chronyc serverstats
NTP packets received : 8
NTP packets dropped : 0
Command packets received : 1
Command packets dropped : 0
Client log records dropped : 0

See also
Chrony is actually a much more in-depth program than we've discussed here, and we
barely mentioned its command-line utility (chronyc), which can be used to make all
sorts of changes on the fly.

Check out the documentation pages for Chrony:

https://chrony. tuxfamily. org/ documentation. html

It's also a good idea to have a think about how you're going to set up an NTP pool, if
you find yourself in an environment requiring one. Generally, it's a rule of thumb that
you configure multiple potential servers, instead of just one (that might skew or
break). Three is better than one or two (two is quite bad, as you don't have an
agreement on what the correct time is.)

Listing firewall rules on the command line
Here, we're going to use both the newer method, firewall-cmd & ufw, for listing
firewall rules, along with the older (but still popular) method, iptables. We're going
to go into the basics of other tables within firewalls, and the storage location for rules.

https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html
https://chrony.tuxfamily.org/documentation.html

Networking and Firewalls Chapter 3

[168]

Getting ready
Connect to your centos1 VM (and ubuntu1, if desired).

Enable and start firewalld for later examples:

$ sudo systemctl enable --now firewalld

How to do it…
While most of this book can be generalized to multiple distributions, firewalls are one
area that can differ.

In the CentOS family of distributions, firewall-cmd is the common way to interact
with firewalls.

In the Ubuntu family, ufw is used instead.

Generally, iptables should work across distributions, for the foreseeable future at
least.

iptables
Typically, you want to check the running configuration of a firewall on a box. To do
this, you might use iptables -L:

$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED
ACCEPT all -- anywhere anywhere
INPUT_direct all -- anywhere anywhere
INPUT_ZONES_SOURCE all -- anywhere anywhere
INPUT_ZONES all -- anywhere anywhere
DROP all -- anywhere anywhere ctstate INVALID
REJECT all -- anywhere anywhere reject-with icmp-host-prohibited

Chain FORWARD (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED
ACCEPT all -- anywhere anywhere
FORWARD_direct all -- anywhere anywhere
FORWARD_IN_ZONES_SOURCE all -- anywhere anywhere
FORWARD_IN_ZONES all -- anywhere anywhere

Networking and Firewalls Chapter 3

[169]

FORWARD_OUT_ZONES_SOURCE all -- anywhere anywhere
FORWARD_OUT_ZONES all -- anywhere anywhere
DROP all -- anywhere anywhere ctstate INVALID
REJECT all -- anywhere anywhere reject-with icmp-host-prohibited
<SNIP>
Chain FWDO_public (3 references)
target prot opt source destination
FWDO_public_log all -- anywhere anywhere
FWDO_public_deny all -- anywhere anywhere
FWDO_public_allow all -- anywhere anywhere

Chain FWDO_public_allow (1 references)
target prot opt source destination
<SNIP>

By default, the -L option lists all chains within the default table (filter being the
default). There are five tables out of the box:

raw

filter

mangle

security

nat

We may want to list rules in the nat table, in which case this can be specified with the
-t option:

$ sudo iptables -t nat -L
Chain PREROUTING (policy ACCEPT)
target prot opt source destination
PREROUTING_direct all -- anywhere anywhere
PREROUTING_ZONES_SOURCE all -- anywhere anywhere
PREROUTING_ZONES all -- anywhere anywhere

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
OUTPUT_direct all -- anywhere anywhere

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
POSTROUTING_direct all -- anywhere anywhere
POSTROUTING_ZONES_SOURCE all -- anywhere anywhere
POSTROUTING_ZONES all -- anywhere anywhere

Networking and Firewalls Chapter 3

[170]

Chain OUTPUT_direct (1 references)
target prot opt source destination

Chain POSTROUTING_ZONES (1 references)
target prot opt source destination
POST_public all -- anywhere anywhere [goto]
POST_public all -- anywhere anywhere [goto]
POST_public all -- anywhere anywhere [goto]
POST_public all -- anywhere anywhere [goto]

Chain POSTROUTING_ZONES_SOURCE (1 references)
target prot opt source destination

Chain POSTROUTING_direct (1 references)
target prot opt source destination
<SNIP>
Chain PRE_public_log (1 references)
target prot opt source destination

A different method, and one that I tend to use first, is to print the rules on the
command line, instead of listing them (this is a subtle difference). This is done with
the -S option:

$ sudo iptables -S
-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT
-N FORWARD_IN_ZONES
-N FORWARD_IN_ZONES_SOURCE
-N FORWARD_OUT_ZONES
-N FORWARD_OUT_ZONES_SOURCE
-N FORWARD_direct
-N FWDI_public
-N FWDI_public_allow
-N FWDI_public_deny
-N FWDI_public_log
-N FWDO_public
-N FWDO_public_allow
-N FWDO_public_deny
-N FWDO_public_log
-N INPUT_ZONES
-N INPUT_ZONES_SOURCE
-N INPUT_direct
-N IN_public
-N IN_public_allow
-N IN_public_deny
-N IN_public_log
-N OUTPUT_direct

Networking and Firewalls Chapter 3

[171]

-A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -j INPUT_direct
-A INPUT -j INPUT_ZONES_SOURCE
-A INPUT -j INPUT_ZONES
-A INPUT -m conntrack --ctstate INVALID -j DROP
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -i lo -j ACCEPT
-A FORWARD -j FORWARD_direct
-A FORWARD -j FORWARD_IN_ZONES_SOURCE
-A FORWARD -j FORWARD_IN_ZONES
-A FORWARD -j FORWARD_OUT_ZONES_SOURCE
-A FORWARD -j FORWARD_OUT_ZONES
-A FORWARD -m conntrack --ctstate INVALID -j DROP
-A FORWARD -j REJECT --reject-with icmp-host-prohibited
-A OUTPUT -j OUTPUT_direct
-A FORWARD_IN_ZONES -i eth2 -g FWDI_public
-A FORWARD_IN_ZONES -i eth1 -g FWDI_public
-A FORWARD_IN_ZONES -i eth0 -g FWDI_public
-A FORWARD_IN_ZONES -g FWDI_public
-A FORWARD_OUT_ZONES -o eth2 -g FWDO_public
-A FORWARD_OUT_ZONES -o eth1 -g FWDO_public
-A FORWARD_OUT_ZONES -o eth0 -g FWDO_public
-A FORWARD_OUT_ZONES -g FWDO_public
-A FWDI_public -j FWDI_public_log
-A FWDI_public -j FWDI_public_deny
-A FWDI_public -j FWDI_public_allow
-A FWDI_public -p icmp -j ACCEPT
-A FWDO_public -j FWDO_public_log
-A FWDO_public -j FWDO_public_deny
-A FWDO_public -j FWDO_public_allow
-A INPUT_ZONES -i eth2 -g IN_public
-A INPUT_ZONES -i eth1 -g IN_public
-A INPUT_ZONES -i eth0 -g IN_public
-A INPUT_ZONES -g IN_public
-A IN_public -j IN_public_log
-A IN_public -j IN_public_deny
-A IN_public -j IN_public_allow
-A IN_public -p icmp -j ACCEPT
-A IN_public_allow -p tcp -m tcp --dport 22 -m conntrack --ctstate NEW
-j ACCEPT

The reason why this method is nicer is that it shows you the syntax
used to generate the rule in question. In a tense scenario, this type of
knowledge can save time and stress.

Networking and Firewalls Chapter 3

[172]

firewall-cmd
Firewalld (the daemon controlled by firewall-cmd) introduces the concept of zones
to the Linux firewall.

Zones are assigned to specific interfaces, with specific rules configured per zone.

You can list the currently configured zones using firewall-cmd, too:

$ sudo firewall-cmd --get-zones
block dmz drop external home internal public trusted work

To check which zone we're actively using, and on which interface, we use --get-
active-zones.

In the following code, we can see that eth0 and eth1 are using the public zone:

$ firewall-cmd --get-active-zones
public
 interfaces: eth0 eth1

eth2 is also under the public zone, but the interface is
unconfigured, thus, inactive.

Because eth0 is active under public, let's list the details of the public zone:

$ sudo firewall-cmd --list-all --zone public
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: eth0 eth1 eth2
 sources:
 services: ssh dhcpv6-client
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

Here, we can see that the services this zone is aware of are ssh and dhcpv6-client.

Networking and Firewalls Chapter 3

[173]

We can specifically list the services of a zone using --list-services:

$ sudo firewall-cmd --zone public --list-services
ssh dhcpv6-client

If we want information about exactly what that service allows, we can use --info-
service.

In the following code, we're looking at ssh, discovering that it allows port 22/tcp
through:

$ sudo firewall-cmd --info-service ssh
ssh
 ports: 22/tcp
 protocols:
 source-ports:
 modules:
 destination:

ufw
In your Ubuntu VM, ufw probably won't be enabled by default. We will enable it, but
first we're going to add a rule to make sure that we can get back in once the firewall is
up:

vagrant@ubuntu1:~$ sudo ufw allow ssh/tcp
Rule added
Rule added (v6)

You can enable it with the following command:

vagrant@ubuntu1:~$ sudo ufw enable
Command may disrupt existing ssh connections. Proceed with operation
(y|n)? y
Firewall is active and enabled on system startup

We can now see the status of our firewall by using the status verbose option:

vagrant@ubuntu1:~$ sudo ufw status verbose
Status: active
Logging: on (low)
Default: deny (incoming), allow (outgoing), disabled (routed)
New profiles: skip

To Action From
-- ------ ----

Networking and Firewalls Chapter 3

[174]

22/tcp ALLOW IN Anywhere
22/tcp (v6) ALLOW IN Anywhere (v6)

The firewall is active, and there's a 22/tcp allow rule to allow us in.

How it works…
All of the preceding examples interact with the kernel's Netfilter framework—they
just do the same thing using different tools.

When you list rules on the command line, you're querying what the kernel knows to
be the security rules for a box.

The reason you can list rules with both the iptables and firewall-cmd commands
(in the case of CentOS) is because they're only acting as userland frontends.

UFW is the same, just in the Ubuntu world.

This is the reason you find a lot of setup scripts in the wild that will remove extra
firewall tools, such as firewalld, and that simply use the iptables suite to manage
the firewall.

There's more…
If you do find yourself on a box that has firewall-cmd installed, but not the
iptables userland tool, you might find which package it's in with yum:

$ yum whatprovides iptables

In this case, iptables is the package you want to install, if you're something of a
purist.

See also
Though not yet installed by default, you may want to look into the nft and
nftables systems.

nftables is a replacement for the existing kernel framework, and nft is the
accompanying command-line tool.

Networking and Firewalls Chapter 3

[175]

Adding and removing firewall rules on the
command line
In this section, we're going to look at adding and removing example rules from our
firewall setup.

Getting ready
Ensure that firewalld is installed and started on centos1:

$ sudo systemctl enable --now firewalld

Once done, start a Python web server in the background:

$ python -m SimpleHTTPServer &> /dev/null &
[1] 2732

This should start a web server on port 8000.

Connect to centos2 and try to curl your centos1 box on port 8000. It should fail:

$ curl 192.168.33.10:8000
curl: (7) Failed connect to 192.168.33.10:8000; No route to host

If you want to work through the Ubuntu examples at the same time, log in to your
Ubuntu box.

How to do it…
We're going to use firewall-cmd, iptables, and ufw to adjust our firewall.

firewall-cmd
Our web server is listening on all interfaces (the default) and we're going to allow
connections to it through eth1.

We know that eth1 is in the default (public) zone, thanks to the previous section:

$ sudo firewall-cmd --zone public --list-all
public (active)
 target: default

Networking and Firewalls Chapter 3

[176]

 icmp-block-inversion: no
 interfaces: eth0 eth1
 sources:
 services: ssh dhcpv6-client
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

This means that we have to add another port allowance to our zone, enabling
connections to 8000/tcp.

In the following code, we're adding to our firewall configuration, but we're not
modifying the running config—we're adding the permanent option so that the rule is
loaded on a firewall reload:

$ sudo firewall-cmd --permanent --zone=public --add-port 8000/tcp

Now, we need to run the command again, without the permanent option. So that our
running configuration is modified:

$ sudo firewall-cmd --zone=public --add-port 8000/tcp

Running the --list-all option will now show your added port:

$ sudo firewall-cmd --zone public --list-all
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: eth0 eth1 eth2
 sources:
 services: ssh dhcpv6-client
 ports: 8000/tcp
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

You should be able to curl centos1 on 8000/tcp from centos2:

$ curl 192.168.33.10:8000
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>

Networking and Firewalls Chapter 3

[177]

<body>
<h2>Directory listing for /</h2>
<hr>

.bash_history
.bash_logout
.bash_profile
.bashrc
.ssh/

<hr>
</body>
</html>

If you find it easier, you can also modify the running config
primarily, and then when you're happy with it, apply the rules
using the --runtime-to-permanent option. The choice is yours.

To reverse this addition, you would swap the add-port for a remove-port, like so:

$ sudo firewall-cmd --zone=public --remove-port 8000/tcp
success

iptables
To perform the same action in iptables, we must first ensure that firewalld
doesn't interfere.

Start by disabling and stopping firewalld:

$ sudo systemctl disable --now firewalld

You should now have an empty iptables configuration, as can be seen with
iptables -S:

$ sudo iptables -S
-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT

Because we've got an empty rule list, we're going to start by adding some basic rules.

First, we're going to block centos2 and anything else on our eth1 network from
SSHing to centos1:

Networking and Firewalls Chapter 3

[178]

$ sudo iptables -A INPUT -i eth1 -p tcp -m tcp --dport 22 -j DROP

Next, we're going to allow only incoming SSH connections from 10.0.2.0/24
sources:

$ sudo iptables -A INPUT -s 10.0.2.0/24 -p tcp -m tcp --dport 22 -j
ACCEPT

Finally, we're going to change the default incoming policy from ACCEPT to DROP:

$ sudo iptables -P INPUT DROP

Because we've changed the default policy, we also need to ensure that RELATED and
ESTABLISHED connections are permitted (those connections we've initiated from our
box). This makes our firewall "stateful" or aware of the state:

$ sudo iptables -A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j
ACCEPT

Running iptables -S will display your rules:

$ sudo iptables -S
-P INPUT DROP
-P FORWARD ACCEPT
-P OUTPUT ACCEPT
-A INPUT -i eth1 -p tcp -m tcp --dport 22 -j DROP
-A INPUT -s 10.0.2.0/24 -p tcp -m tcp --dport 22 -j ACCEPT
-A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

Our configuration here is somewhat redundant, because while it
serves to show the flexibility of iptables rules, the default traffic
rule is a -P INPUT DROP, meaning that if traffic isn't accepted by
any of our other rules, it won't be let in. Our eth1 DROP line is
therefore pointless.

ufw
Prior to working with ufw in the previous section, we had to add this allow rule to let
SSH traffic in, once the firewall was enabled:

vagrant@ubuntu1:~$ sudo ufw allow ssh/tcp
Rule added
Rule added (v6)

Networking and Firewalls Chapter 3

[179]

The default ufw profile has incoming connections denied, as we can see in the
following code:

vagrant@ubuntu1:~$ sudo ufw status verbose
Status: active
Logging: on (low)
Default: deny (incoming), allow (outgoing), disabled (routed)
New profiles: skip

Because of this, if we wanted to access a web server hosted on our Ubuntu box, we'd
need a new rule.

Previously, we used the service name (ssh), so this time we're going to specifically
allow a port (80, the default HTTP port) from our VirtualBox network:

vagrant@ubuntu1:~$ sudo ufw allow from 10.0.2.0/24 to any port 80
proto tcp
Rule added

We can see this rule in action by using the status option:

vagrant@ubuntu1:~$ sudo ufw status
Status: active

To Action From
-- ------ ----
22/tcp ALLOW Anywhere
80/tcp ALLOW 10.0.2.0/24
22/tcp (v6) ALLOW Anywhere (v6)

Deleting with ufw is simple—just prefix your original rule (be it allow or deny) with
the word delete:

vagrant@ubuntu1:~$ sudo ufw delete allow from 10.0.2.0/24 to any port
80 proto tcp
Rule deleted

How it works…
Each of these examples are used to manipulate the running firewall configuration on
your box. When you use the userland tools, as with the querying examples in the last
section, you're actually modifying the Netfilter framework of the kernel.

Personally, I find it easiest to understand what's going on by using the iptables
command, though you may find yourself more comfortable with an alternative.

Networking and Firewalls Chapter 3

[180]

As we saw in the last section, if you enable firewalld or ufw, you will also find that
your default iptables rules change. Without firewalld or ufw enabled, the out-of-
the-box iptables configuration will be much simpler, as we can see in the following
lines:

$ sudo iptables -S
-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT

Whenever we modified our firewall, our changes were instantly applied.

Breaking this down, if we go back to our iptables example, we can step through
what we did:

$ sudo iptables -A INPUT -s 10.0.2.0/24 -p tcp -m tcp --dport 22 -j
ACCEPT

Here, we modify iptables using the iptables userland tool:

$ sudo iptables

We then append a rule to our INPUT chain (a chain resides within a table):

-A INPUT

We set the source of traffic as our VirtualBox subnet:

-s 10.0.2.0/24

We specify the protocol and use the extended match feature:

-p tcp -m tcp

We say that the destination port should be 22 (the SSH port):

--dport 22

Finally, we say that we should ACCEPT this traffic:

-j ACCEPT

There's more…
If you make changes with firewall-cmd or ufw, you can generally save the running
config to the persistent config at the same time.

Networking and Firewalls Chapter 3

[181]

With iptables, we want to use iptables-save to modify our saved configuration,
and ensure that it starts at boot:

$ sudo iptables-save
Generated by iptables-save v1.4.21 on Sun Aug 19 15:04:14 2018
*filter
:INPUT DROP [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [3:236]
-A INPUT -i eth1 -p tcp -m tcp --dport 22 -j DROP
-A INPUT -s 10.0.2.0/24 -p tcp -m tcp --dport 22 -j ACCEPT
-A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT
COMMIT
Completed on Sun Aug 19 15:04:14 2018

This is all fine and dandy, except it's printed the configuration to standard out instead
of saving it somewhere. Let's fix that by redirecting it to the default iptables config
location:

$ sudo iptables-save | sudo tee /etc/sysconfig/iptables

Now, to properly start this at boot, we need the iptables-services package, which
includes things such as the systemd unit files:

$ sudo yum install -y iptables-services

We can now enable iptables to start at boot:

$ sudo systemctl enable iptables

Run the systemctl restart command for iptables and ensure your configuration
is correct:

$ sudo service iptables restart
Redirecting to /bin/systemctl restart iptables.service
$ sudo iptables -S
-P INPUT DROP
-P FORWARD ACCEPT
-P OUTPUT ACCEPT
-A INPUT -i eth1 -p tcp -m tcp --dport 22 -j DROP
-A INPUT -s 10.0.2.0/24 -p tcp -m tcp --dport 22 -j ACCEPT
-A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

Firewalls can be as complex or as simple as you need them to be. It's
a good idea to start simple and make them more complex as you go.

Networking and Firewalls Chapter 3

[182]

There's also the iptables -F option, which we didn't cover in this section.

-F means flush, and it can be incredibly handy in certain situations for flushing your
firewall back to its default configuration.

However, it's worth noting that if you have your default INPUT policy set to DROP
incoming traffic, then flushing any rules that otherwise allow you access will render
your session unusable.

My default policy is DROP:

$ sudo iptables -S
-P INPUT DROP
-P FORWARD ACCEPT
-P OUTPUT ACCEPT
-A INPUT -i eth1 -p tcp -m tcp --dport 22 -j DROP
-A INPUT -s 10.0.2.0/24 -p tcp -m tcp --dport 22 -j ACCEPT
-A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

If I now flush my rules, my session locks up:

$ sudo iptables -F
$

We would now need to get to the console of the box and reinstate the rules that
allowed us access. Most of the time, this is simply a case of running the start
command of the firewall.

Determining the running services and
ports in use
In this section, we're going to use only our centos1 VM, as we determine the ports in
use on our box, and the services behind them.

Getting ready
Connect to your centos1 VM.

You should also install the lsof package for some of the examples that we will be
looking at:

$ sudo yum install -y lsof

Networking and Firewalls Chapter 3

[183]

How to do it…
When determining what's running on a server, you usually want to know if anything
is listening on for connections and on what ports.

Out of the box, socket statistics (ss) is usually available. The older program, netstat,
might be installed sometimes too, though it won't be covered here.

A good first step is to run ss -tua, which will list all TCP and UDP sockets:

$ ss -tua
Netid State Recv-Q Send-Q
Local Address:Port
Peer Address:Port
udp UNCONN 0 0
127.0.0.1:323
:
udp UNCONN 0 0
*:bootpc
:
udp UNCONN 0 0
*:bootpc
:
udp UNCONN 0 0
*:sunrpc
:
udp UNCONN 0 0
*:ntp
:
udp UNCONN 0 0
*:728
:
udp UNCONN 0 0
::1:323
:::*
udp UNCONN 0 0
:::sunrpc
:::*
udp UNCONN 0 0
:::728
:::*
tcp LISTEN 0 5
*:irdmi
:
tcp LISTEN 0 128
*:sunrpc
:

Networking and Firewalls Chapter 3

[184]

tcp LISTEN 0 128
*:ssh
:
tcp LISTEN 0 100
127.0.0.1:smtp
:
tcp ESTAB 0 0
10.0.2.15:ssh
10.0.2.2:36116
tcp LISTEN 0 128
:::sunrpc
:::*
tcp LISTEN 0 128
:::ssh
:::*
tcp LISTEN 0 100
::1:smtp
:::*

If we want to list only to ESTAB (established) connections, we can filter down using
the state directive:

$ ss -tua state established
Netid Recv-Q Send-Q Local
Address:Port
Peer Address:Port
tcp 0 0
10.0.2.15:ssh
10.0.2.2:36116

Here, we can see my SSH session from the host machine.

Say we now want to list all sockets that are listening for TCP connections:

$ ss -tl
State Recv-Q Send-Q Local
Address:Port
Peer Address:Port
LISTEN 0 5
*:irdmi
:
LISTEN 0 128
*:sunrpc
:
LISTEN 0 128
*:ssh
:
LISTEN 0 100

Networking and Firewalls Chapter 3

[185]

127.0.0.1:smtp
:
LISTEN 0 128
:::sunrpc
:::*
LISTEN 0 128
:::ssh
:::*
LISTEN 0 100
::1:smtp
:::*

Alternatively, we can do this for the UDP:

$ ss -ul
State Recv-Q Send-Q Local
Address:Port
Peer Address:Port
UNCONN 0 0
127.0.0.1:323
:
UNCONN 0 0
*:bootpc
:
UNCONN 0 0
*:sunrpc
:
UNCONN 0 0
*:ntp
:
UNCONN 0 0
*:728
:
UNCONN 0 0
::1:323
:::*
UNCONN 0 0
:::sunrpc
:::*
UNCONN 0 0
:::728
:::*

This is enough to give us a good overview of the services running, but it doesn't let us
know the ports.

Networking and Firewalls Chapter 3

[186]

ss will check against a known services list to determine the name to display. In this
example, we deliberately chose to list the listening ports, filtering out everything but
port 22, and we can see that ssh has been chosen:

$ ss -l sport = :22
Netid State Recv-Q Send-Q
Local Address:Port
Peer Address:Port
tcp LISTEN 0 128
*:ssh
:
tcp LISTEN 0 128
:::ssh
:::*

:: is the IPv6 loopback denotion, which is why it shows up here
next to one of the SSH entries.

We can check the system's services list to see what it thinks ssh should be using:

$ grep "^ssh " /etc/services
ssh 22/tcp # The Secure Shell
(SSH) Protocol
ssh 22/udp # The Secure Shell
(SSH) Protocol
ssh 22/sctp # SSH

How it works…
ss is a quick way of determining the sockets that a system is currently using, and it's
not limited to TCP or UDP, as it's also able to display Unix domain sockets (-x).

In this example, we've queried the system to find out which ports are in use, and ss
has performed some resolution work to determine what services those ports are likely
to be used by.

This is not a guarantee, however. For example, if you start a Python web server on
2222, it would list the following:

$ ss -l sport = :2222
Netid State Recv-Q Send-Q
Local Address:Port
Peer Address:Port

Networking and Firewalls Chapter 3

[187]

tcp LISTEN 0 5
*:EtherNet/IP-1
:

This is simply because as far as /etc/services is concerned, this port is used by
EtherNet/IP-1:

$ grep "^EtherNet" /etc/services
EtherNet/IP-1 2222/tcp EtherNet-IP-1 # EtherNet/IP I/O
EtherNet/IP-1 2222/udp EtherNet-IP-1 # EtherNet/IP I/O
EtherNet/IP-2 44818/tcp EtherNet-IP-2 # EtherNet/IP messaging
EtherNet/IP-2 44818/udp EtherNet-IP-2 # EtherNet/IP messaging

There's more…
An arguably better way of determining which process is using which port is to use
the lsof command. I say arguably because it's not usually installed by default,
though it is extremely handy and powerful.

If we use lsof and check for commands using port 22, we get the following list:

$ sudo lsof -i :22
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
sshd 877 root 3u IPv4 17409 0t0 TCP *:ssh (LISTEN)
sshd 877 root 4u IPv6 17479 0t0 TCP *:ssh (LISTEN)
sshd 4262 root 3u IPv4 43232 0t0 TCP
centos1:ssh->gateway:36116 (ESTABLISHED)
sshd 4265 vagrant 3u IPv4 43232 0t0 TCP
centos1:ssh->gateway:36116 (ESTABLISHED)

If you don't want to print hostnames (centos1 in the above example) and port names
(ssh above) you can use the following extra flags instead (P & n:)

$ sudo lsof -Pni :22
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
sshd 3454 root 3u IPv4 26892 0t0 TCP *:22 (LISTEN)
sshd 3454 root 4u IPv6 26894 0t0 TCP *:22 (LISTEN)
sshd 3457 root 3u IPv4 26951 0t0 TCP 10.0.2.15:22->10.0.2.2:33066
(ESTABLISHED)
sshd 3460 vagrant 3u IPv4 26951 0t0 TCP 10.0.2.15:22->10.0.2.2:33066
(ESTABLISHED)

Networking and Firewalls Chapter 3

[188]

If we have our Python web server enabled on 2222, we get this:

$ sudo lsof -i :2222
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
python 4542 vagrant 3u IPv4 45493 0t0 TCP *:EtherNet/IP-1
(LISTEN)

Notice that while the NAME is still listed as EtherNet, we know it's Python because
the COMMAND is listed as such.

Because we also have PID (4542), we can get the full command easily:

$ ps aux | grep 4542
vagrant 4542 0.0 2.0 97820 10136 pts/2 S 15:39 0:00
python -m SimpleHTTPServer 2222

Debugging with iftop
In this section, we're going to look at a member of the top family (which is quite
extensive, featuring atop, iotop, htop, and so on), which is specifically geared
toward network traffic statistics and debugging.

iftop is both handy and very readable.

Getting ready
For this section, we're going to use centos1 and centos2, connect to both in
separate windows.

Make sure that you install iftop on centos2 prior to starting. This comes from
the Extra Packages for Enterprise Linux (EPEL) repository, so we have to install that
first:

$ sudo yum install -y epel-release
$ sudo yum install -y iftop

Start iftop on centos2:

$ sudo iftop -i eth1

Networking and Firewalls Chapter 3

[189]

How to do it…
Once you've started iftop on centos2, switch to centos1 and run an ssh
command to generate some network traffic to centos2:

$ ssh 192.168.33.11
The authenticity of host '192.168.33.11 (192.168.33.11)' can't be
established.
ECDSA key fingerprint is
SHA256:GwCeJ/ObTsyKxMxzazTaYvvyY3SFgxPl6ucjPDGwmao.
ECDSA key fingerprint is
MD5:0d:41:ad:71:67:07:35:d4:59:07:de:41:bf:a4:b4:93.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.33.11' (ECDSA) to the list of
known hosts.
vagrant@192.168.33.11's password:
Last login: Sun Aug 19 15:04:49 2018 from 10.0.2.2
$

Back on centos2, you should see a brief entry in your network screen that shows
activity:

Networking and Firewalls Chapter 3

[190]

In my ssh session on centos1 (which is now connected to centos2), I've started top
to generate a stream of traffic.

At the bottom of your window, you will see the following values:

TX

RX

TOTAL:

These values are total traffic transferred, received, and total.

To the right we have the rates averaged over 2, 10, and 40 seconds.

Clicking back to centos1 and stopping, then starting top, will cause the RX values to
rise, as you've sent keystrokes over the connection.

At the top of the window, you can see a visual representation of the traffic:

This displays traffic sent back to 192.168.33.10 (centos1) and the traffic received
in a somewhat readable format.

The scale for the transfer rate is at the top, and varies depending on quantity.

In a real-world scenario, this type of information can be invaluable,
as it offers an at-a-glance way of seeing who might be hammering
your server.

Networking and Firewalls Chapter 3

[191]

If we swap to watching eth0 traffic, then restart chronyd, we can see more servers
being connected to:

How it works…
Like tcpdump, iftop listens to the traffic on the interface you specify, or the default if
you don't specify one.

It then prints the bandwidth usage by the host, giving a good visual representation of
the network on your box.

There's more…
iftop offers a lot of options, and a peruse of the manual page is worth considering.
Simple things like using -n to disable hostname lookups can be handy, or changing
how the bandwidth rates are displayed.

Networking and Firewalls Chapter 3

[192]

You can even print a text-only version to stdout using the -t flag:

$ sudo iftop -i eth1 -t
interface: eth1
IP address is: 192.168.33.11
MAC address is: 08:00:27:f1:e9:56
Listening on eth1
 # Host name (port/service if enabled) last 2s last 10s
last 40s cumulative
--

 1 centos2 => 35.7Kb 35.7Kb
35.7Kb 8.91KB
 192.168.33.10 <= 416b 416b
416b 104B
--

Total send rate: 35.7Kb 35.7Kb
35.7Kb
Total receive rate: 416b 416b
416b
Total send and receive rate: 36.1Kb 36.1Kb
36.1Kb
--

Peak rate (sent/received/total): 35.7Kb 416b
36.1Kb
Cumulative (sent/received/total): 8.91KB 104B
9.02KB
==
=======================

Summary
In this chapter, we took a look at networking and firewalls in the Linux world. I hope
it didn't hurt your head too much, because it certainly causes me some pain.

As I alluded to earlier, networking and firewall configuration can be as complex or as
simple as you want it to be, and in the ever-growing world of single-use servers,
we're seeing simpler and simpler configurations in the wild.

Where you tend to find problems are around the concepts of multiple networks and
multi-homed servers, because flat network structures are a lot easier to understand
for the average person (myself included).

Networking and Firewalls Chapter 3

[193]

You also don't have to do everything with Linux.

Yes, Linux can act as a border firewall for an estate, but you could also use F5 devices,
or Check Point boxes.

Yes, Linux can act as a router, but you're much more likely to see a Cisco or a Juniper
device in the network cabinet.

These solutions have their positives, as well as their negatives.

A simple positive is that a purpose-built appliance is generally very good at the thing
it was purpose-built for, and the tools to manage it are pretty much uniform in their
approach (rather than the sometimes-mash we get in the Linux world).

An obvious negative is that it either means you have to learn the technology stack of
the device you're incorporating into your network, or you have to hire a purpose-
built-person to manage the solution for you, costing time and money.

Networking seems to be something that you either like or dislike, and I fall firmly in
the latter camp. In theory, networks and firewalls "just work" once they're set up, but
in practice that means the edge case problems are much more difficult to track down
and correct when they do, inevitably, happen.

One final thing to mention—because I guarantee you'll have to deal with it at some
point in your professional career—is the problem of locking yourself out.

It happens.

When it does, don't beat yourself up about it. Literally every engineer I've ever
worked with has locked themselves out of a box once, either through a misconfigured
firewall rule, or a silly mistake such as changing the SSH port without first updating
the SELinux configuration.

If you lock yourself out and you have access to a console, either a remote Keyboard
Video Mouse system or something like a cloud provider's web-based Terminal, you're
usually fine—it just means logging in and correcting your mistake.

If you lock yourself out and the system is on the other side of the city, or country,
you've got two options:

Hop into your car and resign yourself to a long drive there and back.1.
Contact the remote engineer and prostrate yourself before them, admitting2.
your error and begging them to find a crash cart to resolve your mishap.

Networking and Firewalls Chapter 3

[194]

If you choose option two, buying them a beverage of their choice the next time you
meet is more than agreeable.

I have been both the remote engineer tasked with fixing someone
else's mistake, and the person making the mistake. As I said, it
happens to us all.

4
Services and Daemons

The following topics will be covered in this chapter:

Determining running services
Listing installed services
Starting and stopping services
Changing which services start and stop at boot
Common services you might expect to see
Understanding service unit files
Customizing systemd unit files
Testing running services
Writing a basic unit file
Working with systemd timers (and cron)
Other init systems

Introduction
systemd (stylized lowercase) is a hydra.

In the old world, we had one piece of software for each little thing we wanted to do
on a system. Time was handled by NTP, devices were handled by udev, and init was
generally handled by SysV Init.

In the new world, we have systemd:

System clock management can be handled by systemd-timesyncd.
udev was merged into the systemd code base, forming systemd-udevd.
Process initialization is handled by the core of systemd itself.

The list goes on.

Services and Daemons Chapter 4

[196]

Generally, systemd has been adopting other projects, or writing the same
functionality into implementations of their own (such as systemd-timesyncd which is
an NTP replacement.) However, the systemd suite is also modular, meaning that
distributions can broadly choose which bits to adopt and use.

For us, the important job that systemd does is replace the traditional init system on
distributions (CentOS, Debian, and Ubuntu all use systemd now). This means that
first and foremost, systemd manages services and daemons on your box.

systemd is the first process, meaning it will often be assigned the
first process ID (PID). All other processes have systemd as a parent.

In this chapter, we're going to work with the init component of systemd, learn about
unit files, and determining the running state of our system.

Previously, this chapter could have been much longer. Prior to systemd dominating
each and every mainstream distribution, fragmentation existed. Canonical wrote
something called Upstart for Ubuntu (which was temporarily adopted by Red Hat),
and more traditional distributions had a hard time letting go of the SysV init style of
daemon management. Even today, you'll find systems that use older implementations
in the wild:

CentOS adopted systemd with version 7
Ubuntu adopted systemd with 15.04
Debian adopted systemd with Jessie (8)

If Canonical wrote Upstart, you might be wondering why they went
with systemd in the end. This was mainly due to Debian adopting
systemd, after something of a civil war internally, and Ubuntu
conceding that they would have an easier time of it if they remained
aligned with their upstream distribution. The war was not without
bitter battles on both sides and some ripples can still be felt.

Technical requirements
For this chapter, a different Vagrantfile is needed.

Services and Daemons Chapter 4

[197]

Feel free to use the following example if required—be sure to destroy any previous
boxes to free up resources:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.define "centos1" do |centos1|
 centos1.vm.box = "centos/7"
 centos1.vm.network "private_network", ip: "192.168.33.10"
 centos1.vm.hostname = "centos1"
 centos1.vm.box_version = "1804.02"
 end

 config.vm.define "centos6" do |centos6|
 centos6.vm.box = "centos/6"
 end

 config.vm.define "debian7" do |debian7|
 debian7.vm.box = "debian/wheezy64"
 end

end

Determining running services
Whenever you get to a box, especially one you're unsure of (that's been tucked in the
back of a cupboard somewhere blinking to itself), it's a good idea to find out what
software is running on it.

On modern systems (2013-ish plus), this is accomplished with the systemctl
command.

systemctl is the main control mechanism for any systemd system—literally "system
control". Think of it as the human frontend to your initialization software (the first
software to run on your box, which manages all others), allowing you to modify and
investigate the running state of your computer.

Not only that, in the Unix/Linux world everything is a file; your network connections
are a file, your programs are a file, your devices are a file, and because of this you can
control everything, just by modifying files.

But that gets tedious fast.

Services and Daemons Chapter 4

[198]

systemctl saves you the headache of manually shuffling files around your system
by wrapping functionality in simple commands and printing the results in a human-
readable way.

How to do it…
At the command line, type the following:

$ systemctl

You should be dropped into a list of systemd units; this is a good initial overview of
every unit systemd is aware of, but it's very noisy (as seen in the following
screenshot) and what we specifically want to see are daemons (because of our gothic
streak):

Services and daemons are somewhat interchangeable in Linux land;
for example, systemd refers to daemons as service files. This
doesn't stop some people from getting passionately angry about
"proper usage".

Try the following:

$ systemctl list-units --type service

Services and Daemons Chapter 4

[199]

You should be given a list of services and their statuses.

This view is better, but it also shows failed and exited services, for example, on our
Vagrant instance, we should see the following:

If I want to exclude these, I can use the following command:

$ systemctl list-units --type service --state running

Now we get a much more condensed list, with 17 items in total:

UNIT LOAD ACTIVE SUB DESCRIPTION
auditd.service loaded active running Security Auditing
Service
chronyd.service loaded active running NTP client/server
crond.service loaded active running Command Scheduler
dbus.service loaded active running D-Bus System Message
Bus
getty@tty1.service loaded active running Getty on tty1

Services and Daemons Chapter 4

[200]

gssproxy.service loaded active running GSSAPI Proxy Daemon
lvm2-lvmetad.service loaded active running LVM2 metadata daemon
NetworkManager.service loaded active running Network Manager
polkit.service loaded active running Authorization Manager
postfix.service loaded active running Postfix Mail Transport
Agent
rpcbind.service loaded active running RPC bind service
rsyslog.service loaded active running System Logging Service
sshd.service loaded active running OpenSSH server daemon
systemd-journald.service loaded active running Journal Service
systemd-logind.service loaded active running Login Service
systemd-udevd.service loaded active running udev Kernel Device
Manager
tuned.service loaded active running Dynamic System Tuning
Daemon

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of
SUB.
SUB = The low-level unit activation state, values depend on unit
type.

17 loaded units listed. Pass --all to see loaded but inactive units,
too.
To show all installed unit files use 'systemctl list-unit-files'.

You can get rid of the helpful-but-noisy header and footer notes
with the --no-legend option to systemctl.

How it works…
In this section, we're using the systemctl command to query systemd.

We'll get gradually more granular with our requests, until we've eventually built a
query that shows us only what we want to see, that being services that are running
right-this-second.

There's an argument to be made for using pipes and grep to accomplish what you
want and, depending on your preference, you may find one of these two commands
neater than the other, though they accomplish roughly the same thing:

$ systemctl --no-pager | grep service | grep running | column -t

Services and Daemons Chapter 4

[201]

In the previous, we're first printing the default "all" list from systemctl, then we're
passing it through grep a couple of times to filter what we want, and finally we're
displaying it in a mostly-readable fashion with a column.

$ systemctl list-units --type service --state running --no-legend

Here, we're using one command to get a slightly prettier output than the previous,
and we're only using one command to do it.

There's more…
As with services that're loaded and running, you may be interested in services that
have loaded, done whatever job they were intended for, and then exited:

$ systemctl list-units --type service --state exited

Or perhaps you're interested in services that have failed? Try the following:

$ systemctl list-units --type service --state failed

Lastly, systemd will use a pager by default to display results, which
while human-friendly, isn't great for scripts. To simply print the
output of your command to stdout, add --no-pager to your
command.

See also
Typically, querying the init system is the best way to determine what services are
running on a box, though if you're running something outside of init, such as a
background task started by cron, you might have better look with ps or top, which
we'll cover later.

Listing installed services
In this section, we're going to look at how to list services that are installed, but will
never run on your host, generally because they're not enabled to do so.

Services and Daemons Chapter 4

[202]

Getting ready
Connect to your centos1 VM.

$ vagrant ssh centos1

How to do it…
Run the following as your user:

$ systemctl list-unit-files --type service

By default, you'll be dropped into a typically long list of services. A lot of these will
be listed as static, some will be enabled, and others will be disabled.

As far as systemd is concerned, this is a list of all services it knows about on your
system.

How it works…
We are again querying systemd using systemctl, only this time instead of printing
running services, we're getting everything that the init system is aware of.

Service files, and indeed all other types of unit file, generally exist in
/usr/lib/systemd/system. From this location, files are symlinked into the
runlevel directories at /etc/systemd/system/.

As seen in the following, we're going to ls this directory:

$ ls -la /etc/systemd/system
total 8
drwxr-xr-x. 13 root root 4096 May 12 2018 .
drwxr-xr-x. 4 root root 151 May 12 2018 ..
drwxr-xr-x. 2 root root 32 May 12 2018 basic.target.wants
lrwxrwxrwx. 1 root root 46 May 12 2018 dbus-
org.freedesktop.NetworkManager.service ->
/usr/lib/systemd/system/NetworkManager.service
lrwxrwxrwx. 1 root root 57 May 12 2018 dbus-org.freedesktop.nm-
dispatcher.service -> /usr/lib/systemd/system/NetworkManager-
dispatcher.service
lrwxrwxrwx. 1 root root 37 May 12 2018 default.target ->
/lib/systemd/system/multi-user.target
drwxr-xr-x. 2 root root 87 May 12 2018 default.target.wants

Services and Daemons Chapter 4

[203]

drwxr-xr-x. 2 root root 38 May 12 2018 dev-virtio\x2dports-
org.qemu.guest_agent.0.device.wants
drwxr-xr-x. 2 root root 32 May 12 2018 getty.target.wants
drwxr-xr-x. 2 root root 35 May 12 2018 local-fs.target.wants
drwxr-xr-x. 2 root root 4096 May 12 2018 multi-user.target.wants
drwxr-xr-x. 2 root root 48 May 12 2018 network-online.target.wants
drwxr-xr-x. 2 root root 31 May 12 2018 remote-fs.target.wants
drwxr-xr-x. 2 root root 51 May 12 2018 sockets.target.wants
drwxr-xr-x. 2 root root 217 May 12 2018 sysinit.target.wants
drwxr-xr-x. 2 root root 44 May 12 2018 system-update.target.wants

Note we have a few targets, which are basically the different runlevels of a system;
most of the day-to-day services you'll interact with live in multi-
user.target.wants, which are basically the services required for a multi-user
session (the typical mode of operation).

Running ls again in this sub-directory reveals the symlinks mentioned earlier and
their location on disk:

$ ls -la /etc/systemd/system/multi-user.target.wants/
total 8
drwxr-xr-x. 2 root root 4096 May 12 2018 .
drwxr-xr-x. 13 root root 4096 May 12 2018 ..
lrwxrwxrwx. 1 root root 38 May 12 2018 auditd.service ->
/usr/lib/systemd/system/auditd.service
lrwxrwxrwx. 1 root root 39 May 12 2018 chronyd.service ->
/usr/lib/systemd/system/chronyd.service
lrwxrwxrwx. 1 root root 37 May 12 2018 crond.service ->
/usr/lib/systemd/system/crond.service
lrwxrwxrwx. 1 root root 42 May 12 2018 irqbalance.service ->
/usr/lib/systemd/system/irqbalance.service
lrwxrwxrwx. 1 root root 46 May 12 2018 NetworkManager.service ->
/usr/lib/systemd/system/NetworkManager.service
lrwxrwxrwx. 1 root root 41 May 12 2018 nfs-client.target ->
/usr/lib/systemd/system/nfs-client.target
lrwxrwxrwx. 1 root root 39 May 12 2018 postfix.service ->
/usr/lib/systemd/system/postfix.service
lrwxrwxrwx. 1 root root 40 May 12 2018 remote-fs.target ->
/usr/lib/systemd/system/remote-fs.target
lrwxrwxrwx. 1 root root 46 May 12 2018 rhel-configure.service ->
…

These services are all enabled to start in a multi-user session.

Services and Daemons Chapter 4

[204]

There's more…
The concept of enabled and disabled is relatively easy to understand, those states
being that the service will either try to run or it won't.

static is something different; this is the terminology used when a unit file exists,
isn't enabled, but has no ability to become enabled, owing to a missing [Install]
section of its unit file.

We can list these services with the following line:

$ systemctl --no-pager list-unit-files --type service --state static

Taking a service at random (sshd-keygen), we can have a look at its service file like
so:

$ systemctl cat sshd-keygen.service

Using systemctl's cat option is great, as it also shows you the
location of the unit file in question.

We get the following:

/usr/lib/systemd/system/sshd-keygen.service
[Unit]
Description=OpenSSH Server Key Generation
ConditionFileNotEmpty=|!/etc/ssh/ssh_host_rsa_key
ConditionFileNotEmpty=|!/etc/ssh/ssh_host_ecdsa_key
ConditionFileNotEmpty=|!/etc/ssh/ssh_host_ed25519_key
PartOf=sshd.service sshd.socket

[Service]
ExecStart=/usr/sbin/sshd-keygen
Type=oneshot
RemainAfterExit=yes

From this file, we can see it has a PartOf definition, suggesting it's run as part of the
sshd service.

Taking a look at that service (again using systemctl cat) reveals the following:

/usr/lib/systemd/system/sshd.service
[Unit]
Description=OpenSSH server daemon

Services and Daemons Chapter 4

[205]

Documentation=man:sshd(8) man:sshd_config(5)
After=network.target sshd-keygen.service
Wants=sshd-keygen.service

[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/sshd
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s

[Install]
WantedBy=multi-user.target

We can see the Wants section here, suggesting sshd-keygen is run when sshd starts.

This explains why it doesn't have to be enabled on its own.

See also
As with most components on a Linux system, the systemctl command has a man
page.

In this man page, you'll find a table titled is-enabled output where you can learn
more about the different terminology printed with your status commands.

We have one service of the indirect state, which the table lists as having the
following meaning:

"The unit file itself is not enabled, but it has a non-empty Also= setting in the
[Install] unit file section, listing other unit files that might be enabled, or it has an
alias under a different name through a symlink that is not specified in Also=. For
template unit file, an instance different than the one specified in DefaultInstance= is
enabled."

Starting and stopping services
In this section, we're going to look at the trivial-but-important aspect of starting and
stopping services.

Services and Daemons Chapter 4

[206]

Imagine a world without the ability to automatically start daemons when a box boots;
you'd have to manually go in and start your services with every reboot, being careful
to ensure you start your services in the appropriate way each time.

That world, like one dominated by the Stargate Replicators, isn't one in which I'd
want to live.

How to do it…
We're going to use postfix in this example, as it's a service that won't be doing
much of anything on our VM.

postfix is a Mail Transport Agent (MTA) typically installed on
CentOS boxes. Even if your box isn't handling email, processes
might use it to email you warning about failures and things of that
ilk.

Stopping our service
Run the following (using sudo):

$ sudo systemctl stop postfix
$

Note the distinct lack of output confirming or denying what you've typed has
worked.

Starting our service
As with stopping our service, starting it again is trivial:

$ sudo systemctl start postfix
$

Note again the confusing silence.

Silence upon command completion isn't unique to systemd, and it's
actually something of a philosophy in the Unix and Unix-like world.
If a command has done what it's supposed to, the user doesn't need
to be told.

Services and Daemons Chapter 4

[207]

How it works…
When you instruct systemd to start or stop a unit, what you're actually doing is
running the ExecStart or ExecStop portions of its unit file.

Taking postfix as our example, its unit file looks like this:

/usr/lib/systemd/system/postfix.service
[Unit]
Description=Postfix Mail Transport Agent
After=syslog.target network.target
Conflicts=sendmail.service exim.service

[Service]
Type=forking
PIDFile=/var/spool/postfix/pid/master.pid
EnvironmentFile=-/etc/sysconfig/network
ExecStartPre=-/usr/libexec/postfix/aliasesdb
ExecStartPre=-/usr/libexec/postfix/chroot-update
ExecStart=/usr/sbin/postfix start
ExecReload=/usr/sbin/postfix reload
ExecStop=/usr/sbin/postfix stop

[Install]
WantedBy=multi-user.target

Here we can see that, when we issue a systemctl start postfix command, it's
literally running the postfix binary with the start option. The opposite is true for
stop.

We also have some ExecStartPre lines, which are commands executed before the
main ExecStart command is run.

There's more…
Without sudo, you may be prompted to authenticate as root; in order that the
command might be run as root, I typically see this dialogue when I forget to sudo
first:

==== AUTHENTICATING FOR org.freedesktop.systemd1.manage-units ===
Authentication is required to manage system services or units.
Authenticating as: root
Password:

Services and Daemons Chapter 4

[208]

You can also confirm whether a service is started or stopped quickly with the status
argument:

$ systemctl status postfix
● postfix.service - Postfix Mail Transport Agent
 Loaded: loaded (/usr/lib/systemd/system/postfix.service; enabled;
vendor preset: disabled)
 Active: inactive (dead) since Sun 2018-08-26 13:43:46 UTC; 2min 56s
ago

See also
For more on the ExecStart and ExecStop options of the unit file you're reading,
check out the specific systemd.service man page on the subject.

There's also various other options that aren't start and stop, including reload-or-
try-restart just to confuse matters. See the systemctl command for these
options.

Changing which services start and stop
at boot
In the CentOS world, installing a new service doesn't immediately start and enable it,
though it does in the Debian world (a default that, again, has its advocates and
disparagers).

In this example, we're going to enable a new service and reboot our VM, checking
what happens when it comes up.

Getting ready
Connect to your centos1 VM. Install httpd (Apache) for these examples:

$ sudo yum install -y httpd

Services and Daemons Chapter 4

[209]

How to do it…
First, let's see if we actually have a unit file for httpd:

$ systemctl cat httpd
/usr/lib/systemd/system/httpd.service
[Unit]
Description=The Apache HTTP Server
After=network.target remote-fs.target nss-lookup.target
Documentation=man:httpd(8)
Documentation=man:apachectl(8)

[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/httpd
ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND
ExecReload=/usr/sbin/httpd $OPTIONS -k graceful
ExecStop=/bin/kill -WINCH ${MAINPID}
We want systemd to give httpd some time to finish gracefully, but
still want
it to kill httpd after TimeoutStopSec if something went wrong during
the
graceful stop. Normally, Systemd sends SIGTERM signal right after
the
ExecStop, which would kill httpd. We are sending useless SIGCONT
here to give
httpd time to finish.
KillSignal=SIGCONT
PrivateTmp=true

[Install]
WantedBy=multi-user.target

We have one, and now we need to see what state it's currently in:

$ systemctl status httpd

Our output lists the service as inactive and disabled.

Enabling our service
If we just want to start our service, we could run the command listed in the previous
section, but this wouldn't enable the service at boot.

Services and Daemons Chapter 4

[210]

To enable our service, we run enable, surprisingly:

$ sudo systemctl enable httpd
Created symlink from /etc/systemd/system/multi-
user.target.wants/httpd.service to
/usr/lib/systemd/system/httpd.service.

Note that, for some reason, we do get output while enabling services.

Reboot your box and see whether httpd started on boot by using the systemctl
status command.

Disabling our service
Now we've got httpd enabled, we're going to disable it again, because that's just the
sort of people we are:

$ sudo systemctl disable httpd
Removed symlink /etc/systemd/system/multi-
user.target.wants/httpd.service.

How it works…
Seen in the output when we're disabling and enabling our services, what we're
actually doing is creating a symlink from the default location of our httpd unit file,
to the multi-user.target.wants directory, mentioned previously.

On boot, systemd will check this directory at the appropriate time and start the
services it finds there.

There's more…
Starting and enabling services at the same time is perfectly possible and is definitely
preferable to rebooting a box to change a service's state.

This can be done easily by inserting --now to our enable command:

$ systemctl enable --now httpd

Services and Daemons Chapter 4

[211]

Effectively, we've run the following on one line:

$ systemctl enable httpd
$ systemctl start httpd

See also
The systemd concept of targets is similar in nature to the old-school runlevel that
you may or may not be familiar with. It's not a direct comparison, as systemd can
activate multiple targets at the same time, whereas runlevels were singular. The
multi-user.target is roughly equivalent to runlevels 2, 3, and 4.

See the systemd.target man page for more information.

Common services you might expect to
see
In this section, we're going to run down a list of common services you might expect to
see on a given box. This list won't be comprehensive, as what services are there by
default can change, even between distribution releases.

How to do it…
List out the services on our system, even those that are static and disabled:

$ systemctl list-unit-files --type service

Scroll through the list, searching with / if you're using the default pager (less).

auditd.service
Starting at the top, we have auditd.service, "the Linux audit daemon". Used to
write the audit records of your system, you'll find the fruit of its work in the
/var/log/audit/ directory.

Services and Daemons Chapter 4

[212]

chronyd.service
As discussed when we talked about time on our system, chronyd is responsible for
keeping your system clock correct. I would expect to see this, or ntpd, running on
most servers in the wild.

crond.service
Not to be confused with chronyd, crond is the daemon responsible for making sure
that scheduled commands are run when they're supposed to be.

lvm2-*.service
The collection of lvm2 service files are used to maintain and monitor Logical Volume
Manager (LVM) setups. Most servers you'll come across will probably be using LVM
for their filesystem and volume management needs.

NetworkManager.service
We've covered networks to death, but it's useful to know that the
NetworkManager.service file is one of the annoying few with uppercase letters.

This fact has caught me out on more than one occasion.

nfs.service
Typically installed, the nfs suite of services are for management of Network File
System (NFS) devices.

NFS is still in wide use and is very well maintained by distribution producers,
meaning even if you don't use it, it'll probably be there.

postfix.service
A typical MTA, postfix is the default you'll see on Red Hat, CentOS, and Fedora
systems. On others, it might be the Exim mail server. We'll be going over these briefly
later.

Services and Daemons Chapter 4

[213]

rsyslog.service
Either rsyslog or syslog-ng will probably be installed on your server, at least for
the foreseeable future. These are the system log daemons, responsible for writing logs
to text files in /var/log (usually). They've got a competitor in binary-log-loving
journald, which we'll come to later.

sshd.service
I should hope to see sshd.service running on any system I'm connected to,
otherwise I have no idea what baffling method I've used to connect.

systemd-journald.service
The competitor to syslog mentioned previously, journald is the logging daemon
managed by systemd, and which can be queried using an array of syntactical soup on
the command line.

systemd-logind.service
Another from systemd Borg, logind manages user logins to the systems of which
you're an administrator.

How it works…
These services, and any others you might be running on your machine, make up what
is effectively the OS you're running.

If you're like me, you may find yourself playing around with this list in your spare
time, trying to figure out which bits you can disable, and still have a functioning
system at the end.

My advice would generally be to leave the defaults as they are, because you never
know what random job is cleaning a temporary directory for you without you even
realizing it.

Services and Daemons Chapter 4

[214]

Default services are frequently disabled as part of hardening tasks;
if you ever find yourself having to harden a system, the usual rules
apply. Look into what the current best practices are, and see if your
vendor has a ready-made guide.

There's more…
We can use handy tools such as systemd-analyze to see how long our system took
to boot:

$ systemd-analyze
Startup finished in 253ms (kernel) + 933ms (initrd) + 6.873s
(userspace) = 8.060s

8 seconds isn't bad, excluding the time it takes VirtualBox to initialize our VM and the
time it takes the kernel to start (5 seconds on the Grub boot menu).

You can even run this command with blame tacked on the end, to see what process is
taking your precious seconds from you:

$ systemd-analyze blame
 3.811s NetworkManager-wait-online.service
 806ms tuned.service
 680ms postfix.service
 490ms lvm2-monitor.service
 ...

See also
Check out other systems for what services they start by default. For example, Ubuntu
on the desktop might not start auditd, but it will probably have gdm to ensure a
Gnome login window when you boot your machine.

Understanding service unit files
We now have a good idea of where to find service unit files, as well as how to enable
and disable services.

Services and Daemons Chapter 4

[215]

Previously, we touched on a couple of the entries within a unit file, though we
haven't gone into much depth on these options or where to find more information
and alternative entries you might want to use.

How to do it…
We're going to use sshd.service as an example here, not just because it's a service
file you might see a lot, but because it has a good mixture of default entries.

cat our chosen service:

$ systemctl cat sshd.service
/usr/lib/systemd/system/sshd.service
[Unit]
Description=OpenSSH server daemon
Documentation=man:sshd(8) man:sshd_config(5)
After=network.target sshd-keygen.service
Wants=sshd-keygen.service

[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/sshd
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s

[Install]
WantedBy=multi-user.target

To understand this file, we have to break it down into its component parts.

Sort of the Main section of the unit file, [Unit] is the area for generic entries, not
specific to the Service type:

[Unit]

For the description, we have a short and snappy entry that can be understood at a
glance:

Description=OpenSSH server daemon

Services and Daemons Chapter 4

[216]

We also have a handy line, detailing the appropriate URI location to peruse if you get
stuck. Here we have man: as the URI, but it could be https:// or even info:::

Documentation=man:sshd(8) man:sshd_config(5)

info: refers to information pages, like man pages, but more widely
ridiculed. After= (and Before=) is a space-separated list of unit names, which
stipulates the services that need to start after (or before) this one. Here the network
needs to be started, and ssh-keygen needs to run prior to sshd starting:

After=network.target sshd-keygen.service

We dissected Wants= earlier, but to flesh it out a bit, you'll commonly see Wants= in
unit files, listing services which it would be nice to trigger, prior to this service
starting:

Wants=sshd-keygen.service

Wants= is a less-mandated version of Requires=. If a Wants=
service fails to start, the parent service will still give it a try, if a
Requires= service fails, the parent doesn't either.

Specific to unit files of the service type, the [Service] block is specific to service
options, perhaps obviously:

[Service]

The process start up type, notify here means systemd expects the daemon to send a
notification message once it's finished starting up. Only when this notification is
received will systemd continue starting services that depend on this one:

Type=notify

Used to point the service to the file that contains its environment variables,
for sshd this contains one option on our box, OPTIONS="-u0":

EnvironmentFile=/etc/sysconfig/sshd

The crux of what's run when the service is started, ExecStart gives us the command
that's run. Note also the $OPTIONS value, read from the file stipulated on
the EnvironmentFile line:

ExecStart=/usr/sbin/sshd -D $OPTIONS

Services and Daemons Chapter 4

[217]

This section tells systemd what should be run if the systemctl reload
sshd command is run. Specifically, we're sending the HUP (hangup) signal to
the sshd PID:

ExecReload=/bin/kill -HUP $MAINPID

This directive specifies how processes of the unit's own creation are to be
killed. process here means only the main process itself is killed by systemd:

KillMode=process

Here, KillMode is being used, but ExecStop isn't. This is because
ExecStop is optional, and generally only used if the init daemon
has a specific cleanup job to do.

Our Restart option tells systemd how the process is to be restarted. on-
failure used here means sshd will be restarted on an unclean exit code, an unclean
signal, a timeout, or if the watchdog timeout for a service is breached:

Restart=on-failure

RestartSec is the specified time to take before restarting the sshd service, following
the Restart= criteria being met. I'd imagine it's 42 seconds here because the author
of the unit file is a fan of Douglas Adams:

RestartSec=42s

Install is another generic section, such as [Unit]. This section holds the installation
information for the unit file, meaning it's read by the enable and disable directives
when run:

[Install]

The only directive here is that this service is WantedBy the multi-user target, meaning
that, in multi-user mode, sshd will be started:

WantedBy=multi-user.target

How it works…
When a service file is interacted with by systemd, the section of the file it reads
determines its actions.

Services and Daemons Chapter 4

[218]

If starting a service, ExecStart would be read—if stopping, ExecStop.

There's more…
Several options are available to the writer of a unit file and more are being added
with every systemd release. There's a good chance that the operation you want to
accomplish can be achieved with a unit file entry.

Despite the overwhelming array of options available to unit file
authors, you still get people who insist on writing a bash script to do
everything, and simply referring to this in a four-line unit file. It's
possible, but it's not neat.

See also
If you have a free afternoon, give the systemd.service and systemd.unit manual
pages a read; they're both lengthy and a good sedative in lieu of sleeping tablets.

Customizing systemd unit files
In this section, we're going to look at ways we can modify systemd unit files.

There's an important note to make here, which is that, while you can absolutely
modify configuration files as they're delivered, there's no guarantee that your changes
will be persistent across updates of your system. Package managers might take
offence to your mangling of their service files, and simply replace them without
warning.

The correct way to modify the actions of systemd unit files is to write a whole other
file with your changes included.

systemd's method for doing this is called a snippet.

How to do it…
systemd has a built-in way of generating the required override file we need.

Services and Daemons Chapter 4

[219]

Create the directory and file for the sshd.service unit using the following
command:

$ sudo systemctl edit sshd.service

You will be placed in an empty file, but one that exists within a new directory,
namely /etc/systemd/system/sshd.service.d/override.conf.

Copy the following into our empty file:

[Unit]
Description=OpenSSH server daemon slightly modified
Documentation=man:ssh-additional
Requires=sshd-keygen.service

[Service]
Environment=OPTIONS="-u0"
ExecStart=
ExecStart=/usr/sbin/sshd -4 -D $OPTIONS
RestartSec=10s

When we save and exit the file, an implicit systemctl daemon-reload is run,
meaning that when we run a systemctl restart sshd, our new settings are
enabled.

How it works…
We said our edit command created a new directory and file, in which override
commands can be placed; you can now visit this by changing to it:

$ cd /etc/systemd/system/sshd.service.d/
$ ls
override.conf

Within our override file, our new entries are stored. These entries generally
complement those in the primary configuration file.

Breaking our new configuration down, we have the following:

[Unit]
Description=OpenSSH server daemon slightly modified
Documentation=man:ssh-additional
Requires=sshd-keygen.service

Services and Daemons Chapter 4

[220]

Here we've added a short description of what the file is, showing it's slightly
modified. There's a fake manual page entry, which we've suggested might be a good
place for documentation when we get around to writing it. We also changed the
service so that it now requires sshd-keygen, instead of just wanting it.

Now, we change the service section:

[Service]
EnvironmentFile=
Environment=OPTIONS="-u0"
ExecStart=
ExecStart=/usr/sbin/sshd -4 -D $OPTIONS
RestartSec=10s

Here we're adding our Environment directive, instead of using an
EnvironmentFile (which we've blanked).

We're blanking ExecStart too, and passing in our own (which we've added -4) to.

And because we're boring, we've decided we want sshd to restart in 10 seconds,
instead of 42.

There's more…
It's not always obvious which values can be stacked atop one another, and which
have to be blanked out first.

To test whether your configuration is being loaded correctly, use systemctl show
sshd to read the running configuration of your service.

Within the output, I find the following line (Documentation can stack, so our new
entry just gets added to the end.):

Documentation=man:sshd(8) man:sshd_config(5) man:ssh-additional

Description is overwritten, as you can only have one entry, so ours takes
precedence:

Description=OpenSSH server daemon slightly modified

Services and Daemons Chapter 4

[221]

There's no EnvironmentFile option, and the only entry is our Environment line:

Environment=OPTIONS="-u0"

There's only one ExecStart line, and it's ours as we blanked the original:

ExecStart={ path=/usr/sbin/sshd ; argv[]=/usr/sbin/sshd -4 -D $OPTIONS
...

See also
There's another method to making your own unit file changes, but it's messier.
Effectively, you write a complete unit file, changing the options you want, and you
place your new file in /etc/systemd/system/ before re-enabling the service. The
reason this works is because /etc/systemd/system/ has a higher precedence than
/usr/lib/systemd/system/ though you've now burdened yourself with
management of the whole service definition, instead of just the bits you want to
change.

Testing running services
In this section, we're going to look at three ways we can see whether a service is
actually running, once we've issued a start command.

We'll start with the built-in systemd way (systemctl) before moving to a generic
way (ps) and finally a simple way (telnet).

Getting ready
Connect to your centos1 VM. Install and start httpd if it's not already started.

We'll also install telnet for some basic port checking:

$ sudo yum install -y httpd telnet
$ sudo systemctl enable --now httpd

Services and Daemons Chapter 4

[222]

How to do it…
With systemd's built-in tool, we can check the status with the status option:

[vagrant@centos1 ~]$ systemctl status httpd
● httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled;
vendor preset: disabled)
 Active: active (running) since Sun 2018-08-26 16:15:50 UTC; 5min
ago
 Docs: man:httpd(8)
 man:apachectl(8)
 Main PID: 3578 (httpd)
 Status: "Total requests: 0; Current requests/sec: 0; Current
traffic: 0 B/sec"
 CGroup: /system.slice/httpd.service
 ├─3578 /usr/sbin/httpd -DFOREGROUND
 ├─3579 /usr/sbin/httpd -DFOREGROUND
 ├─3580 /usr/sbin/httpd -DFOREGROUND
 ├─3581 /usr/sbin/httpd -DFOREGROUND
 ├─3582 /usr/sbin/httpd -DFOREGROUND
 └─3583 /usr/sbin/httpd -DFOREGROUND

This is a good indication that things are fine, because systemd believes them to be. We
can also use the ps tool to try and determine whether our process has started:

[vagrant@centos1 ~]$ ps aux | grep httpd
root 3578 0.0 1.0 224020 4996 ? Ss 16:15 0:00
/usr/sbin/httpd -DFOREGROUND
apache 3579 0.0 0.5 224020 2948 ? S 16:15 0:00
/usr/sbin/httpd -DFOREGROUND
apache 3580 0.0 0.5 224020 2948 ? S 16:15 0:00
/usr/sbin/httpd -DFOREGROUND
apache 3581 0.0 0.5 224020 2948 ? S 16:15 0:00
/usr/sbin/httpd -DFOREGROUND
apache 3582 0.0 0.5 224020 2948 ? S 16:15 0:00
/usr/sbin/httpd -DFOREGROUND
apache 3583 0.0 0.5 224020 2948 ? S 16:15 0:00
/usr/sbin/httpd -DFOREGROUND

Here I use the aux option, partly this is because I can reliably do the
same thing on my BSD systems, and partly it's because the person I
first watched use ps used those flags, so it stuck with me.

Services and Daemons Chapter 4

[223]

We can see httpd running with a few processes.

Alternatively, we could try connecting to the port locally with telnet:

[vagrant@centos1 ~]$ telnet 127.0.0.1 80
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.

Though if your web server isn't running on localhost, or 80, this test is somewhat
pointless and will fail.

How it works…
We've covered three ways of checking whether a service is running. The first, and
arguably most robust, is to see whether the init system believes the service is up.

Our systemctl command reported an active, running state and gave us a time that
the service had started.

Next, we queried the system's process list to see whether we could find our server;
this works well as it could be the case that a misconfigured service file starts your
service, but isn't then aware of its state, hence believing it to be dead.

Lastly, we used telnet to try and connect to the port we thought the service might
be running on; this is the least intelligent way to check whether a service is running
locally, as it requires you to know specifics and telnet is rarely installed by default.

There's more…
To get information about open sockets on a system, you would use ss; see the earlier
section on ss for details on what commands you might use to determine used ports.

Writing a basic unit file
In this section, we're going to put together a unit file of our own. We're also going to
choose a location to save it and we're going to reboot our system to check if it works.

Services and Daemons Chapter 4

[224]

How to do it…
We're going to again use Python's built-in web server, starting an instance using a
small unit file.

First, create the directory in which we're going to store our unit file:

$ sudo mkdir -p /usr/local/lib/systemd/system

Next, we're going to echo the following into a file called
pythonWebServer.service:

$ sudo tee /usr/local/lib/systemd/system/pythonWebServer.service <<
HERE
[Unit]
Description=Python Web Server Example

[Service]
ExecStart=/usr/bin/python2.7 -m SimpleHTTPServer

[Install]
WantedBy=multi-user.target
HERE

This unit file is for demonstration purposes only, and should
absolutely not be used in production.

Now we can enable and start it:

$ sudo systemctl enable --now pythonWebServer
Created symlink from /etc/systemd/system/multi-
user.target.wants/pythonWebServer.service to
/usr/local/lib/systemd/system/pythonWebServer.service.

Check it's running with the status command:

$ systemctl status pythonWebServer.service
● pythonWebServer.service - Python Web Server Example
 Loaded: loaded
(/usr/local/lib/systemd/system/pythonWebServer.service; enabled;
vendor preset: disabled)
 Active: active (running) since Sun 2018-08-26 16:43:55 UTC; 1s ago
 Main PID: 3746 (python2.7)
 CGroup: /system.slice/pythonWebServer.service
 └─3746 /usr/bin/python2.7 -m SimpleHTTPServer

Services and Daemons Chapter 4

[225]

How it works…
All we've done here is create a local unit file for systemd to read and load.

In order to understand our path choice, try running the following on your system,
and see what's returned:

$ systemctl --no-pager show --property=UnitPath

One of the options should be /usr/local/lib/systemd/system, which doesn't
exist at first, but does when we create it.

It's a good idea to use a path like this because, not only is there a good chance it's
empty, meaning you can logically separate your unit files from others, it's also
uncluttered (unlike the /etc/systemd/system/ directory).

We then placed a small example unit file in this directory, featuring the bare
minimum to make a functioning service file.

Once written, it's a simple case of enabling and starting our service.

There's more…
There're a couple of problems with what we've done here.

The first is that we've created a very static service file, which we can only change by
manipulating it directly. The second issue is that we've made a web server that, by
default, will list the contents of the root of our server, which I highly doubt you want:

$ curl localhost:8000
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>
<body>
<h2>Directory listing for /</h2>
<hr>

bin@
boot/
dev/
etc/
home/
lib@
lib64@
media/
mnt/

Services and Daemons Chapter 4

[226]

opt/
proc/
root/
run/
sbin@
srv/
sys/
tmp/
usr/
vagrant/
var/

<hr>
</body>
</html>

Let's address both of these issues, using what we've learned so far.

Open your new systemd unit file for editing, in your editor of choice, and populate it
with a few more options:

[Unit]
Description=Python Web Server Example
Documentation=man:python(1)
ConditionFileNotEmpty=/var/www/html/index.html
After=network.target

[Service]
Type=simple
EnvironmentFile=/etc/sysconfig/pythonWebServer
ExecStart=/usr/bin/python2.7 -m SimpleHTTPServer $PORT
Restart=always
WorkingDirectory=/var/www/html/

[Install]
WantedBy=multi-user.target

Note some we've used previously, and some new ones such as WorkingDIrectory=.

Next, populate /var/www/html/index.html:

$ sudo tee /var/www/html/index.html << HERE
This is a python web server.
Running at the behest of systemd.
Isn't that neat?
HERE

Services and Daemons Chapter 4

[227]

And add an entry to our environment file:

$ sudo tee /etc/sysconfig/pythonWebServer <<HERE
PORT="8000"
HERE

Reload systemd's configuration:

$ sudo systemctl daemon-reload

And test with curl:

$ curl localhost:8000
This is a python web server.
Running at the behest of systemd.
Isn't that neat?

See also
There are so many different configuration options for systemd unit files; we've not
really scratched the surface here, and it could absolutely constitute a book in itself.

Read the relevant man pages, have a go at writing your own unit files, and report
back with your findings, you brave explorer.

Working with systemd timers (and cron)
The new kids on the block, and another component that systemd brought into its
gargantuan self, are systemd timers. Timers are another type of unit, only one that
acts as the instruction for when another unit is to trigger.

In the old world, you'd control periodic events on a system with cron, and this is still
widely used, but increasingly systemd timers are stealing that mantle away.

I say new but new is relative. Basically something can be in systemd
for years before it finally trickles into Debian or CentOS. If you want
the latest and greatest, run something like Fedora on a laptop.

In this section, we're going to look at existing cron and timer entries on our system,
before converting our Python server into a timer-triggered service.

Services and Daemons Chapter 4

[228]

How to do it…
First, we're going to list existing periodic jobs on the system.

systemd timers
Starting with systemd timers, we're going to list what exists on our box by default:

$ systemctl --no-pager list-timers --all
NEXT LEFT LAST
PASSED UNIT ACTIVATES
Mon 2018-08-27 17:39:37 UTC 23h left Sun 2018-08-26 17:39:37 UTC
52min ago systemd-tmpfiles-clean.timer systemd-tmpfiles-clean.service
n/a n/a n/a n/a
systemd-readahead-done.timer systemd-readahead-done.service

2 timers listed.

Within this output, we can see two timers. The first is systemd-tmpfiles-
clean.timer and its action is to trigger systemd-tmpfiles-clean.service.

Running systemctl cat against this file shows us its timer configuration:

/usr/lib/systemd/system/systemd-tmpfiles-clean.timer
This file is part of systemd.
#
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as
published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

[Unit]
Description=Daily Cleanup of Temporary Directories
Documentation=man:tmpfiles.d(5) man:systemd-tmpfiles(8)

[Timer]
OnBootSec=15min
OnUnitActiveSec=1d

Looking at the service file reveals what's actually run:

/usr/lib/systemd/system/systemd-tmpfiles-clean.service
This file is part of systemd.
#
systemd is free software; you can redistribute it and/or modify it

Services and Daemons Chapter 4

[229]

under the terms of the GNU Lesser General Public License as
published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

[Unit]
Description=Cleanup of Temporary Directories
Documentation=man:tmpfiles.d(5) man:systemd-tmpfiles(8)
DefaultDependencies=no
Conflicts=shutdown.target
After=systemd-readahead-collect.service systemd-readahead-
replay.service local-fs.target time-sync.target
Before=shutdown.target

[Service]
Type=oneshot
ExecStart=/usr/bin/systemd-tmpfiles --clean
IOSchedulingClass=idle

Note that it's a oneshot service, meaning it's expected to exit after running.

From the previous information, we can tell when our timer has last run and when it's
next due to.

The second timer we can see, systemd-readahead-done.timer
and its companion service file, aren't active. This is denoted by the
n/a details in the various time fields. This service is used in non-
virtualized systems to log disk boot patterns, attempting to speed
up subsequent boots.

This makes timers much easier to read and work out when they last ran, compared to
cron.

cron
I'm not aware of an easy way to list information from cron; if you know of one,
please write to me and blow my mind.

cron, as we said previously, is a daemon for executing commands on a schedule. It's
still in wide use and there's many systems out there with a hybrid systemd
timers/cron setup.

Services and Daemons Chapter 4

[230]

By default, cron features the following directories in /etc/:

cron.d/ cron.daily/ cron.hourly/ cron.monthly/ cron.weekly/

Within cron.d, we can see a single file named 0hourly, the contents of which are
copied in the following:

cat 0hourly
Run the hourly jobs
SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
01 * * * * root run-parts /etc/cron.hourly

And within the /etc/cron.hourly directory, we have only 0anacron:

#!/bin/sh
Check whether 0anacron was run today already
if test -r /var/spool/anacron/cron.daily; then
 day=`cat /var/spool/anacron/cron.daily`
fi
if [`date +%Y%m%d` = "$day"]; then
 exit 0;
fi

Do not run jobs when on battery power
if test -x /usr/bin/on_ac_power; then
 /usr/bin/on_ac_power >/dev/null 2>&1
 if test $? -eq 1; then
 exit 0
 fi
fi
/usr/sbin/anacron -s

Readable, this is not.

At a glance, it's awkward and fiddly to work out what jobs are running periodically
through cron, and you'll always get that one bodge-job that someone's written,
without any logging, that they forget about.

Chances are good you'll have cron screw you over at one point in your life, at least
until it goes away forever, so if you ever get unexpected behavior on your system,
stop and have a quick look through the cron directories for some indication of foul
play.

Services and Daemons Chapter 4

[231]

You can get the specific cron logs from journalctl easily enough:

$ sudo journalctl -u crond
-- Logs begin at Sun 2018-08-26 17:24:36 UTC, end at Sun 2018-08-26
19:18:33 UTC
Aug 26 17:24:39 centos1 systemd[1]: Started Command Scheduler.
Aug 26 17:24:39 centos1 systemd[1]: Starting Command Scheduler...
Aug 26 17:24:39 centos1 crond[579]: (CRON) INFO (RANDOM_DELAY will be
scaled wit
Aug 26 17:24:40 centos1 crond[579]: (CRON) INFO (running with inotify
support)

How it works…
systemd timers are great; they also work very well, primarily because they're
inherently tied to the init and unit system that they're managing the time triggers for.

In a perfect world, I'd love to see all of the cron entries featured in CentOS and
Debian completely removed within their next release. The truth of the matter is cron
will probably be around for a long time, and systems such as FreeBSD will use it long
after the heat-death of the universe.

When we list timers, we're checking what systemd is aware of in terms of units it has
to trigger.

When we're sifting through cron logs and subdirectories, we're banging our heads
against a metaphorical desk in a vain effort to find that vague one-liner that's
constantly touching the file we're trying to delete.

There's more…
We're going to write our own timer unit, using the Python unit file from the last
example.

I would recommend starting by disabling the service if you've still got it running or
destroying the VM and writing it again, referring to the last section if necessary.

Let's start by adjusting our pythonWebServer.service file so that it looks like the
following:

[Unit]
Description=Python Web Server Example
Documentation=man:python(1)

Services and Daemons Chapter 4

[232]

ConditionFileNotEmpty=/var/www/html/index.html

[Service]
Type=simple
EnvironmentFile=/etc/sysconfig/pythonWebServer
ExecStart=/usr/bin/python2.7 -m SimpleHTTPServer $PORT
WorkingDirectory=/var/www/html/

Specifically, we've removed a few lines. Note the complete removal of the [Install]
section, as it's not needed when the timer is controlling the startup.

In the real world, this wouldn't be something permanent such as a
web server, it would usually be something small, such as a script to
open a web page on a wallboard somewhere or send a request to the
coffee machine to make you a latte.

Next, we're going to write a timer file, putting it in the exact same place as our
service file:

$ sudo tee /usr/local/lib/systemd/system/pythonWebServer.timer << HERE
[Unit]
Description=Start python web server after a pause

[Timer]
OnBootSec=20s

[Install]
WantedBy=timers.target
HERE

Afterwards, we're going to reload systemd and enable the timer, but not the service:

$ sudo systemctl daemon-reload
$ sudo systemctl enable pythonWebServer.timer
Created symlink from
/etc/systemd/system/timers.target.wants/pythonWebServer.timer to
/usr/local/lib/systemd/system/pythonWebServer.timer.

Note the creation of symlink.

Let's reboot our box and see what happens. If you're quick, and you manage to run
systemctl list-timers before your ten seconds are up, you might see something
like the following:

$ systemctl --no-pager list-timers
NEXT LEFT LAST PASSED UNIT
ACTIVATES

Services and Daemons Chapter 4

[233]

Sun 2018-08-26 19:43:48 UTC 9s left n/a n/a
pythonWebServer.timer pythonWebServer.service
Sun 2018-08-26 19:58:28 UTC 14min left n/a n/a systemd-tmpfiles-
clean.timer systemd-tmpfiles-clean.service

2 timers listed.
Pass --all to see loaded but inactive timers, too.

Running it again will show that the job has passed:

$ systemctl --no-pager list-timers
NEXT LEFT LAST
PASSED UNIT ACTIVATES
Sun 2018-08-26 19:43:48 UTC 10s ago Sun 2018-08-26 19:43:56 UTC
3s ago pythonWebServer.timer pythonWebServer.service
Sun 2018-08-26 19:58:28 UTC 14min left n/a
n/a systemd-tmpfiles-clean.timer systemd-tmpfiles-clean.service

2 timers listed.
Pass --all to see loaded but inactive timers, too.

A quick curl will confirm our service is up:

$ curl localhost:8000
This is a python web server.
Running at the behest of systemd.
Isn't that neat?

See also
You can check the status of a systemd timer in the same way as any other unit.

Seen in the following is the output and command used to check the status of our
pythonWebServer.timer:

$ systemctl status pythonWebServer.timer
● pythonWebServer.timer - Start python web server after a pause
 Loaded: loaded
(/usr/local/lib/systemd/system/pythonWebServer.timer; enabled; vendor
preset: disabled)
 Active: active (running) since Sun 2018-08-26 19:43:30 UTC; 56s ago

Services and Daemons Chapter 4

[234]

Other init systems
systemd might be the dominant init system in the Linux world, but there are others
that you'll still come across. At the time of writing, CentOS 6 is very much alive and
kicking, with its upstart core.

That's without going into the nitty-gritty of what the BSDs use and macOS to boot
(which I actually quite like).

I have seen some absolutely ancient Debian installations in my time,
some of which went out of support half a decade or longer ago. I
once worked out that a box I was SSH'd into, could legally drive.

Getting ready
Connect to both of your other VMs:

$ vagrant ssh centos6
$ vagrant ssh debian7

How to do it…
We have two systems at play; CentOS 6 uses Upstart, and Debian 7 uses SysV init.

CentOS 6 and Upstart
In the old world, systemctl won't work:

$ systemctl
-bash: systemctl: command not found

What's also slightly annoying is that there's no upstart command.

Instead, Upstart is skinned to look like a typical init system. The main page even
lists it as such:

"init: Upstart process management daemon"

Instead of systemctl, we use service --status-all:

$ service --status-all

Services and Daemons Chapter 4

[235]

This gives you output similar to the following:

smartd is stopped
openssh-daemon (pid 1526) is running...
tuned (pid 1705) is running...

Confusingly, the service name might not be what you see. Take sshd as an example.
The previous command might lead you to believe that the daemon on this system is
called openssh-daemon, but that's incorrect; it's really sshd again:

$ sudo service openssh-daemon
openssh-daemon: unrecognized service
$ sudo service sshd status
openssh-daemon (pid 1526) is running...

Confused? I was the first time I saw this.

The other way to interact with services is to call them directly (as they're just a script
really):

$ sudo /etc/init.d/sshd status
openssh-daemon (pid 4725) is running...

Starting and stopping is very similar, but one thing that will catch you out is that
traditional init systems put the control command at the end of the line (unlike
systemd):

$ sudo service sshd stop
Stopping sshd: [OK]
$ sudo service sshd start
Starting sshd: [OK]

Note the stop and start tacked on the end.

Disabling and enabling services is different too; on old CentOS systems, chkconfig
was your best friend:

$ chkconfig --list sshd
sshd 0:off 1:off 2:on 3:on 4:on 5:on
6:off

Note the concept of runlevels still existing, and that sshd starts in 2, 3, and 4.

We can disable this service with another chkconfig command:

$ sudo chkconfig sshd off
$ chkconfig --list sshd

Services and Daemons Chapter 4

[236]

sshd 0:off 1:off 2:off 3:off 4:off 5:off
6:off

And we enable it using on:

$ sudo chkconfig sshd on
$ chkconfig --list sshd
sshd 0:off 1:off 2:on 3:on 4:on 5:on
6:off

Because we're working with runlevels, you can head to the rc*.d directories.
Specifically, we're going to drop into rc3.d for runlevel 3:

$ pwd
/etc/rc3.d
$ runlevel
N 3

Within this directory, we're again dealing with symlinks. You'll find a list of all jobs
run at entry to runlevel 3.

One will be sshd (assuming you've not disabled it in the last step):

$ ls -l | grep ssh
lrwxrwxrwx. 1 root root 14 Aug 26 20:13 S55sshd -> ../init.d/sshd

Debian 7 and SysV init
Unlike CentOS 6, Debian 7 uses an older init system, its manual page lists it like so:

"init, telinit: process control initialization"

Again, we're dealing with PID 1 on the system—that much hasn't changed, only now
processes are primarily controlled by the /etc/inittab file.

Runlevels are again a major player, though we use a different command to discover
where we are (as a regular user, root still has access to the runlevel command, if
you want to use it):

$ who -r
 run-level 2 2018-08-26 19:54 last=S

Services and Daemons Chapter 4

[237]

As with upstart, the actual destination of our service files is the /etc/init.d/
directory:

$ ls | grep ssh
ssh

This means that, like Upstart, we can manually interact with our service scripts:

$ /etc/init.d/ssh status
[ok] sshd is running.

The tool we used previously (chkconfig) can be installed on Debian 7, but by default
we use a tool called update-rc.d to control starting and stopping services at boot:

$ sudo update-rc.d ssh disable
update-rc.d: using dependency based boot sequencing

If you really want to use chkconfig, I won't shout at you:

vagrant@wheezy:~$ sudo chkconfig ssh off
vagrant@wheezy:~$ sudo chkconfig ssh
ssh off
vagrant@wheezy:~$ sudo chkconfig ssh on
vagrant@wheezy:~$ sudo chkconfig ssh
ssh on

How it works…
Both Upstart and traditional init systems rely on the /etc/init.d/ directory and
then the various rc directories to instruct them what to start at which runlevel:

rc0.d/ rc1.d/ rc2.d/ rc3.d/ rc4.d/ rc5.d/ rc6.d/ rcS.d/

Looking at Debian's inittab we can see the default runlevel as configured:

The default runlevel.
id:2:initdefault:

So, we know we'll likely end up at runlevel 2, meaning we can check the services that
start at that runlevel.

The same can be said for Upstart, and on our CentOS system, we can see the default
is set to 3:

id:3:initdefault:

Services and Daemons Chapter 4

[238]

Though it must be said, this is literally the only function that inittab serves on
Upstart systems.

There's more…
Honestly, there's a lot more to Upstart, and more to traditional init systems too,
but I would suggest that if you're going to be working with Linux and modern
systems, you should make learning systemd a priority.

If you're working on BSD systems, read up on their own init systems and how they
differ.

If you're working with old servers that you're unlikely to be allowed to turn off any
time soon, I'm sorry.

See also
There's good documentation on Upstart at http:/ / upstart. ubuntu. com/cookbook/ .

There're also good accounts, if you can find them from the corners of the internet,
detailing the events of the Debian Technical Committee vote on their new init
system.

Round-up – services and daemons
This section turned out a lot longer than I'd expected it to, but at the same time, I'm
glad that Ubuntu, CentOS, Red Hat, and Debian now share a single init system.

Had I been writing this book four years ago, I might well have given up at the start of
this section and gone climbing instead.

That said, it's over, and I hope you learned something about how systemd works in
the last few pages.

One last thing to note is that, despite systemd being in all the big players now, it still
has its critics, and you'll definitely come across the odd grumpy sysadmin who can't
let go of his bash-script driven systems. My advice in these cases is to smile and nod;
it's not worth it to get too involved—that or suggest they might like to give FreeBSD a
go instead?

http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/

Services and Daemons Chapter 4

[239]

I have mixed memories of SysV and Upstart systems, most of them revolving around
hacking default bash scripts just to get dependencies working correctly with each
other. I do get slightly nostalgic when I log on to a system, discover it's running
Fedora Core 3, and I'm forced to remember everything I thought I'd forgotten about
SysV init.

systemd is here to stay, and I personally can't wait to see what it sucks into its
heaving mass next.

People might draw the line at systemd-kerneld though.

5
Hardware and Disks

 The following topics will be covered in this chapter:

Determining hardware
Testing hardware
The role of the kernel
Disk configuration on Linux
The filesystem hierarchy
Configuring a blank disk and mounting it
Re-configuring a disk using LVM
Using systemd-mount and fstab
Disk encryption and working with encryption at rest
Current filesystem formats
Upcoming filesystem formats

Introduction
Your hardware doesn't care for you, like you might care for it.

Hardware is fickle, temperamental, unpredictable, and moody; disks, the rebellious
teenager of the hardware family, take this to the next level.

You will find yourself confused at some point in your career, baffled as to why
seemingly unrelated errors are occurring in disparate parts of your system. Your SSH
daemon might be randomly dying at odd points in a transfer, NTP might be drifting,
your database might be locking up, and all the while you're tearing your hair out
trying to find the cause.

Hardware and Disks Chapter 5

[241]

Hardware is usually the answer to these random issues (when it's not time, as we
discussed previously). A bad stick of memory can fail in weird and wonderful ways,
while a disk occasionally going read-only can mean sporadic and nighttime-
disrupting events that can be tempting to resolve with a particularly heavy hammer.

If you don't want to use the phrase "hit it with a hammer" in front of
your boss, the accepted nomenclature is "percussive maintenance."

When hardware goes bad, there's no recourse other than to replace it. Gone are the
days when we'd solder and fix components ourselves, as it's simply not a viable
solution, nor is it cost-effective.

At some point, you'll discover yourself crouched over an open server in a data center,
scratching your head at the rows of DIMMs and a RAID10 array of disks, trying to
determine which one is faulty so that you can swap it out and place the old one in a
grinder, for your own peace of mind.

We spell storage disks such as hard drives with a k, and optical-type
discs with a c.

In this chapter, we'll look at ways of identifying specific hardware, as well as some
simple troubleshooting steps for finding bad memory. Coupled with this, we'll work
through adding new disks to systems and how you might configure them once
installed.

Technical requirements
For this chapter, we're going to use the following Vagrantfile, featuring two
additional disks:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.define "centos1" do |centos1|
 centos1.vm.box = "centos/7"
 centos1.vm.box_version = "1804.02"
 centos1.vm.provider "virtualbox" do |vbcustom|

Hardware and Disks Chapter 5

[242]

 unless File.exist?('centos1.additional.vdi')
 vbcustom.customize ['createhd', '--filename',
'centos1.additional.vdi', '--size', 2 * 1024]
 end
 vbcustom.customize ['storageattach', :id, '--storagectl', 'IDE',
'--port', 0, '--device', 1, '--type', 'hdd', '--medium',
'centos1.additional.vdi']

 unless File.exist?('centos1.additional2.vdi')
 vbcustom.customize ['createhd', '--filename',
'centos1.additional2.vdi', '--size', 2 * 1024]
 end
 vbcustom.customize ['storageattach', :id, '--storagectl', 'IDE',
'--port', 1, '--device', 1, '--type', 'hdd', '--medium',
'centos1.additional2.vdi']

 end
 end

end

The extra disks defined here will be created in the local directory
you're running Vagrant from, make sure you have enough space.

Determining hardware
In the first chapter, we used dmidecode and other tooling to work out if we were in a
VM or not; here, we're going to go a bit further and try to determine what hardware
we might be running in a system, from the disk IDs to the type of graphics card in
use.

Getting ready
Connect to your Vagrant VM and install some of the extra tools we're going to use:

$ vagrant ssh
$ sudo yum install -y pciutils usbutils

Hardware and Disks Chapter 5

[243]

How to do it…
We're going to pick through a few different methods for determining the hardware a
system is running; even if you don't have access to the internet, you should be able to
determine some basic information using default tools.

lspci
The tool we installed from the pciutils suite, lspci, is a good way to list your
collective PCI devices, without a lot of extra noise.

If we just run lspci, we get a list of devices and their IDs:

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma]
(rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton
II]
00:01.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev
01)
00:02.0 VGA compatible controller: InnoTek Systemberatung GmbH
VirtualBox Graphics Adapter
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit
Ethernet Controller (rev 02)
00:04.0 System peripheral: InnoTek Systemberatung GmbH VirtualBox
Guest Service
00:05.0 Multimedia audio controller: Intel Corporation 82801AA AC'97
Audio Controller (rev 01)
00:07.0 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)

What we can see in the previous list are the devices in our system. They've actually
had their numeric IDs translated into a human-readable format.

If you want to list the IDs alone, you can use the -n flag:

$ lspci -n
00:00.0 0600: 8086:1237 (rev 02)
00:01.0 0601: 8086:7000
00:01.1 0101: 8086:7111 (rev 01)
00:02.0 0300: 80ee:beef
00:03.0 0200: 8086:100e (rev 02)
00:04.0 0880: 80ee:cafe
00:05.0 0401: 8086:2415 (rev 01)
00:07.0 0680: 8086:7113 (rev 08)

Hardware and Disks Chapter 5

[244]

Or if you want both, use -nn:

$ lspci -nn
00:00.0 Host bridge [0600]: Intel Corporation 440FX - 82441FX PMC
[Natoma] [8086:1237] (rev 02)
00:01.0 ISA bridge [0601]: Intel Corporation 82371SB PIIX3 ISA
[Natoma/Triton II] [8086:7000]
00:01.1 IDE interface [0101]: Intel Corporation 82371AB/EB/MB PIIX4
IDE [8086:7111] (rev 01)
00:02.0 VGA compatible controller [0300]: InnoTek Systemberatung GmbH
VirtualBox Graphics Adapter [80ee:beef]
00:03.0 Ethernet controller [0200]: Intel Corporation 82540EM Gigabit
Ethernet Controller [8086:100e] (rev 02)
00:04.0 System peripheral [0880]: InnoTek Systemberatung GmbH
VirtualBox Guest Service [80ee:cafe]
00:05.0 Multimedia audio controller [0401]: Intel Corporation 82801AA
AC'97 Audio Controller [8086:2415] (rev 01)
00:07.0 Bridge [0680]: Intel Corporation 82371AB/EB/MB PIIX4 ACPI
[8086:7113] (rev 08)

In this list, we can see a few friendly descriptions to help us—things such
as Ethernet controller, VGA compatible controller, and IDE interface, to
name a few.

At a glance, you should get a good understanding of which device does what, thanks
to the hard work of the people who keep the PCI ID repository up to date: http:/ /
pci-ids.ucw.cz/ .

Even better than listing the devices in our system, we can also list the kernel drive
that's handling the device with -k.

In the following snippet, we can see that the Ethernet controller is being managed by
the kernel driver, e1000:

$ lspci -k
00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma]
(rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton
II]
00:01.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev
01)
 Kernel driver in use: ata_piix
 Kernel modules: ata_piix, pata_acpi, ata_generic
00:02.0 VGA compatible controller: InnoTek Systemberatung GmbH
VirtualBox Graphics Adapter
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit
Ethernet Controller (rev 02)

http://pci-ids.ucw.cz/
http://pci-ids.ucw.cz/
http://pci-ids.ucw.cz/
http://pci-ids.ucw.cz/
http://pci-ids.ucw.cz/
http://pci-ids.ucw.cz/
http://pci-ids.ucw.cz/
http://pci-ids.ucw.cz/
http://pci-ids.ucw.cz/
http://pci-ids.ucw.cz/
http://pci-ids.ucw.cz/

Hardware and Disks Chapter 5

[245]

 Subsystem: Intel Corporation PRO/1000 MT Desktop Adapter
 Kernel driver in use: e1000
 Kernel modules: e1000
00:04.0 System peripheral: InnoTek Systemberatung GmbH VirtualBox
Guest Service
00:05.0 Multimedia audio controller: Intel Corporation 82801AA AC'97
Audio Controller (rev 01)
 Subsystem: Intel Corporation Device 0000
 Kernel driver in use: snd_intel8x0
 Kernel modules: snd_intel8x0
00:07.0 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
 Kernel driver in use: piix4_smbus
 Kernel modules: i2c_piix4

The name of the kernel driver and the actual hardware won't always
be obvious, which is what makes tools such as lspci so handy.

In modern machines, you might see more than one PCI bus, with devices connected
to it; it just so happens that our VM only utilizes one bus for all of its devices.

This means that the tree view is very flat:

$ lspci -t
-[0000:00]-+-00.0
 +-01.0
 +-01.1
 +-02.0
 +-03.0
 +-04.0
 +-05.0
 \-07.0

However, when we run lspci against a physical machine (in this case, my laptop),
the tree view can have more branches:

$ lspci -t
-[0000:00]-+-00.0
 +-02.0
 +-04.0
 +-14.0
 +-14.2
 +-15.0
 +-15.1
 +-16.0
 +-1c.0-[01-39]----00.0-[02-39]--+-00.0-[03]--

Hardware and Disks Chapter 5

[246]

 | +-01.0-[04-38]--
 | \-02.0-[39]----00.0
 +-1c.4-[3a]----00.0
 +-1c.5-[3b]----00.0
 +-1d.0-[3c]----00.0
 +-1f.0
 +-1f.2
 +-1f.3
 \-1f.4

If you can't see a device you know to be there (a graphics card say),
it could be a few things: maybe the device is disabled in the BIOS or
the card itself is dead. Try some basic troubleshooting such as
checking the BIOS/UEFI configuration or flipping the card to a
different slot.

There's also lsusb for USB devices. This can be handy if you're using something like
a USB Ethernet device. In the following example, you can see that the box I'm
connected to (a Raspberry Pi) has its network port on the USB bus:

$ lsusb
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
SMSC9512/9514 Fast Ethernet Adapter

lshw
A particularly useful program, lshw has the built-in ability to output your hardware
tree as JSON, XML, HTML, and presumably more as they're developed.

By default, the output of lshw is very verbose, but should look something like the
following:

$ sudo lshw
localhost.localdomain
 description: Computer
 product: VirtualBox
 vendor: innotek GmbH
 version: 1.2
 serial: 0
 width: 64 bits
 capabilities: smbios-2.5 dmi-2.5 vsyscall32
<SNIP>
 *-pnp00:00
 product: PnP device PNP0303
 physical id: 3
 capabilities: pnp

Hardware and Disks Chapter 5

[247]

 configuration: driver=i8042 kbd
 *-pnp00:01
 product: PnP device PNP0f03
 physical id: 4
 capabilities: pnp
 configuration: driver=i8042 aux

I tend to find that at-a-glance solutions can work better a lot of the time. So, with that
in mind, let's take a look at the -short option's output:

$ sudo lshw -short
H/W path Device Class Description
==
 system VirtualBox
/0 bus VirtualBox
/0/0 memory 128KiB BIOS
/0/1 memory 512MiB System memory
/0/2 processor Intel(R) Core(TM) i7-7500U
CPU @ 2.70GHz
/0/100 bridge 440FX - 82441FX PMC
[Natoma]
/0/100/1 bridge 82371SB PIIX3 ISA
[Natoma/Triton II]
/0/100/1.1 scsi0 storage 82371AB/EB/MB PIIX4 IDE
/0/100/1.1/0.0.0 /dev/sda disk 42GB VBOX HARDDISK
/0/100/1.1/0.0.0/1 /dev/sda1 volume 1MiB Linux filesystem
partition
/0/100/1.1/0.0.0/2 volume 1GiB Linux filesystem
partition
/0/100/1.1/0.0.0/3 /dev/sda3 volume 38GiB Linux LVM Physical
Volume partition
/0/100/1.1/0 /dev/sdb disk 2147MB VBOX HARDDISK
/0/100/1.1/1 /dev/sdc disk 2147MB VBOX HARDDISK
/0/100/2 display VirtualBox Graphics Adapter
/0/100/3 eth0 network 82540EM Gigabit Ethernet
Controller
/0/100/4 generic VirtualBox Guest Service
/0/100/5 multimedia 82801AA AC'97 Audio
Controller
/0/100/7 bridge 82371AB/EB/MB PIIX4 ACPI
/0/3 input PnP device PNP0303
/0/4 input PnP device PNP0f03

This is much easier to read and means that, at a glance, you can see that the system
has three disks, one network device, and 512MiB of system memory.

Hardware and Disks Chapter 5

[248]

As we saw in Chapter 1, Introduction and Environment Setup, you can also select a
class output with -c, shown again here with our network device:

$ sudo lshw -c network
 *-network
 description: Ethernet interface
 product: 82540EM Gigabit Ethernet Controller
 vendor: Intel Corporation
 physical id: 3
 bus info: pci@0000:00:03.0
 logical name: eth0
 version: 02
 serial: 52:54:00:c9:c7:04
 size: 1Gbit/s
 capacity: 1Gbit/s
 width: 32 bits
 clock: 66MHz
 capabilities: pm pcix bus_master cap_list ethernet physical tp
10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation
 configuration: autonegotiation=on broadcast=yes driver=e1000
driverversion=7.3.21-k8-NAPI duplex=full ip=10.0.2.15 latency=64
link=yes mingnt=255 multicast=yes port=twisted pair speed=1Gbit/s
 resources: irq:19 memory:f0000000-f001ffff ioport:d010(size=8)

From this output, we can see a lot of pertinent information, such as the capacity of the
network device (1Gbit/s), as well as the capabilities of the device.

We can even see its specific configuration, which is useful for potential changes you
might want to make.

If you want to see the actual numeric IDs, you can add -numeric to your command:

$ sudo lshw -c network -numeric
 *-network
 description: Ethernet interface
 product: 82540EM Gigabit Ethernet Controller [8086:100E]
 vendor: Intel Corporation [8086]
 physical id: 3
 bus info: pci@0000:00:03.0
 logical name: eth0
 version: 02
 serial: 52:54:00:c9:c7:04
 size: 1Gbit/s
 capacity: 1Gbit/s
 width: 32 bits
 clock: 66MHz
 capabilities: pm pcix bus_master cap_list ethernet physical tp

Hardware and Disks Chapter 5

[249]

10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation
 configuration: autonegotiation=on broadcast=yes driver=e1000
driverversion=7.3.21-k8-NAPI duplex=full ip=10.0.2.15 latency=64
link=yes mingnt=255 multicast=yes port=twisted pair speed=1Gbit/s
 resources: irq:19 memory:f0000000-f001ffff ioport:d010(size=8)

/proc
/proc is the process information pseudo-filesystem found on most Linux systems
(but not the BSDs).

It is the readable interface-to-kernel data structure, with some files that are writable,
allowing for on-the-fly changes to be made to your running kernel.

Some useful files within this directory are the likes of /proc/cpuinfo, which, when
queried, gives you all of the information the kernel knows about your CPU:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 142
model name : Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz
stepping : 9
cpu MHz : 2904.000
cache size : 4096 KB
physical id : 0
siblings : 1
core id : 0
cpu cores : 1
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 22
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge
mca cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx rdtscp lm
constant_tsc rep_good nopl xtopology nonstop_tsc pni pclmulqdq monitor
ssse3 cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx rdrand
hypervisor lahf_lm abm 3dnowprefetch fsgsbase avx2 invpcid rdseed
clflushopt
bogomips : 5808.00
clflush size : 64
cache_alignment : 64

Hardware and Disks Chapter 5

[250]

address sizes : 39 bits physical, 48 bits virtual
power management:

It also gives you a processor number, meaning that if you want a quick count of
processors in your system (being used), you can list them with a short command and
some piping.

Here, we're dumping the file, looking for the word processor, and then counting the
lines. It's not the most foolproof system, but it's handy in a pinch:

$ grep -c "processor" /proc/cpuinfo
1

Another handy file to be aware of is /proc/meminfo for a complete dump of
everything the system knows about your memory:

$ cat /proc/meminfo
MemTotal: 499428 kB
MemFree: 66164 kB
MemAvailable: 397320 kB
Buffers: 2140 kB
Cached: 324952 kB
SwapCached: 0 kB
Active: 222104 kB
Inactive: 142044 kB
Active(anon): 12764 kB
Inactive(anon): 28916 kB
Active(file): 209340 kB
Inactive(file): 113128 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 1572860 kB
SwapFree: 1572860 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 37100 kB
Mapped: 22844 kB
Shmem: 4624 kB
Slab: 44216 kB
SReclaimable: 21800 kB
SUnreclaim: 22416 kB
KernelStack: 1728 kB
PageTables: 4200 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 1822572 kB
Committed_AS: 302040 kB

Hardware and Disks Chapter 5

[251]

VmallocTotal: 34359738367 kB
VmallocUsed: 4744 kB
VmallocChunk: 34359730812 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 49088 kB
DirectMap2M: 475136 kB

The /proc filesystem is pretty sprawling and vast; check out the
manual page for proc if you get a spare moment—you won't regret
it in a hurry (you might regret it later).

/sys
/sys or sysfs is a filesystem for exporting kernel objects (according to its manual
page), which means it's another filesystem for accessing kernel information (like
/proc).

It can be very useful in scripts for doing things such as listing discovered block
devices:

$ ls -l /sys/block
total 0
lrwxrwxrwx. 1 root root 0 Sep 2 12:29 dm-0 ->
../devices/virtual/block/dm-0
lrwxrwxrwx. 1 root root 0 Sep 2 12:29 dm-1 ->
../devices/virtual/block/dm-1
lrwxrwxrwx. 1 root root 0 Sep 2 12:29 sda ->
../devices/pci0000:00/0000:00:01.1/ata1/host0/target0:0:0/0:0:0:0/bloc
k/sda
lrwxrwxrwx. 1 root root 0 Sep 2 12:29 sdb ->
../devices/pci0000:00/0000:00:01.1/ata1/host0/target0:0:1/0:0:1:0/bloc
k/sdb
lrwxrwxrwx. 1 root root 0 Sep 2 12:29 sdc ->
../devices/pci0000:00/0000:00:01.1/ata2/host1/target1:0:1/1:0:1:0/bloc
k/sdc

Hardware and Disks Chapter 5

[252]

It can also be useful for finding the device IDs of an individual component (if you
don't have lshw or lspci handy, for example).

In the following example, I've listed the vendor and device IDs of the eth0 device:

$ cat /sys/class/net/eth0/device/vendor
0x8086
$ cat /sys/class/net/eth0/device/device
0x100e

With this information, I can check the details against a list of devices. I chose to check
out the PCI ID repository, where I learned that the vendor ID belongs to the Intel
Corporation and the device ID translates to 82540EM Gigabit Ethernet Controller.

There's a lot more to /sys outside the hardware realm, and it can be
a good idea to research the filesystem in more depth. The manual
page (5) for sysfs is a debatable must.

dmesg (and the kernel logs)
dmesg is a way to print or control the kernel ring buffer according to its manual but,
to you and me, it's a great way to quickly see if your hardware was detected by the
kernel as it's initialized.

Running dmesg will print to stdout, so it's handy to pipe it into less:

$ dmesg | less

Once done, you should be able to search for specific strings. Continuing with our
theme, we're going to look for Intel and see what's loaded:

[2.221242] e1000: Intel(R) PRO/1000 Network Driver - version
7.3.21-k8-NAPI

If we look for ATA, we can also see our disks being detected:

[0.940242] ata2.01: ATA-6: VBOX HARDDISK, 1.0, max UDMA/133
[0.940248] ata2.01: 4194304 sectors, multi 128: LBA
[0.940807] ata1.00: ATA-6: VBOX HARDDISK, 1.0, max UDMA/133
[0.940810] ata1.00: 83886080 sectors, multi 128: LBA
[0.940815] ata1.01: ATA-6: VBOX HARDDISK, 1.0, max UDMA/133
[0.940817] ata1.01: 4194304 sectors, multi 128: LBA

Hardware and Disks Chapter 5

[253]

There's even a -T option, to give you human-readable timestamps, which can be
especially useful, as shown in the following against our IDE (PATA) controllers:

[Sun Sep 2 12:29:08 2018] ata1: PATA max UDMA/33 cmd 0x1f0 ctl 0x3f6
bmdma 0xd000 irq 14
[Sun Sep 2 12:29:08 2018] ata2: PATA max UDMA/33 cmd 0x170 ctl 0x376
bmdma 0xd008 irq 15

dmidecode
Another noisy-but-favorite tool from Chapter 1, Introduction and Environment setup,
dmidecode decodes the DMI table.

We used it to check for virtual hardware initially, but on a non-virtual machine, it can
be more useful.

Compare the following -t processor dumps:

$ sudo dmidecode -t processor
dmidecode 3.0
Getting SMBIOS data from sysfs.
SMBIOS 2.5 present.

Note the stark emptiness on our virtual machine, compared with the example from
my laptop:

$ sudo dmidecode -t processor
dmidecode 3.1
Getting SMBIOS data from sysfs.
SMBIOS 3.0.0 present.

Handle 0x003F, DMI type 4, 48 bytes
Processor Information
 Socket Designation: U3E1
 Type: Central Processor
 Family: Core i7
 Manufacturer: Intel(R) Corporation
 ID: E9 06 08 00 FF FB EB BF
 Signature: Type 0, Family 6, Model 142, Stepping 9
 Flags:
<SNIP>
 Core Count: 2
 Core Enabled: 2
 Thread Count: 4
 Characteristics:
 64-bit capable

Hardware and Disks Chapter 5

[254]

 Multi-Core
 Hardware Thread
 Execute Protection
 Enhanced Virtualization
 Power/Performance Control

What this serves to show is that, in some scenarios, more information might be
gleaned from a physical machine than a virtual one.

The same can be said in reverse: if someone is doing everything in
their power to obfuscate what hardware is running from you, firstly
you should suspect you're running on a VM, and then secondly you
should wonder why they're going to such great lengths to hide that
fact.

/dev
If I had to choose a favorite pseudo-filesystems, I would be one odd individual,
but if you forced me, it would probably be /dev.

This isn't because of some love for the word dev or some affinity for its overuse, but
rather because I find myself inside it so often.

As with all of the pseudo-filesystems, they're transient and
temporary (tmpfs). Don't do as I once saw a colleague do and store
things in them, because the moment you reboot your box: poof, your
files are gone.

On the surface, /dev looks messy:

$ ls /dev/
autofs hugepages port shm tty18 tty33
tty49 tty7 vcs6
block hwrng ppp snapshot tty19 tty34
tty5 tty8 vcsa
bsg initctl ptmx snd tty2 tty35
tty50 tty9 vcsa1
btrfs-control input pts stderr tty20 tty36
tty51 ttyS0 vcsa2
char kmsg random stdin tty21 tty37
tty52 ttyS1 vcsa3
console log raw stdout tty22 tty38
tty53 ttyS2 vcsa4
core loop-control rtc tty tty23 tty39
tty54 ttyS3 vcsa5

Hardware and Disks Chapter 5

[255]

cpu mapper rtc0 tty0 tty24 tty4
tty55 uhid vcsa6
cpu_dma_latency mcelog sda tty1 tty25 tty40
tty56 uinput vfio
crash mem sda1 tty10 tty26 tty41
tty57 urandom vga_arbiter
disk mqueue sda2 tty11 tty27 tty42
tty58 usbmon0 vhci
dm-0 net sda3 tty12 tty28 tty43
tty59 vcs vhost-net
dm-1 network_latency sdb tty13 tty29 tty44
tty6 vcs1 VolGroup00
fd network_throughput sdc tty14 tty3 tty45
tty60 vcs2 zero
full null sg0 tty15 tty30 tty46
tty61 vcs3
fuse nvram sg1 tty16 tty31 tty47
tty62 vcs4
hpet oldmem sg2 tty17 tty32 tty48
tty63 vcs5

However, when you know the know, you'll find it invaluable.

Let's ls the /dev/disk/ directory:

$ ls /dev/disk/
by-id by-path by-uuid

Intriguing options—I do like those!

Choosing the by-id option shows us all our disk devices, by-id:

$ ls /dev/disk/by-id/
ata-VBOX_HARDDISK_VB4eceb5be-efcdfb56
ata-VBOX_HARDDISK_VB804908ad-25f1585c
ata-VBOX_HARDDISK_VBcf466104-c1479f0d
ata-VBOX_HARDDISK_VBcf466104-c1479f0d-part1
ata-VBOX_HARDDISK_VBcf466104-c1479f0d-part2
ata-VBOX_HARDDISK_VBcf466104-c1479f0d-part3
dm-name-VolGroup00-LogVol00
dm-name-VolGroup00-LogVol01
dm-uuid-LVM-
SA8LTUF2yzFEV1RdgThw0ZiRxhyHFKuUIAjIC6ScnMtvH67BTyTN31hd82bgDSzd
dm-uuid-LVM-
SA8LTUF2yzFEV1RdgThw0ZiRxhyHFKuUj6b8IVKEw37bTwOqy81Ud3juFCSJBg12
lvm-pv-uuid-vrrtbx-g480-HcJI-5wLn-4aOf-Olld-rC03AY

$ ls /dev/disk/by-path/

Hardware and Disks Chapter 5

[256]

pci-0000:00:01.1-ata-1.0 pci-0000:00:01.1-ata-1.0-part2
pci-0000:00:01.1-ata-1.1
pci-0000:00:01.1-ata-1.0-part1 pci-0000:00:01.1-ata-1.0-part3
pci-0000:00:01.1-ata-2.1

The following is my absolute favorite, by-uuid:

$ ls /dev/disk/by-uuid/
570897ca-e759-4c81-90cf-389da6eee4cc c39c5bed-f37c-4263-bee8-
aeb6a6659d7b
b60e9498-0baa-4d9f-90aa-069048217fee

The main reason I like these is because these entries are actually symlinks to the
device they're named for:

$ ls -l /dev/disk/by-uuid/
total 0
lrwxrwxrwx. 1 root root 10 Sep 2 12:29 570897ca-
e759-4c81-90cf-389da6eee4cc -> ../../sda2
lrwxrwxrwx. 1 root root 10 Sep 2 12:29
b60e9498-0baa-4d9f-90aa-069048217fee -> ../../dm-0
lrwxrwxrwx. 1 root root 10 Sep 2 12:29 c39c5bed-f37c-4263-bee8-
aeb6a6659d7b -> ../../dm-1

Because of this, I now know that my sda2 partition has a UUID of 570897ca-
e759-4c81-90cf-389da6eee4cc that can be used for various tasks.

The most obvious use of the UUID is in most systems' fstab files:

$ cat /etc/fstab

#
/etc/fstab
Created by anaconda on Sat May 12 18:50:26 2018
#
Accessible filesystems, by reference, are maintained under
'/dev/disk'
See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more
info
#
/dev/mapper/VolGroup00-LogVol00 / xfs
defaults 0 0
UUID=570897ca-e759-4c81-90cf-389da6eee4cc /boot xfs
defaults 0 0
/dev/mapper/VolGroup00-LogVol01 swap swap
defaults 0 0

Hardware and Disks Chapter 5

[257]

So, marrying the two pieces of information up, we now have the actual device
designation (sda2) of our fstab UUID entry!

The reason UUIDs are used is because device designation can
change, historically more so than now. On one boot, your /boot
filesystem might be denoted as sda2, then on another a different
device might be found first, and suddenly /boot is sdb2, breaking
fstab.

How it works…
What we're mostly doing here is checking what the kernel is aware of in terms of
devices connected to your system.

PCI devices, as well as USB devices, have denotions that are the same across all
operating systems (you'll see the same Hex values on Windows, Mac, and BSD). This
allows for the kernel to choose and load the appropriate bit of code, written to interact
with that same device.

It's rare, but it can happen that one module supersedes an older one or two drivers
can both be used with the same hardware; in this case, it's useful to know your
hardware device IDs and the bit of kernel code that's running against them.

If you use Linux on the desktop, and use an Nvidia or AMD GPU,
there's a high chance you'll be interacting with drivers and what the
kernel loads, as there's both closed source and open source versions
to pick from.

Testing hardware
In this section, we'll discuss methods for testing potentially faulty hardware by
looking at SMART and disk-testing software, as well as physically troubleshooting
RAM issues.

Working with disks can be exceptionally risky, and you should
always make sure that you have working backups before you start
anything that might be hazardous to your data.

Hardware and Disks Chapter 5

[258]

Getting ready
Here, we're mostly going to be using the Vagrant box we've created, but you may also
want to take a look at Memtest86+ from http:/ /www. memtest. org/, which I mention
for memory testing.

Connect to your VM and install smartmontools:

$ vagrant ssh
$ sudo yum install -y smartmontools hdparm

You might also want to download the latest Memtest86+ ISO.

How to do it…
We'll start by looking at disk health.

Self-monitoring, analysis, and reporting technology
(SMART)
Firstly, it's a good idea to make sure that smartd is running on whichever system you
want to query:

$ sudo systemctl enable smartd

smartd is the monitoring daemon for SMART; the daemon attempts to enable
monitoring on compatibly ATA devices when it starts and, by default, polls the ATA
devices every 30 minutes.

By default, errors detected by smartd as part of its periodic work are logged using
the SYSLOG interface. It can also email out to an administrator if configured to do so.

Once enabled, disks can then be queried with the smartctl tool:

$ sudo smartctl -a /dev/sda

http://www.memtest.org/
http://www.memtest.org/
http://www.memtest.org/
http://www.memtest.org/
http://www.memtest.org/
http://www.memtest.org/
http://www.memtest.org/
http://www.memtest.org/
http://www.memtest.org/
http://www.memtest.org/

Hardware and Disks Chapter 5

[259]

Note the use of sudo and the denoting of a disk device.

Sadly, because we're in a VirtualBox VM, this won't give us anything useful:

smartctl 6.5 2016-05-07 r4318 [x86_64-linux-3.10.0-862.2.3.el7.x86_64]
(local build)
Copyright (C) 2002-16, Bruce Allen, Christian Franke,
www.smartmontools.org

=== START OF INFORMATION SECTION ===
Device Model: VBOX HARDDISK
Serial Number: VBcf466104-c1479f0d
Firmware Version: 1.0
User Capacity: 42,949,672,960 bytes [42.9 GB]
Sector Size: 512 bytes logical/physical
Device is: Not in smartctl database [for details use: -P showall]
ATA Version is: ATA/ATAPI-6 published, ANSI INCITS 361-2002
Local Time is: Sun Sep 2 14:18:30 2018 UTC
SMART support is: Unavailable - device lacks SMART capability.

A mandatory SMART command failed: exiting. To continue, add one or
more '-T permissive' options.

However, if you tried this on a physical machine, results differ and more information
can be gleaned.

hdparm
It's possible that your disks are reporting back fine to your SMART commands, but
you're still seeing some form of slowdown or other issues.

You can benchmark a disk's read with the hdparm tool (available in the default
repositories).

We can test the speeds of our disk using the following:

$ sudo hdparm -tT /dev/sda

Hardware and Disks Chapter 5

[260]

The manual page for hdparm suggests doing these tests two or three
times for average results and running them on otherwise inactive
systems.

Your mileage may vary, but the results from my system look like this:

/dev/sda:
 Timing cached reads: 13158 MB in 1.99 seconds = 6597.20 MB/sec
 Timing buffered disk reads: 2714 MB in 3.00 seconds = 903.83 MB/sec

Partly, we have a problem here, because what we're actually doing is reading from
the kernel's page cache. We can bypass this using the --direct option, which reads
directly from the drive into buffers of hdparm:

$ sudo hdparm -tT --direct /dev/sda

These results are more raw disk read performance:

/dev/sda:
 Timing O_DIRECT cached reads: 2416 MB in 2.00 seconds = 1208.08
MB/sec
 Timing O_DIRECT disk reads: 3648 MB in 3.00 seconds = 1215.78 MB/sec

Memory testing
Memory is a little easier to test, though the most thorough way of checking every inch
of your DIMMs is to take the box offline for a few hours while you run Memtest86+.

Programs such as memtester also exist, which can be executed on a
running system. The problem with these types of test is that they
won't test memory already in use by the system, and they can end
up fighting processes such as the Out Of Memory (OOM) killer.

If you have the ISO image from the Memtest86+ website, you can attach it to your VM
and boot into the program (completely independently of CentOS).

Hardware and Disks Chapter 5

[261]

It will look something like this:

Any errors will show up in the bottom half of the screen, and you'll know you have
bad memory.

I used to let Memtest86+ do five passes over the memory I was
testing when I used it every night during my data center days.

If you find that your system won't boot at all, but you suspect memory problems, it
can be a good idea to test in a binary fashion. By this, I mean that if your server has
128 sticks of memory (not uncommon), you should remove 64 of them and test the
remaining batch. If your server boots, you know your faulty stick is somewhere in the
64 you removed. If your server doesn't boot, your faulty stick is somewhere in the
batch that you left inside.

Hardware and Disks Chapter 5

[262]

Repeat this technique, halving the memory you check each time, until you're down to
two DIMMs, one of which you know to be faulty, and then test each in turn.

Testing in the previous fashion may sound obvious, but at two
o'clock in the morning, when you can't think straight, having read
these words might save your sanity.

How it works…
SMART reads information by querying the /dev/ device you target and displaying
what it's learned about a SMART-compatible device.

When we're using hdparm, we're actually running tests regardless of our filesystem,
because the program reads from the disk directly—because of this, real-world speed
may be different.

There's more…
I didn't include testing graphics cards and things of that nature in this section because
it's usually quite easy to tell when a graphics card is on the way out (graphical
glitches, random lines, and occasional beeps).

I also didn't mention physical RAID cards, because there's such an abundance that it
would be impossible to list a coherent method for all of them. The best advice I can
give for physical RAID cards is to check out the manufacturer's details on testing.

We didn't cover write tests for disks, partly because it's usually pretty obvious to tell
disk issues from read tests alone, and partly because a lot of the methods of testing
writes can be destructive if done incorrectly.

Hardware and Disks Chapter 5

[263]

The role of the kernel
We're going to watch the kernel running through its startup process, as well as look at
which modules have been loaded by the time we get to the OS.

Getting ready
For this section, ensure your VM is up and running, as we're going to talk about
hardware initialization:

$ vagrant ssh

Connect to your VM. If you've just come off the previous section, you may want to
destroy and recreate your VM to ensure a vanilla experience.

How to do it…
First, we're going to watch our system boot.

Start by disabling the quiet option in our boot configuration so that we can actually
see information on our VM display:

$ sudo sed -i 's/ quiet//g' /etc/sysconfig/grub

Now, we need to generate a new grub configuration file, as we've made a change:

$ sudo grub2-mkconfig | sudo tee /boot/grub2/grub.cfg

The previous code is a good example of what you would do if
someone asked you to make a grub configuration change, a
surprisingly common action.

Hardware and Disks Chapter 5

[264]

Now, bring up the VirtualBox main window, and double-click your VM so, you can
see the black console:

Bring up your Terminal connection so that you can see both and reboot your VM with
the reboot command:

$ sudo reboot

Hardware and Disks Chapter 5

[265]

Keep your eyes on the VirtualBox window; you should see something like the
following screenshot:

Did you note that scrolling information? It probably flew by too fast for you to read,
but it's your system working through initializing itself.

You can close your VirtualBox window now and continue in the Terminal.

If you're interested in reading back through what you just saw, you might remember
the dmesg command we used previously; everything you've just seen is available to
view.

Now that we're in a running system again, we can see which modules the kernel has
loaded to deal with our hardware:

$ lsmod
Module Size Used by
sunrpc 353310 1
intel_powerclamp 14419 0

Hardware and Disks Chapter 5

[266]

iosf_mbi 14990 0
crc32_pclmul 13133 0
ghash_clmulni_intel 13273 0
snd_intel8x0 38199 0
ppdev 17671 0
snd_ac97_codec 130556 1 snd_intel8x0
ac97_bus 12730 1 snd_ac97_codec
aesni_intel 189415 0
snd_pcm 101643 2 snd_ac97_codec,snd_intel8x0
snd_timer 29810 1 snd_pcm
lrw 13286 1 aesni_intel
pcspkr 12718 0
sg 40721 0
gf128mul 15139 1 lrw
e1000 137574 0
glue_helper 13990 1 aesni_intel
ablk_helper 13597 1 aesni_intel
snd 79215 4
snd_ac97_codec,snd_intel8x0,snd_timer,snd_pcm
cryptd 20511 3
ghash_clmulni_intel,aesni_intel,ablk_helper
i2c_piix4 22401 0
soundcore 15047 1 snd
i2c_core 63151 1 i2c_piix4
parport_pc 28205 0
parport 46395 2 ppdev,parport_pc
video 24538 0
ip_tables 27126 0
xfs 1003971 2
libcrc32c 12644 1 xfs
sd_mod 46322 3
crc_t10dif 12912 1 sd_mod
crct10dif_generic 12647 0
ata_generic 12923 0
pata_acpi 13053 0
ata_piix 35052 2
libata 242992 3 pata_acpi,ata_generic,ata_piix
crct10dif_pclmul 14307 1
crct10dif_common 12595 3
crct10dif_pclmul,crct10dif_generic,crc_t10dif
crc32c_intel 22094 1
serio_raw 13434 0
dm_mirror 22289 0
dm_region_hash 20813 1 dm_mirror
dm_log 18411 2 dm_region_hash,dm_mirror
dm_mod 123941 8 dm_log,dm_mirror

That's a lot of modules!

Hardware and Disks Chapter 5

[267]

As I mentioned previously, some of these modules will be obvious, and more still
won't be.

An obvious one from that list might be e1000 because we already know that's our
network module from an earlier section.

We can get specific information about a module using modinfo:

$ modinfo e1000
filename:
/lib/modules/3.10.0-862.2.3.el7.x86_64/kernel/drivers/net/ethernet/int
el/e1000/e1000.ko.xz
version: 7.3.21-k8-NAPI
license: GPL
description: Intel(R) PRO/1000 Network Driver
author: Intel Corporation, <linux.nics@intel.com>
retpoline: Y
rhelversion: 7.5
srcversion: 04454A212DD89712602561D
alias: pci:v00008086d00002E6Esv*sd*bc*sc*i*
alias: pci:v00008086d000010B5sv*sd*bc*sc*i*
alias: pci:v00008086d00001099sv*sd*bc*sc*i*
<SNIP>
alias: pci:v00008086d00001000sv*sd*bc*sc*i*
depends:
intree: Y
vermagic: 3.10.0-862.2.3.el7.x86_64 SMP mod_unload modversions
signer: CentOS Linux kernel signing key
sig_key:
66:6E:F0:31:93:3F:51:27:06:23:72:83:2C:E9:BA:8A:49:00:5C:8F
sig_hashalgo: sha256
parm: TxDescriptors:Number of transmit descriptors (array of
int)
parm: RxDescriptors:Number of receive descriptors (array of
int)
parm: Speed:Speed setting (array of int)
parm: Duplex:Duplex setting (array of int)
parm: AutoNeg:Advertised auto-negotiation setting (array of
int)
parm: FlowControl:Flow Control setting (array of int)
parm: XsumRX:Disable or enable Receive Checksum offload
(array of int)
parm: TxIntDelay:Transmit Interrupt Delay (array of int)
parm: TxAbsIntDelay:Transmit Absolute Interrupt Delay (array
of int)
parm: RxIntDelay:Receive Interrupt Delay (array of int)
parm: RxAbsIntDelay:Receive Absolute Interrupt Delay (array
of int)

Hardware and Disks Chapter 5

[268]

parm: InterruptThrottleRate:Interrupt Throttling Rate (array
of int)
parm: SmartPowerDownEnable:Enable PHY smart power down
(array of int)
parm: copybreak:Maximum size of packet that is copied to a
new buffer on receive (uint)
parm: debug:Debug level (0=none,...,16=all) (int)

The preceding code not only gives us the version of the module and the license, but
the author and their information for contacting purposes (usually bug reports).

If you try to remove a module that's in use, you won't be allowed, as seen in the
following modprobe example:

$ sudo modprobe -r libata
modprobe: FATAL: Module libata is in use.

Similarly, if you want to load a new module (maybe because you want to test it), you
can again use modprobe:

$ sudo modprobe nf_tables

We can then see our loaded module:

$ lsmod | grep nf_
nf_tables 74179 0
nfnetlink 14490 1 nf_tables

Loading a module on boot is a different matter, as it requires a configuration file if not
built in to the kernel (and kernel options are usually generic so that vendors can cover
as many bases as possible without causing problems).

To ensure nf_tables starts with the rest of our kernel, run the following:

$ echo "nf_tables" | sudo tee /etc/modules-load.d/nftables.conf

Reboot and use lsmod to see whether your module has loaded.

How it works…
When your system boots, several things happen in sequence, and these vary slightly
depending on trivial differences (such as which bootloader you're using, though
mostly it's Grub these days).

Hardware and Disks Chapter 5

[269]

One of these things is that the kernel extracts itself and loads, before handing over
control to the init system (systemd).

While the kernel is loading, it also detects hardware in the system and adds the
appropriate module to its running state so that hardware can be correctly interacted
with and managed.

When we list modules with lsmod, we're actually just printing /proc/modules in a
more readable format.

There's more…
You can dynamically load and unload modules, as well as manually blacklist certain
ones from loading at all.

This can come in handy if you have a particular piece of hardware that's faulty,
and/or causes a Kernel Panic (the kernel ceasing to function entirely and crashing).

To blacklist a module, it's simply a case of adding it to a blacklist in
/etc/modprobe.d/:

$ echo "blacklist e1000" | sudo tee -a /etc/modprobe.d/blacklist.conf

In the previous example, I blacklisted e1000. Clearly, this is going to
cause me problems as it means my network card won't have
appropriate drivers at boot, but it made the system more secure!

Disk configuration on Linux
In this section, we're going to look at the out-of-the-box configuration of the disks in
our VM and discuss the differences between vda, sda, hda, and nvme. We're also
going to investigate the difference between disks, virtual disks, partitions, and
filesystems.

Getting ready
Here, we're going to be using the Vagrant box we created at the beginning of this
chapter.

Hardware and Disks Chapter 5

[270]

Ensure your centos1 VM is up and connect to it:

$ vagrant ssh centos1

Check that your VM has the appropriate packages for this section installed.

$ sudo yum install lvm2 -y

How to do it…
We'll start by looking at the physical disks in our system and work out how they
relate to what we can see with the df command.

Listing disks with lsblk
As part of your base system, a program called lsblk should be installed.

Running this program gives you a human-readable tree view of our system's block
devices, their logical separations, and their mount points:

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 40G 0 disk
├─sda1 8:1 0 1M 0 part
├─sda2 8:2 0 1G 0 part /boot
└─sda3 8:3 0 39G 0 part
 ├─VolGroup00-LogVol00
 253:0 0 37.5G 0 lvm /
 └─VolGroup00-LogVol01
 253:1 0 1.5G 0 lvm [SWAP]
sdb 8:16 0 2G 0 disk
sdc 8:32 0 2G 0 disk

A block device is basically a layer of abstraction atop a storage
medium; character (raw) devices allow direct access to the storage
medium, but may have restrictions applied that are abstracted away
by using a block device instead.

In the previous example, we have our physical disks:

sda

sdb

sdc

Hardware and Disks Chapter 5

[271]

We then have our partitions:

sda1

sda2

sda3

We have our volume group:

VolGroup00

We have logical volumes atop our singular volume group:

LogVol00

LogVol01

Finally, we have our mount points:

/boot

/

[SWAP]

Listing mount points with df
Now that we know the rough disk layout of our system, we might want to know all
of the other mount points, too. This is easily achieved with a program called df:

$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00 39269648 849960 38419688 3% /
devtmpfs 239968 0 239968 0% /dev
tmpfs 249712 0 249712 0% /dev/shm
tmpfs 249712 4572 245140 2% /run
tmpfs 249712 0 249712 0% /sys/fs/cgroup
/dev/sda2 1038336 64076 974260 7% /boot
tmpfs 49944 0 49944 0% /run/user/1000

For better, human-readable output, we can use -h:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup00-LogVol00 38G 831M 37G 3% /
devtmpfs 235M 0 235M 0% /dev
tmpfs 244M 0 244M 0% /dev/shm
tmpfs 244M 4.5M 240M 2% /run

Hardware and Disks Chapter 5

[272]

tmpfs 244M 0 244M 0% /sys/fs/cgroup
/dev/sda2 1014M 63M 952M 7% /boot
tmpfs 49M 0 49M 0% /run/user/1000

Here, we can see the mount points we already know about from the previous section,
those being / and /boot.

We can also see other mount points, specifically those tagged with the devtmpfs and
tmpfs filesystems.

These mount points are mounted atop RAM disks—a concept that's been around for
years, but which we still use because RAM is just so damn quick (considerably faster
than SSDs at the moment).

Temporary directories are those that contain files we don't care
about preserving across reboots (for the most part).

Mostly, the mount points you will be concerned with day-to-day are those that
contain non-transient files.

Listing filesystems with df
As well as knowing which of your disks is mounted where, you might also want to
know which filesystem is being used atop the chunk of space; this is done with the -T
flag:

$ df -T
Filesystem Type 1K-blocks Used Available
Use% Mounted on
/dev/mapper/VolGroup00-LogVol00 xfs 39269648 849924 38419724
3% /
devtmpfs devtmpfs 239968 0 239968
0% /dev
tmpfs tmpfs 249712 0 249712
0% /dev/shm
tmpfs tmpfs 249712 4572 245140
2% /run
tmpfs tmpfs 249712 0 249712
0% /sys/fs/cgroup
/dev/sda2 xfs 1038336 64076 974260
7% /boot
tmpfs tmpfs 49944 0 49944
0% /run/user/1000

Hardware and Disks Chapter 5

[273]

Here, we can easily see that our slash-root mount point (/) and boot mount point are
formatted as XFS.

CentOS and Red Hat prefer to use XFS at present, but it's not
uncommon to come across systems using ext4, ext3, ext2, btrfs,
and zfs, to name a few. Functionally, there are differences, but for
day-to-day activities, they all handle writing and reading files,
which is the important bit.

Listing logical volume manager disks, volume
groups, and logical volumes
If you're using LVM (which we are by default, and which a lot of systems do), you
may want to know the layout of your disks that are being handled by LVM.

Physical disks
To start, we need to know which physical volumes LVM is aware of; this is
accomplished with pvs or pvdisplay:

$ sudo pvs
 PV VG Fmt Attr PSize PFree
 /dev/sda3 VolGroup00 lvm2 a-- <38.97g 0
$ sudo pvdisplay
 --- Physical volume ---
 PV Name /dev/sda3
 VG Name VolGroup00
 PV Size <39.00 GiB / not usable 30.00 MiB
 Allocatable yes (but full)
 PE Size 32.00 MiB
 Total PE 1247
 Free PE 0
 Allocated PE 1247
 PV UUID vrrtbx-g480-HcJI-5wLn-4aOf-Olld-rC03AY

Note how sudo pvs is a more traditional, unix-y output, whereas the second is
more intended for human parsing.

Here, we can see that the only physical device LVM is aware of is the sda3 partition
atop the sda device.

Hardware and Disks Chapter 5

[274]

A physical volume in LVM land can be either an entire device (sda)
or a partition on that device (sda3). Generally, which one is used is
down to the system administrator's personal preference, as there are
both pros and cons to both methods. Personally, I prefer to give the
whole device to LVM and let it do all of the work, removing a layer
of abstraction, but I've known people who swear by carving up the
disk into partitions before LVM even gets a say.

Volume groups
You can have more than one physical volume grouped together in a volume group;
later, this allows for flexibility in terms of the logical volumes that sit on top.

You will get a printout when using pvs and pvdisplay that tells you the volume
group that the disk is a part of, but if you want to only list the volume group
information, vgs and vgdisplay can be used:

$ sudo vgs
 VG #PV #LV #SN Attr VSize VFree
 VolGroup00 1 2 0 wz--n- <38.97g 0
$ sudo vgdisplay
 --- Volume group ---
 VG Name VolGroup00
 System ID
 Format lvm2
 Metadata Areas 1
 Metadata Sequence No 3
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 2
 Open LV 2
 Max PV 0
 Cur PV 1
 Act PV 1
 VG Size <38.97 GiB
 PE Size 32.00 MiB
 Total PE 1247
 Alloc PE / Size 1247 / <38.97 GiB
 Free PE / Size 0 / 0
 VG UUID SA8LTU-F2yz-FEV1-RdgT-hw0Z-iRxh-yHFKuU

Here, we can see that there are two logical volumes atop this volume group.

Hardware and Disks Chapter 5

[275]

Logical volumes
Finally, in the LVM stack, we have the logical volumes. These are the logical devices
that the filesystems get applied to, and which can then be mounted at a point on your
system.

Have you worked out the logic behind the command naming?

For this section, we will use lvs and lvdisplay:

$ sudo lvs
 LV VG Attr LSize Pool Origin Data% Meta%
Move Log Cpy%Sync Convert
 LogVol00 VolGroup00 -wi-ao---- <37.47g
 LogVol01 VolGroup00 -wi-ao---- 1.50g
$ sudo lvdisplay
 --- Logical volume ---
 LV Path /dev/VolGroup00/LogVol00
 LV Name LogVol00
 VG Name VolGroup00
 LV UUID j6b8IV-KEw3-7bTw-Oqy8-1Ud3-juFC-SJBg12
 LV Write Access read/write
 LV Creation host, time localhost.localdomain, 2018-05-12 18:50:24
+0000
 LV Status available
 # open 1
 LV Size <37.47 GiB
 Current LE 1199
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 8192
 Block device 253:0
 --- Logical volume ---
 LV Path /dev/VolGroup00/LogVol01
 LV Name LogVol01
 VG Name VolGroup00
 LV UUID IAjIC6-ScnM-tvH6-7BTy-TN31-hd82-bgDSzd
 LV Write Access read/write
 LV Creation host, time localhost.localdomain, 2018-05-12 18:50:25
+0000
 LV Status available
 # open 2
 LV Size 1.50 GiB
 Current LE 48
 Segments 1
 Allocation inherit
 Read ahead sectors auto

Hardware and Disks Chapter 5

[276]

 - currently set to 8192
 Block device 253:1

There are two logical volumes!

We know that one of them is sitting under our slash-root and, thanks to lsblk earlier,
we know that the second is providing our swap space.

Listing swap
Swap is special, and it's more like extended, slow, and somewhat annoying memory
than it is disk space.

Swap is used when your system's RAM is full, and the kernel starts to offload
infrequently accessed memory onto the disk, where it can be read back at a much
slower rate.

Is it time for another holy war? I think it is! Some systems
administrators swear by swap and will always make sure their
system has at least a few megabytes of space to swap into, even if
they've got 256 GB of RAM; other systems administrators say that, if
you're using that much RAM and still swapping, you need more
RAM. Smile and nod if you're not the person making the decision
about whether or not to even have swap—it's not worth it.

We can list what swap our system is using with swapon, like so:

$ swapon --show
NAME TYPE SIZE USED PRIO
/dev/dm-1 partition 1.5G 0B -1

Here, we can see our one swap device is /dev/dm-1, but we think it's an LVM
device? That can't be right.

But it can!

Logical volumes are actually mapped; dm-1 is a low-level representation of our
logical volume. Running ls -l on our logical volume device proves the following:

$ ls -l /dev/mapper/VolGroup00-LogVol01
lrwxrwxrwx. 1 root root 7 Sep 9 09:13 /dev/mapper/VolGroup00-LogVol01
-> ../dm-1

Hardware and Disks Chapter 5

[277]

Our device is actually linked and mapped to dm-1, which is why it's listed as it is in
our swapon command.

How it works…
Physically, you have a disk.

This disk can be a hard disk drive (the old-school spinning platter type) or a solid
state drive of some sort, be it NVMe on an M.2 connector or generic SATA.

Whatever the type of disk, you want to use it for storage.

To store data on the disk, it needs to have some things. First, it needs to be readable
by the OS; this bit is handled by the kernel. If the kernel determines the disk to be an
IDE drive (uncommon), it'll probably show as an hda device.

If the disk is SATA or SCSI, it might show up as an sda device. If it's a virtio virtual
disk, and shows as such to the virtual machine, it will be listed as vda.

The disk lettering is sequential, which is why our three disks show up as sda, sdb,
and sdc.

This lettering doesn't have to be consistent; the disks are assigned
their denotion at boot-time, meaning your computer can come up
with its first disk as sdb one day and sda another, because of
various factors. The way around this is to use disk UUIDs (seen in
fstab earlier) or labels.

Secondly, after the operating system recognizes that a disk exists, it has to check for
partitions and filesystems. Partitions are a segment of a disk, and filesystems are the
recipe for how files are read and written to the drive.

In this section, we started out with lsblk, which we used to query the sysfs
filesystem and the udev database, before displaying it in a human-readable way.
Generally, this is my first stop when trying to determine what a system looks like.

After that, we had a look at mount points and filesystems.

Mount points are the area of the Linux hierarchy to which disks are assigned. Unlike
Windows, where the structure starts at the disk, on Linux, the structure is set and the
disks fit in (flipping the Windows model on its head).

Hardware and Disks Chapter 5

[278]

It's a little hard to visualize the Linux hierarchy of mount points and filesystems, but
the important thing to remember is that everything starts at root (that is, slash-root
or /) and builds from there. You could have one disk, with one partition, and put
slash-root on that partition, hence making the simplest system possible. Or, you could
put your home directories (/home) on a physical disk of its own, but it would still
exist as /home, one step above slash-root.

Imagine the logical layout of the Linux hierarchy as the absolute,
with the disks almost an irrelevant piece of the puzzle. If you really
felt like it, you could mount a bit of the filesystem at
/home/me/favourite_things/pokemon/absol, entirely on one
disk.

Filesystems are a bit more obvious and generally static (unless you're a system
administrator who really wants to live on the wild side). Once you've carved out a
section of disk that you want to use (say to mount /home on), you decide on a
filesystem.

It's best to go with a typical one in a work environment, something like XFS or ext4,
rather than an experimental one, like btrfs.

At the end of your storage-creating adventure, you've got a disk, with a partition,
which has the ext4 filesystem atop, and which you've mounted at /home.

There's more…
...There's so much more!

The world of filesystems is an ever-evolving and ever-changing one. You'd have
thought that, by now, we'd have data storage licked, but you would be wrong.

There are some filesystems that are better suited for thousands of small files (for
example, databases) and some that are better suited for massive blocks of files (such
as VM disks). Which one you choose to use is up to you.

There are de-duplicating, snapshotting, and even self-healing (apparently)
filesystems.

FreeBSD swears by ZFS, which is also shipped in Ubuntu in the Linux world.
OpenSUSE favors btrfs for a lot of its new installations, and some distributions keep
with the classics, shipping the ext family for familiarity reasons.

Hardware and Disks Chapter 5

[279]

Whichever you decide to use, be sure to keep backups—backups are important.

The filesystem hierarchy
In this section, we'll discuss hier and man hier as a way of determining what your
filesystem's different names mean.

When you look at your system, you might question why certain folders are named in
the way they are:

$ ls
bin dev home lib64 mnt proc run srv tmp vagrant
boot etc lib media opt root sbin sys usr var

What's sbin or opt?

You might also be curious as to know why there's a folder called root when we're
supposed to be in the root of the system, /:

[vagrant@localhost /]$ pwd
/

The filesystem hierarchy has the answers you want!

Getting ready
This section is going to use our lone VM.

If not already connected, connect to your VM.

We're also going to directly reference a man page, so ensure that your man pages are
installed with the following:

$ sudo yum reinstall -y man-db man-pages

How to do it…
To discern how your distribution maintainer thinks the distribution filesystem should
look, run man hier:

$ man hier

Hardware and Disks Chapter 5

[280]

The manual page should open in your default pager (usually less) and can be
navigated as such.

What you should see is something akin to the following—a list of paths, with a
description next to each of them:

Linux Manual Hier Page

How it works…
This manual page is important, and there's no guarantee that it'll be consistent across
the systems that you manage (that is, Debian and CentOS might look distinctly
unfamiliar).

What it should be is the distribution maintainer's understanding of where specific
files go on this distribution. So, according to this manual page, that is the following:

"/bin This directory contains executable programs which are needed in single user
mode and to bring the system up or repair it."

Hardware and Disks Chapter 5

[281]

That one is fairly obvious, but what if we want a directory for add-on packages? hier
for CentOS has you covered:

"/opt This directory should contain add-on packages that contain static files."

How about if you see a path, and you're not sure what it's for, such as /usr/games?
See the following:

" /usr/games Binaries for games and educational programs (optional)."

Curiously, one directory that's omitted from the CentOS-supplied hier manual is
/srv, and it's one I use quite frequently.

Taken from the Ubuntu hier manual, we can see its definition:

"/srv This directory contains site-specific data that is served by this system."

This is a good example of how different systems might put files in different places,
and it's a good place to clear up confusion:

" / This is the root directory. This is where the whole tree starts.

<SNIP>

 /root This directory is usually the home directory for the root user (optional)."

There's more…
At the bottom of your system's hier manual, you might see a reference to The
Filesystem Hierarchy Standard, available at http:/ /www. pathname. com/ fhs/ . This
standard is, according to the manual, as follows:

"The filesystem standard has been designed to be used by Unix distribution
developers, package developers, and system implementors. However, it is primarily
intended to be a reference and is not a tutorial on how to manage a Unix filesystem
or directory hierarchy."

This in itself isn't very helpful because it effectively says "these are more guidelines than
rules", a la Pirates of the Caribbean.

Basically, use man hier as a good rule of thumb for working out how a system is laid
out, but don't assume some narcissistic system administrator hasn't come along and
put Terraform in /usr/local/sbin just to be awkward.

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

Hardware and Disks Chapter 5

[282]

Configuring a blank disk and mounting it
In this section, we'll use CLI tools to partition and format one of our disks (without
LVM), talking about GPT and MBR while we do so. We'll then mount our disk at
/home on our system.

Getting ready
If you're using the supplied Vagrantfile for this chapter, you'll have a system with
two blank disks connected. If you're using your own solution, now would be the time
to add a couple of blank disks.

Connect to your VM and ensure you can see /dev/sdb; if you can't, double check
your Vagrant setup:

$ ls -l /dev/sd*
brw-rw----. 1 root disk 8, 0 Sep 9 15:27 /dev/sda
brw-rw----. 1 root disk 8, 1 Sep 9 15:27 /dev/sda1
brw-rw----. 1 root disk 8, 2 Sep 9 15:27 /dev/sda2
brw-rw----. 1 root disk 8, 3 Sep 9 15:27 /dev/sda3
brw-rw----. 1 root disk 8, 16 Sep 9 15:27 /dev/sdb
brw-rw----. 1 root disk 8, 32 Sep 9 15:27 /dev/sdc

How to do it…
First, we need to partition our disk. Here, we're going to create two partitions of half
the disk each.

Start by using fdisk against /dev/sdb:

$ fdisk /dev/sdb

You'll be dropped into a different shell, that of fdisk.

First, we will create GPT disklabel by typing g:

Command (m for help): g
Building a new GPT disklabel (GUID: DE706D04-7069-456C-B8C4-
C3E405D18A06)

Next, we will create a new partition, with a partition number of 1, a first sector of
2048, and of the size 1 GB.

Hardware and Disks Chapter 5

[283]

We do this by pressing n and Enter, accepting the defaults of the first two prompts (by
pressing Enter without input) and typing +1G when prompted for Last sector:

Command (m for help): n
Partition number (1-128, default 1):
First sector (2048-4194270, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-4194270, default
4194270): +1G
Created partition 1

Next, we use n again to create a second partition although this time we're going to
accept the defaults each time (hit Enter thrice) because we want to use the rest of the
disk:

Command (m for help): n
Partition number (2-128, default 2):
First sector (2099200-4194270, default 2099200):
Last sector, +sectors or +size{K,M,G,T,P} (2099200-4194270, default
4194270):
Created partition 2

Now, we've got our partitions laid out as we want, we need to write the table to the
disk and exist fdisk. Do this with w:

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

These days, systems are pretty good about automatically re-reading
the partition table changes of a device, though occasionally you
might still need to run partprobe to inform your kernel of any
changes manually.

Running lsblk should now show our new partitions:

$ lsblk
<SNIP>
sdb 8:16 0 2G 0 disk
├─sdb1 8:17 0 1G 0 part
└─sdb2 8:18 0 1023M 0 part
<SNIP>

Now that we have two partitions, we're going to format them with a filesystem.

Hardware and Disks Chapter 5

[284]

For the sake of this tutorial, we're going to format one as ext4, and one as XFS:

$ sudo mkfs.ext4 /dev/sdb1
mke2fs 1.42.9 (28-Dec-2013)
Filesystem label=
OS type: Linux
<SNIP>

You will be presented with various bits of information, but hopefully the format
should be done quickly.

For partition two, we're going to use just the mkfs command, which lacks the implied
type of using mkfs.ext4:

$ sudo mkfs -t xfs /dev/sdb2
meta-data=/dev/sdb2 isize=512 agcount=4, agsize=65471
blks
 = sectsz=512 attr=2, projid32bit=1
<SNIP>

We can use a new tool here (blkid) to print the UUID and TYPE of these partitions:

$ sudo blkid /dev/sdb1
/dev/sdb1: UUID="4fba66a8-4be9-4835-b393-72db4bb74c0a" TYPE="ext4"
PARTUUID="c517d14f-0c9d-42cc-863c-8a6985a272c1"
$ sudo blkid /dev/sdb2
/dev/sdb2: UUID="44a4b4e1-bf8b-4ec0-8485-d544a0333b00" TYPE="xfs"
PARTUUID="671f397a-3e33-46b8-831d-2d87ca3d170d"

It looks good!

Finally, it's a good practice to copy over files from the location you're hoping to
mount atop, prior to replacing it with your new filesystem.

If we look at /home at the moment, it looks like this:

$ ls /home
vagrant

If we mount one of our filesystems at /home and ls again, it looks like this:

$ ls /home
lost+found

Our Vagrant user's home folder has vanished!

Hardware and Disks Chapter 5

[285]

The lost+found folder is a function of fsck (the filesystem repair
utility) and is the dumping ground for pieces of files that it can't
make head nor tail of.

This is because we mounted a system over the top of the old location; if we unmount
this new filesystem and ls the directory again, it looks like this:

$ ls /home
vagrant

So, what we really need to do is copy over all existing data (preserving ownership
and rights) before writing atop it.

Start by creating a folder in /mnt (a standard place to do such things), mounting our
new filesystem, and copying the data over:

$ sudo mkdir /mnt/home2
$ sudo mount /dev/sdb1 /mnt/home2
$ sudo cp -rp --preserve=all /home/* /mnt/home2/

In the previous, we used -r to recursively copy and --
preserve=all to preserve things such as the SELinux context of the
files, alongside the ownership and timestamps.

Check your results by confirming the Vagrant user's SSH authorized_keys file still
has the permissions, -rw-------:

$ ls -lha /mnt/home2/vagrant/.ssh/authorized_keys
-rw-------. 1 vagrant vagrant 389 Sep 9 15:28
/mnt/home2/vagrant/.ssh/authorized_keys

Now, umount the filesystem from our temporary location and mount it over the top
of the previous /home, making sure we're not in /home first (by moving to a different
directory):

$ cd /
$ sudo umount /mnt/home2/
$ sudo mount /dev/sdb1 /home

We move to the root of the filesystem (/) on purpose, to avoid the
device being busy and causing complications, though this is more of
an issue when trying to unmount a filesystem that you're still sitting
in.

Hardware and Disks Chapter 5

[286]

Running df should now show your newly mounted partition:

$ df
<SNIP>
/dev/sdb1 999320 2576 927932 1% /home

On a reboot, this change will not be preserved. Later, we'll look at
making this change permanent with fstab and systemd-mountd.

How it works…
When we carved our physical device (sdb) into two partitions, we created them using
fdisk.

First, though, we had to give the disk a partition table, where it could store the
information about the partitions we're creating.

The classic partition table is called Master Boot Record (MBR) and the new-school
one is called GUID Partition Table (GPT).

You may still see MBR systems floating around, but GPT is objectively better to use
these days, allowing for things such as more than four primary partitions (which
MBR is limited to).

You can view the partitions on a disk by again loading fdisk and passing p on the
command line:

Command (m for help): p

Disk /dev/sdb: 2147 MB, 2147483648 bytes, 4194304 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt
Disk identifier: DE706D04-7069-456C-B8C4-C3E405D18A06

Start End Size Type Name
 1 2048 2099199 1G Linux filesyste
 2 2099200 4194270 1023M Linux filesyste

Hardware and Disks Chapter 5

[287]

These logical spaces can then have a filesystem applied atop them, so that when your
OS tries to write files to the disk, the disk knows a way to store the data.

Once done, the disk can then be mounted anywhere in the Linux filesystem hierarchy,
replacing any path you care to.

This works because Linux doesn't care how many disks are attached to your system,
or what type of disk they are; all it cares about are the mount points.

There's more…
One thing to be aware of is that there are different partition system IDs available for
different partition types.

The list of Linux ones that are available on CentOS is as follows:

 19 Linux swap 0657FD6D-
A4AB-43C4-84E5-0933C84B4F4F
 20 Linux filesystem
0FC63DAF-8483-4772-8E79-3D69D8477DE4
 21 Linux server data
3B8F8425-20E0-4F3B-907F-1A25A76F98E8
 22 Linux root (x86) 44479540-F297-41B2-9AF7-
D131D5F0458A
 23 Linux root (ARM) 69DAD710-2CE4-4E3C-
B16C-21A1D49ABED3
 24 Linux root (x86-64) 4F68BCE3-E8CD-4DB1-96E7-
FBCAF984B709
 25 Linux root (ARM-64) B921B045-1DF0-41C3-
AF44-4C6F280D3FAE
 26 Linux root (IA-64) 993D8D3D-
F80E-4225-855A-9DAF8ED7EA97
 27 Linux reserved 8DA63339-0007-60C0-
C436-083AC8230908
 28 Linux home 933AC7E1-2EB4-4F13-
B844-0E14E2AEF915
 29 Linux RAID A19D880F-05FC-4D3B-
A006-743F0F84911E
 30 Linux extended boot BC13C2FF-59E6-4262-A352-
B275FD6F7172
 31 Linux LVM E6D6D379-F507-44C2-
A23C-238F2A3DF928

Hardware and Disks Chapter 5

[288]

These IDs are more informative than anything else these days, though historically,
they might be used for informing a system of specific methods required for reading
and writing data.

For example, if a partition is labelled correctly on an OpenBSD system and then the
drive it's on is plugged into a Linux system, the Linux system should read the ID and
realize what it is, preferably not touching the data inside.

Re-configuring a disk using LVM
We're going to format the second disk in our system, and this time we'll use LVM to
do so. We'll use the various LVM tools (lvs, pvs, and vgs) to accomplish this, before
giving the new logical volume we create a filesystem and mounting it somewhere on
our system.

Getting ready
For this section, we're going to use the second disk in our system (it will probably
be sdc on yours).

Connect to your centos1 VM and check that another disk is available to work with.

If you've come straight from the last section, your lsblk might look like the
following:

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 40G 0 disk
├─sda1 8:1 0 1M 0 part
├─sda2 8:2 0 1G 0 part /boot
└─sda3 8:3 0 39G 0 part
 ├─VolGroup00-LogVol00 253:0 0 37.5G 0 lvm /
 └─VolGroup00-LogVol01 253:1 0 1.5G 0 lvm [SWAP]
sdb 8:16 0 2G 0 disk
├─sdb1 8:17 0 1G 0 part /mnt/home2
└─sdb2 8:18 0 1023M 0 part
sdc 8:32 0 2G 0 disk

We're going to use sdc here.

Hardware and Disks Chapter 5

[289]

How to do it…
As I mentioned previously, some people like to first create a partition on their drive
before introducing it to the LVM lifestyle.

We'll do that here, but only because I'll end up having a fight with one of my
technical authors if I don't.

For an added bit of novelty, we're going to use fdisk without dropping into the
command's shell to hammer home the fact that there are several ways of doing the
same thing in Linux:

$ printf "g\nn\n\n\n\nt\n31\nw\n" | sudo fdisk /dev/sdc

We also set our partition's system ID to be 31—that is, Linux LVM.

To take it one step further, we're going to apply a partition label to our partition,
giving it a friendly name:

$ sudo parted /dev/sdc name 1 "MostlyHarmless"

PartLabels are insanely useful, though next to no-one uses them!
They're also only available for GPT disks. They basically mean you
can reference a partition by name, instead of number or partition
UUID. If you ever find yourself using ZFS on a USB hard drive, I
might have just saved you an aneurysm.

Now that we have a partition, let's present it to LVM. First, we have to make LVM
aware of it, using pvcreate:

$ sudo pvcreate /dev/disk/by-partlabel/MostlyHarmless
 Physical volume "/dev/disk/by-partlabel/MostlyHarmless" successfully
created.

Once done, a pvs command will list our new physical device:

$ sudo pvs
 PV VG Fmt Attr PSize PFree
 /dev/sda3 VolGroup00 lvm2 a-- <38.97g 0
 /dev/sdc1 lvm2 --- <2.00g <2.00g

Adding it to a volume group is step two, which involves creating the volume group
too (or we could add it to VolGroup00, but for now we'll make a new one):

$ sudo vgcreate VolGroup01 /dev/disk/by-partlabel/MostlyHarmless
 Volume group "VolGroup01" successfully created

Hardware and Disks Chapter 5

[290]

Finally, we're going to create a logical volume within this group, though for novelty
we're not going to use all of the available space in the volume group:

$ sudo lvcreate -l 50%FREE -n Home3 VolGroup01
 Logical volume "Home3" created.

Note that now listing our logical volumes with lvs shows our new one, which
is using 50% of the VolGroup01 space:

$ sudo lvs
 LV VG Attr LSize Pool Origin Data% Meta%
Move Log Cpy%Sync Convert
 LogVol00 VolGroup00 -wi-ao---- <37.47g
 LogVol01 VolGroup00 -wi-ao---- 1.50g
 Home3 VolGroup01 -wi-a----- 1020.00m

Logical volumes can be many things and have various uses. What
we have created here is a simple linear volume, suitable for day-to-
day tasks, but lacking things such as redundancy.

We now have a disk that we can place a filesystem atop, before mounting it
somewhere on our VM.

To make a filesystem, we again use mkfs:

$ sudo mkfs.btrfs /dev/mapper/VolGroup01-Home3
btrfs-progs v4.9.1
See http://btrfs.wiki.kernel.org for more information.

Label: (null)
UUID: 7bf4939e-196a-47cf-9326-1408cdf920ac
Node size: 16384
Sector size: 4096
Filesystem size: 1020.00MiB
Block group profiles:
 Data: single 8.00MiB
 Metadata: DUP 51.00MiB
 System: DUP 8.00MiB
SSD detected: no
Incompat features: extref, skinny-metadata
Number of devices: 1
Devices:
 ID SIZE PATH
 1 1020.00MiB /dev/mapper/VolGroup01-Home3

Hardware and Disks Chapter 5

[291]

And again, we can mount it (creating a mount point first):

$ sudo mkdir /mnt/home3
$ sudo mount /dev/mapper/VolGroup01-Home3 /mnt/home3

lsblk can confirm our new setup:

sdc 8:32 0 2G 0 disk
└─sdc1 8:33 0 2G 0 part
 └─VolGroup01-Home3 253:2 0 1020M 0 lvm /mnt/home3

How it works…
What we have created are layers:

We have our physical disk (sdc)
We have a partition atop our physical disk (sdc1)
We have our volume group, with our physical volume inside
(VolGroup01)
We have our logical volume, atop our volume group (Home3)
We have our filesystem, atop our logical volume, which we then mounted
at /mnt/home3

This means that we have complexity, but we also have flexibility.

What we have done is create a virtual block device, in the form of our logical volume.
This logical volume will have data written to it and, in turn, will apply that data to a
physical volume in the volume group, based on decisions by the kernel.

There's more…
When we created the logical volume, we simply specified that the new device should
use 50% of the available space, but we could have also suggested a specific size in
absolute values (for example, 1G).

You might be asking why you would use LVM, if we effectively got to the same
position we were in when we simply placed a filesystem atop a disk partition. The
answer is: flexibility.

Hardware and Disks Chapter 5

[292]

In LVM-land, you can grow volume groups by adding more physical disks to them,
you can move data from one physical disk to another (in a running system), and you
can even shift all data off a drive, before removing that drive in a hotplug (or hot
unplug) fashion. This relies on your filesystem supporting such changes, but modern
ones will (allowing you to grow and shrink them on the fly).

As an example of the previous, let's extend our logical volume to use all of the
available space of the volume group:

$ sudo lvextend -l +100%FREE VolGroup01/Home3
 Size of logical volume VolGroup01/Home3 changed from 1.00 GiB (256
extents) to <2.00 GiB (511 extents).
 Logical volume VolGroup01/Home3 successfully resized.

Note the + symbol in front of the 100% section. This suggests to
lvextend that you want to add the new size onto the old; it's
necessary to use all 2G of the disk to do so.

Once extended, we still have to grow our filesystem to fit the available space:

$ df -h /dev/mapper/VolGroup01-Home3
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup01-Home3 1020M 17M 901M 2% /mnt/home3

To do this, we need to use a btrfs command:

$ sudo btrfs filesystem resize max /mnt/home3
Resize '/mnt/home3' of 'max'

And now, we should have our space:

$ df -h /dev/mapper/VolGroup01-Home3
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup01-Home3 2.0G 17M 1.9G 1% /mnt/home3

This is just one example of the flexibility in LVM, and it offers a boatload more
functionality on top. It even enables easier migration of data, as you can easily import
pools onto other systems.

It does have its trade-offs, though. For example, I was recently trying to get a VM
booting as quickly as I could (for testing purposes) and ended up disregarding LVM
as it was quicker to directly access the disks at boot time (in OS, it's not different, but
for my environment, it was booting speed that mattered).

Hardware and Disks Chapter 5

[293]

Using systemd-mount and fstab
In this section, we'll learn about making sure that our newly configured disks appear
on boot and how to run a test to see if it'll come up at boot time.

For this, we'll use the traditional method of adding a disk to the fstab file, and we'll
also use systemd-mount.

You could use the following to directly reconfigure /dev/sdb as a single partition,
formatted to ext4:

$ printf "g\nn\n\n\n\nw\n" | sudo fdisk /dev/sdb && sudo mkfs.ext4
/dev/sdb1

Getting ready
In this section, we're going to use both our sdb and sdc drives.

If you have rebuilt your VM, have a go at the previous sections to end up with a drive
that has a simple filesystem atop a partition and one atop a LVM logical volume.

Reboot your VM so that you're at a point where you have partitioned drives, but
they're unmounted.

It should look something like the following:

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 40G 0 disk
├─sda1 8:1 0 1M 0 part
├─sda2 8:2 0 1G 0 part /boot
└─sda3 8:3 0 39G 0 part
 ├─VolGroup00-LogVol00 253:0 0 37.5G 0 lvm /
 └─VolGroup00-LogVol01 253:1 0 1.5G 0 lvm [SWAP]
sdb 8:16 0 2G 0 disk
└─sdb1 8:17 0 2G 0 part
sdc 8:32 0 2G 0 disk
└─sdc1 8:33 0 2G 0 part
 └─VolGroup01-Home3 253:2 0 2G 0 lvm

(Note the lack of mount points by sdb1 and VolGroup01-Home3).

Hardware and Disks Chapter 5

[294]

How to do it…
We're going to start with the traditional fstab approach.

fstab
Our fstab currently looks like this:

$ cat /etc/fstab

#
/etc/fstab
Created by anaconda on Sat May 12 18:50:26 2018
#
Accessible filesystems, by reference, are maintained under
'/dev/disk'
See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more
info
#
/dev/mapper/VolGroup00-LogVol00 / xfs
defaults 0 0
UUID=570897ca-e759-4c81-90cf-389da6eee4cc /boot xfs
defaults 0 0
/dev/mapper/VolGroup00-LogVol01 swap swap
defaults 0 0

We're going to add another line to the bottom, prompting our /dev/sdb1 partition to
mount as /home. First, we're going to get the partition's UUID, because we do not
want our sdb device to suddenly come up as sdc and break our boot:

$ ls -l /dev/disk/by-uuid/ | grep sdb
lrwxrwxrwx. 1 root root 10 Sep 15 06:45 10572fe4-5f65-4df0-9e69-
dcd885e9f01e -> ../../sdb1

Cool—now that we have that (10572fe4-5f65-4df0-9e69-dcd885e9f01e), we can
add it:

$ echo "UUID=10572fe4-5f65-4df0-9e69-dcd885e9f01e /opt ext4 defaults 0
0" | sudo tee -a /etc/fstab

Hardware and Disks Chapter 5

[295]

What we're doing here is telling fstab where our partition is
(UUID), we're telling it where to mount the partition (/opt), and
we're giving it the filesystem format so that it knows how to mount
it (ext4). Then, we're telling it to use the default mount options
(defaults), which are good enough for most use cases; we're
specifying that the filesystem doesn't need to be dumped (0), and
that we do not want to run any checks on it at boot (0) though in the
real world, you might want to enable this.

Note that we can mount fstab immediately with mount:

$ sudo mount -a
$ df -h /opt
Filesystem Size Used Avail Use% Mounted on
/dev/sdb1 2.0G 6.0M 1.9G 1% /opt

Any errors will be immediately obvious, as mount will refuse to work.

Running mount -a prior to rebooting is preferable to having your
system stall and become unable to boot—take it from experience.

systemd-mount
If you want to be new and trendy, you might want to use systemd-mount instead of
the decrepit (emphasis mine) fstab.

First, create our local unit directory if it doesn't already exist from our previous
chapters:

$ sudo mkdir -p /usr/local/lib/systemd/system

Then, populate a new file with the following:

$ sudo tee /usr/local/lib/systemd/system/srv.mount << HERE
[Unit]
Description=Mounting our logical volume as srv

[Mount]
What=/dev/mapper/VolGroup01-Home3
Where=/srv
Type=btrfs
Options=defaults

Hardware and Disks Chapter 5

[296]

[Install]
WantedBy=multi-user.target
HERE

Now, we can start and enable our mount:

$ sudo systemctl enable --now srv.mount
Created symlink from /etc/systemd/system/multi-
user.target.wants/srv.mount to
/usr/local/lib/systemd/system/srv.mount.

At the end of this section, and after a reboot, your lsblk printout should look like the
following:

sdb 8:16 0 2G 0 disk
└─sdb1 8:17 0 2G 0 part /opt
sdc 8:32 0 2G 0 disk
└─sdc1 8:33 0 2G 0 part
 └─VolGroup01-Home3 253:2 0 2G 0 lvm /srv

How it works…
On systemd systems, it's generally the case that fstab is managed by systemd
anyway.

What's actually happening when a system boots is that the systemd-fstab-
generator reads the /etc/fstab file, and translates what it finds there into
systemd units. This is the reason you can list mounts with systemctl:

$ systemctl list-units *.mount --no-legend
-.mount loaded active mounted /
boot.mount loaded active mounted /boot
dev-hugepages.mount loaded active mounted Huge Pages File
System
dev-mqueue.mount loaded active mounted POSIX Message Queue
File System
opt.mount loaded active mounted /opt
run-user-1000.mount loaded active mounted /run/user/1000
srv.mount loaded active mounted Mounting our
logical volume asrv
sys-kernel-config.mount loaded active mounted Configuration File
System
sys-kernel-debug.mount loaded active mounted Debug File System
var-lib-nfs-rpc_pipefs.mount loaded active mounted RPC Pipe File
System

Hardware and Disks Chapter 5

[297]

And this is why we can see the details of a partition with systemctl cat:

$ systemctl cat boot.mount
/run/systemd/generator/boot.mount
Automatically generated by systemd-fstab-generator

[Unit]
SourcePath=/etc/fstab
Documentation=man:fstab(5) man:systemd-fstab-generator(8)
Before=local-fs.target

[Mount]
What=/dev/disk/by-uuid/570897ca-e759-4c81-90cf-389da6eee4cc
Where=/boot
Type=xfs

This does beg the question of why you would want to use fstab at all, if you have
the option to use systemd entirely, and the simple answer is: tradition. At the
moment, people expect fstab to be the place they go to find mount information but,
in the future, this might change.

There's more…
If your system does fail to boot, following a change to fstab or one to your
systemd-mount files, then the next step (beyond panic) is to log in to the console of
your server. In this case, we do this by connecting to the VirtualBox window and
connecting to the graphical representation of our console session, before booting into
single user mode.

You would then remove the offending line from your configuration and reboot your
system once more.

I've caused a system to get stuck at boot more times than I can count, and historically
this hasn't been a problem, for the reasons I mentioned previously. However, in
modern cloud environments, you might not always get a console (at the time of
writing, Azure has only just implemented this feature) so ensuring your fstab
entries are correct, prior to rebooting, is a good idea!

The systemd.mount man page is a good place to look for the mount options that
systemd understands.

Hardware and Disks Chapter 5

[298]

See also
fstab has been around in one form or another since 4.0 BSD, released in 1980.
Obviously, back then, it didn't use systemd, but then, 4.0 BSD did not do much of
anything.

I would look at the history of the fstab file, if you're into that sort of thing, and
there's nothing good on TV.

_netdev is something else to be aware of, and I'll mention it here because it's
routinely saved my bacon. It's an option that can be added to mount points (like
defaults) and it tells systemd that the filesystem is dependent on your network being
up. For NFS and iSCSI environments, this is probably a must.

Disk encryption and working with
encryption at rest
Here, we're going to take a look at using dm-crypt to encrypt our disk so that the
data on the device is safe when removed from a machine. We'll touch on file
encryption locally, too.

Getting ready
In this section, we're going to use both our sdb drives.

If you have rebuilt your VM, have a go at the previous sections to end up with a drive
that has a simple filesystem atop a partition.

On your VM, first, make sure that any fstab entries you've added are removed; for
me, this was a case of running the following sed command:

$ sudo sed -i 's#UUID=10572fe4-5f65-4df0-9e69-dcd885e9f01e /opt ext4
defaults 0 0##g' /etc/fstab

I then rebooted my system to ensure that /opt was not mounted at boot, and finally I
regenerated the first partition on my disk:

$ printf "g\nn\n\n\n\nw\n" | sudo fdisk /dev/sdb

Hardware and Disks Chapter 5

[299]

Again, your mileage may vary, but what you want to end up with is a disk that has
one partition on it, unformatted for now.

We'll also need to install the appropriate tools for this section:

$ sudo yum install -y cryptsetup

How to do it…
First, it's recommended that you fill your drive with random data, prior to creating an
encrypted partition on top of it; this is so that data that wasn't encrypted can't be
recovered later.

I'm going to accomplish this with shred:

$ sudo shred -v -n1 /dev/sdb1
shred: /dev/sdb1: pass 1/1 (random)...
shred: /dev/sdb1: pass 1/1 (random)...1.6GiB/2.0GiB 82%
shred: /dev/sdb1: pass 1/1 (random)...2.0GiB/2.0GiB 100%

Now that we've filled our drive with random data, we have to format our partition as
a Linux Unified Key Setup (LUKS), an encryption specification:

$ sudo cryptsetup luksFormat /dev/sdb1

WARNING!
========
This will overwrite data on /dev/sdb1 irrevocably.

Are you sure? (Type uppercase yes): YES
Enter passphrase:
Verify passphrase:

As you can see, there are some sanity-check elements, such as getting you to type all
uppercase YES before you're prompted for a password. The password has some
requirements, such as being a minimum of 12 characters and not being based on a
dictionary word.

We've created an encrypted partition, which we now need to open before we can
work with it:

$ sudo cryptsetup luksOpen /dev/sdb1 encrypted-opt
Enter passphrase for /dev/sdb1:

Hardware and Disks Chapter 5

[300]

Using lsblk, you should now see the crypt device:

sdb 8:16 0 2G 0 disk
└─sdb1 8:17 0 2G 0 part
 └─encrypted-opt 253:3 0 2G 0 crypt

So, what do we do with it? We format it with the following:

$ sudo mkfs.btrfs /dev/mapper/encrypted-opt

You may have noticed that I'm using btrfs a lot here; this isn't
because of some misplaced allegiance to a filesystem format that
can't even do RAID correctly, instead it's because when I type, I read
what I'm typing in my head, and it's easier to think "butter fs" than it
is "ext". So now you know; you're welcome.

It's time to mount it:

$ sudo mount /dev/mapper/encrypted-opt /opt

Congratulations! Your encrypted disk will now function as any other would, and you
can be safe in the knowledge that, if someone steals your hard drive, its contents are
locked behind encryption and a password. We can see our setup with lsblk:

sdb 8:16 0 2G 0 disk
└─sdb1 8:17 0 2G 0 part
 └─encrypted-opt 253:3 0 2G 0 crypt /opt

To close an encrypted volume, the filesystem first has to be unmounted:

$ sudo umount /opt

Now, you run cryptsetup again, only with luksClose this time:

$ sudo cryptsetup luksClose encrypted-opt

But what if we want to mount our disk on boot?

Well, first, you should question doing this and consider the ramifications. The
purpose of encryption is to protect data, and if you set up a disk to come up
automatically, you're nullifying your security (assuming an entire box has been taken,
and not just the sole hard drive).

However, there's an argument to be made that encrypting a drive but having an
"unlock key" automatically unlock and mount it is still useful if your drive dies and
you want to send it back to the drive manufacturer for a replacement. Without the
key, even if they could read the data off the platters, all they get is jumbled noise.

Hardware and Disks Chapter 5

[301]

With that in mind, let's mount /dev/sdb1 at boot.

We need the UUID of the encrypted disk; for this, we use luksUUID to make life easy:

$ sudo cryptsetup luksUUID /dev/sdb1
8d58f0ec-98f1-4cf8-a78d-3cb6a4643350

First, place an entry into /etc/crypttab:

$ echo "encrypted-opt UUID=8d58f0ec-98f1-4cf8-a78d-3cb6a4643350
/cryptfile" | sudo tee -a /etc/crypttab

Second, we need to add our fstab entry for our disk:

$ echo "/dev/mapper/encrypted-opt /opt btrfs defaults 0 0" | sudo tee
-a /etc/fstab

As we saw previously, this could also be its own systemd unit file if
you so wish.

Third, create a keyfile to use, with a suitably complex key:

$ echo "SuperSecretKeyPhrase" | sudo tee -a /cryptfile

Now, add this key to our encrypted partition. When prompted for any existing
passphrase, give the one you gave when first creating the drive:

$ sudo cryptsetup luksAddKey /dev/sdb1 /cryptfile
Enter any existing passphrase:

At this point, you can reboot your VM and, hopefully (keep an eye on the console in
VirtualBox), it'll come up seamlessly.

It's worth noting that the encrypted volume can now be opened using either your
passphrase or the keyfile (shown as follows):

$ sudo cryptsetup luksOpen /dev/sdb1 encrypted-opt -d /cryptfile

How it works…
What we've done here is simply created an encrypted volume; it's yet another logical
disk, that the system can treat as any other storage medium once it's been unlocked.

Hardware and Disks Chapter 5

[302]

cryptsetup is the key component used here, and it couldn't be described better than
by its own manual page.

cryptsetup is used to conveniently setup dm-crypt managed device-mapper
mappings. These include plain dm-crypt volumes and LUKS volumes. The
difference is that LUKS uses a metadata header and can hence offer more features
than plain dm-crypt. On the other hand, the header is visible and vulnerable to
damage.

With cryptsetup, we started by formatting the partition we'd set up and setting an
initial passphrase. This was the luksFormat element. Once done, our LUKS partition
could then be opened, which is the process of passing our assigned passphrase to the
device, for it to then set up a device mapping automatically. We were then able to
format our mapped device with a useful filesystem for using natively (btrfs again)
and mount it.

Most of the work you do with LUKS devices will be done using cryptsetup (at least
on servers).

There's more…
By default, if you try to mount a filesystem on an encrypted drive, without knowing
or caring that it's LUKS encrypted, you'll get a descriptive message that should give
you a hint:

$ sudo mount /dev/sdb1 /opt
mount: unknown filesystem type 'crypto_LUKS'

At this point, you know you need to run luksOpen on the drive first, and you might
find that you've long since forgotten the password and the data on the disk has
effectively gone to silicon-heaven (or silicon-purgatory).

In this section, we mounted our drive using a keyfile on the root partition; if instead
you add a line with none in it to crypttab and then add the entry to fstab, you will
get prompted for a password at boot:

$ echo "encrypted-opt /dev/sdb1 none" | sudo tee -a /etc/crypttab
$ echo "/dev/mapper/encrypted-opt /opt btrfs defaults 0 0" | sudo tee
-a /etc/fstab
$ sudo reboot

Hardware and Disks Chapter 5

[303]

Now, you need to go to your console and put in your LUKS password, as we can see
in the following screenshot:

This has to be done from the console, as SSH won't be up yet. Obviously, in a cloud
environment or a physical server build, this can be tricky.

See also
If you've been following along, you might be asking what systemd does with
crypttab, if it translates fstab into systemd units.

The answer is that it does something very similar, in fact, using a similarly named
program at boot-time: systemd-cryptsetup-generator.

Hardware and Disks Chapter 5

[304]

 We can actually see what happened to our encrypted device at boot by catting the
automatically generated file:

$ systemctl cat systemd-cryptsetup@encrypted\\x2dopt.service
/run/systemd/generator/systemd-cryptsetup@encrypted\x2dopt.service
Automatically generated by systemd-cryptsetup-generator

[Unit]
Description=Cryptography Setup for %I
Documentation=man:crypttab(5) man:systemd-cryptsetup-generator(8)
man:systemd-cryptsetup@.service(8)
SourcePath=/etc/crypttab
DefaultDependencies=no
Conflicts=umount.target
IgnoreOnIsolate=true
After=systemd-readahead-collect.service systemd-readahead-
replay.service
After=cryptsetup-pre.target
Before=cryptsetup.target
RequiresMountsFor=/cryptfile
BindsTo=dev-disk-
by\x2duuid-8d58f0ec\x2d98f1\x2d4cf8\x2da78d\x2d3cb6a4643350.device
After=dev-disk-
by\x2duuid-8d58f0ec\x2d98f1\x2d4cf8\x2da78d\x2d3cb6a4643350.device
Before=umount.target

[Service]
Type=oneshot
RemainAfterExit=yes
TimeoutSec=0
ExecStart=/usr/lib/systemd/systemd-cryptsetup attach 'encrypted-opt'
'/dev/disk/by-uuid/8d58f0ec-98f1-4cf8-a78d-3cb6a4643350' '/cryptfile'
''
ExecStop=/usr/lib/systemd/systemd-cryptsetup detach 'encrypted-opt'

You can see the attach command being run at the bottom.

Current filesystem formats
There're a lot of filesystem formats out there—some are more popular than others;
some are used for very specific tasks; some are the darlings of certain operating
systems; and others simply should have gone away years ago.

In the Windows world, we typically see NTFS, but FAT32, exFAT, and even FAT16 in
some cases are still options.

Hardware and Disks Chapter 5

[305]

More recently, Apple has dropped the ageing HFS+ and moved full-steam toward
APFS as its filesystem of the future.

FreeBSD defaults to either ZFS (if you've got the RAM for it) or UFS (if you haven't).

OpenBSD—well, OpenBSD uses FFS, which is exactly as good as it sounds.

Fast File System (FFS) is pretty much UFS.

Linux is a whole other kettle of fish because, not only does it do all of the filesystems
listed previously, to a greater or lesser degree, it also has hundreds of others to pick
from.

Now, we're going to see what we have available to us on our VM.

Getting ready
For this section, you'll just need access to your VM and possibly the internet as a
whole.

Connect to your Vagrant box; this section is purely informational, so don't worry
about what state it's in for now.

How to do it…
Listing systems you can create is relatively easy, as you can tab mkfs a couple of
times to get a list of established aliases:

$ mkfs
mkfs mkfs.cramfs mkfs.ext3 mkfs.minix
mkfs.btrfs mkfs.ext2 mkfs.ext4 mkfs.xfs

Your distribution may have others available, though not installed by default.

For example, if I want to manage DOS filesystems, I can install dosfstools:

$ sudo yum install dosfstools -y

Hardware and Disks Chapter 5

[306]

I've suddenly got the msdos, vfat, and fat options:

$ mkfs
mkfs mkfs.cramfs mkfs.ext3 mkfs.fat mkfs.msdos
mkfs.xfs
mkfs.btrfs mkfs.ext2 mkfs.ext4 mkfs.minix mkfs.vfat

You can also list the filesystems your kernel is capable of interacting with by using
your current kernel's module directory:

$ ls /lib/modules/3.10.0-862.2.3.el7.x86_64/kernel/fs
binfmt_misc.ko.xz cifs ext4 gfs2 mbcache.ko.xz nls
udf
btrfs cramfs fat isofs nfs overlayfs
xfs
cachefiles dlm fscache jbd2 nfs_common pstore
ceph exofs fuse lockd nfsd squashfs

Note that the likes of ext3 might be managed by an ext4 module of
yours, so just because ext3 isn't listed doesn't mean you can't
mount, read, and write to an ext3 drive.

How it works…
Realistically, it doesn't work.

In a perfect world, we would have one filesystem that worked across each OS and
was suited for every task, but the truth of the matter is that there's always going to be
some filesystems that are better at some jobs than others.

At the time of writing, Red Hat defaults to using XFS as its filesystem of choice, a
journaling filesystem that was created in 1993. Before that, the default was the ext
family of filesystems, which some distributions (such as Debian) continue to use.

OpenSUSE likes btrfs at the minute, though how much that's likely to change is
anyone's guess, especially as the likes of Red Hat have just decided against including
it in future versions.

This is also all before getting on to Filesystem in Userspace (FUSE), which is capable
of bringing a host of other (userspace) filesystems into the mix.

Hardware and Disks Chapter 5

[307]

For now, just be safe in the knowledge that XFS and ext4 will likely be around for a
while, and they're a solid choice for any system as long as your needs aren't too
bespoke. You may need to get a storage engineer in if you're planning on doing
things such as investigating which filesystem will be best for your new, bespoke,
database.

My recommendation is to go with whatever is in use by default.

Upcoming filesystem formats
We've discussed the old favorites, such as XFS and ext4, but we've only touched on
the likes of ZFS and novelty filesystems such as btrfs.

On top of the regular I-need-a-filesystem-for-my-disk filesystems, there're others such
as LizardFS and SSHFS, which are worth a mention.

Getting ready
For this section, you'll again need access to your VM and the internet as a whole.

Connect to your VM, but also have a web browser handy.

How to do it…
Starting out simple-ish, let's talk about ZFS.

Less of a traditional filesystem than others, ZFS has recently been mainstreamed on
Linux by being bundled into Ubuntu (which caused a lot of arguing and even some
claims that Canonical were willfully breaking GPL compliance), and it's causing a bit
of a stir.

For years, ZFS was the main reason people installed FreeBSD (don't email me), and
it's the backbone filesystem for systems based on Solaris or OpenSolaris. It works
differently to XFS or ext4 and is arguably closer to the LVM world.

Hardware and Disks Chapter 5

[308]

Disks are placed into VDEVs, which is the bit that handles the mirroring or RAID-ing
of drives. These VDEVs then form the basis for zpools, which are storage pools that
datasets then sit atop (datasets are more like traditional partitions—kinda).

ZFS on Linux is the project behind putting ZFS on Linux, and I would advise
checking them out.

After ZFS, you've got things such as distributed filesystems, which you might mount
on your local system using FUSE. LizardFS is one such filesystem.

You use LizardFS if you want distributed and redundant storage, which can be
accessed over a network and mounted locally. You can do clever things such as store
multiple copies of data and even have multi-master setups of the controller node so
that you have some redundancy in the event of hardware failure (because hardware
does fail).

If all of that was over your head, don't panic: it was over my head for the longest time
too, but it's pretty nifty software and worth a weekend to get to grips with.

SSHFS is another FUSE filesystem, only this time it's a bit of software that's used to
mount remote systems directories locally so that you can mangle and mess with them
to your heart's content, without being on the command line of the remote box.

How it works…
Again, it generally doesn't work.

Filesystems are a deep and interesting topic, for a very dedicated and specific kind of
people. I've met storage engineers who could talk for hours about the different
filesystems on offer and why you shouldn't bother using ext2 as a /boot partition
these days, simply because the trade-offs aren't there, or who drone on about the
selective merit of using just a bunch of disk (JBOD) deployments versus traditional
SANs.

Once again, I'll point out that there are use cases for every type of filesystem on offer,
even WikipediaFS, and that's okay! Just be safe in the knowledge that the options are
there, if you need them.

Hardware and Disks Chapter 5

[309]

Round-up – hardware and disks
Most of this chapter, quite unintentionally, turned into a breakdown of disks and
filesystems. This is because, traditionally, disks were the most likely thing to go
wrong in your system. Recently, disks don't die anywhere near as much, because the
advent of cheap and commercially available SSDs has removed the "spinning rust"
from a lot of systems.

That said, data can, and will, randomly disappear from your life.

Backup! Backup! Backup!

It doesn't matter how many times I say it—some of you will still read those words
and think "yeah, I should do that" with no intention of ever bothering to set something
up. For your own systems, that's your choice, but you might at least consider it for
those boxes you manage, as it'll only make your life easier (and you the hero) when
you break out the backups after a catastrophic failure that threatens to cost your
employer millions.

It should go without saying, but you should make a point of testing
your backups frequently, or you will enter the faith-based backups
situation, and that is not somewhere you want to be.

Filesystems are also getting more confusing and feature-rich. If you compare
something like ext2 with btrfs, you'll find a wealth of tricks and clever things that
are designed to make your life easier in the long term, but in the short term can leave
you with a bewildering array of options.

People also do silly things in this world, such as deploy RAID5 btrfs solutions in
live environments, without doing basic write-hole checks to ensure they won't get
any data loss if a disk goes pop (for the full story behind this, do an internet search for
"btrfs raid lol" and you'll probably get some meaningful results).

On the whole, just remember that hardware is out to get you, and you may find some
dark amusement in that knowledge the next time you're sat in a data center at four in
the morning, holding a hard drive up to your ear to listen for the telltale sound of
clicking, as a mechanical head tries and fails to correctly read that one important
payroll database.

6
Security, Updating, and
Package Management

The following topics will be covered in this chapter:

Checking package versions
Checking the OS version
Checking for updates
Automating updates
Checking mailing lists and errata pages
Using snaps
Using Flatpak
Using Pip, RubyGems, and other package managers
Dependency hell (a quick word)
Compiling from sources
Adding additional repositories

Introduction
Your system will be in a perfect state once (maybe twice) in its lifetime.

The first time that it's perfect, unsullied, and unsoiled, is when it's installed
(providing that you've ticked the box to update the packages during installation).
Your system will never again be in such a pristine condition, because it has not had
dirty human hands meddling with its innards.

The second time it's perfect is when it's turned off for the last time, with a job well
done, and with a visit to the scrap factory well earned (or, in the case of cloud
computing, a quick ethereal jaunt to silicon heaven).

Security, Updating, and Package Management Chapter 6

[311]

In this section, you'll learn about different sources of packages, how to go about
finding and installing new software, and the importance of keeping your systems
secure and up to date (lest you end up as a headline on The Register).

It's not the most fun element of the job, and you might find yourself banging your
head against the nearest wall several times, but if you get it right, you'll find you have
to deal with considerably fewer problems caused by mismatched software in your
infrastructure.

The best installations that I've come across automatically rebuild their images
periodically, then roll them out across the infrastructure in a consistent and testable
way. That takes time to accomplish, and here, we will look at the building blocks to
get you started.

Technical requirements
This chapter will deal with disparate package managers and multiple ways of doing
the same thing (which pretty much sums up Linux in general).

Because of that, we're going to use three different boxes in our Vagrantfile, as
follows:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.define "centos7" do |centos7|
 centos7.vm.box = "centos/7"
 centos7.vm.box_version = "1804.02"
 end

 config.vm.define "debian9" do |debian9|
 debian9.vm.box = "debian/stretch64"
 debian9.vm.box_version = "9.5.0"
 end

 config.vm.define "ubuntu1804" do |ubuntu1804|
 ubuntu1804.vm.box = "ubuntu/bionic64"
 ubuntu1804.vm.box_version = "20180927.0.0"
 end

end

Security, Updating, and Package Management Chapter 6

[312]

Spinning up these boxes (with vagrant up) will provide you with a CentOS
installation, a Debian installation, and an Ubuntu installation:

We're going to be using each of these at one point or other.

Checking package versions
In this section, we'll look at listing the packages installed on our systems, and getting
the version numbers of those packages.

This will generally be useful if you hear about the latest vulnerability that signals the
end of the world, and you are shouted at by your boss to fix it, fix it, fix it.

There are a considerable number of vulnerabilities out there; it just
so happens that a few of the bigger ones bleed through to the
mainstream media on occasion. These are arguably the most
dangerous, as they make people panic, and if there's one thing
worse than a bad situation, it's being in a bad situation while
everyone around you is losing their heads.

You should also generally keep your systems up to date, because it's a lot more
awkward to jump several version releases (when you inevitably do have to upgrade)
than to change things incrementally.

Security, Updating, and Package Management Chapter 6

[313]

Getting ready
Ensure that all of your boxes are spun up, and try to connect to the first two (CentOS
and Debian):

$ vagrant ssh centos7
$ vagrant ssh debian9

In your Debian box, be sure to install aptitude, as it's one of the frontends that we'll
be using later in this section; while it is installed by default on some distributions, this
Debian installation isn't one of them:

$ sudo apt install aptitude

How to do it…
The method is similar for each OS, but we're going to take them in turn.

CentOS
CentOS (and Red Hat) have two package managers, with another soon to be added to
the equation.

Starting at the top, we have RPM Package Manager (RPM is a recursive acronym),
which is the underpinning of package management in Red Hat based systems. It is
what you might consider to be a raw package manager, in the sense that it is
primordial, and you probably won't be using it directly day to day.

RPM does the following four things:

Select
Query
Verify
Install

These options have arguments, and the one that I find myself using the most often is
query.

To list all installed packages on your system, use -qa, as follows:

$ rpm -qa
kernel-tools-libs-3.10.0-862.2.3.el7.x86_64

Security, Updating, and Package Management Chapter 6

[314]

grub2-common-2.02-0.65.el7.centos.2.noarch
dmidecode-3.0-5.el7.x86_64
grub2-pc-modules-2.02-0.65.el7.centos.2.noarch
firewalld-filesystem-0.4.4.4-14.el7.noarch
<SNIP>
gssproxy-0.7.0-17.el7.x86_64
dbus-glib-0.100-7.el7.x86_64
python-slip-dbus-0.4.0-4.el7.noarch
python-pyudev-0.15-9.el7.noarch
plymouth-scripts-0.8.9-0.31.20140113.el7.centos.x86_64

To list a specific package, you can name it (without the full version information), as
follows:

$ rpm -q dmidecode
dmidecode-3.0-5.el7.x86_64

To get information on the package, you can use -i:

$ rpm -qi dmidecode
Name : dmidecode
Epoch : 1
Version : 3.0
Release : 5.el7
Architecture: x86_64
Install Date: Sat 12 May 2018 18:52:07 UTC
Group : System Environment/Base
Size : 247119
License : GPLv2+
Signature : RSA/SHA256, Thu 10 Aug 2017 15:38:00 UTC, Key ID
24c6a8a7f4a80eb5
Source RPM : dmidecode-3.0-5.el7.src.rpm
Build Date : Thu 03 Aug 2017 23:53:58 UTC
Build Host : c1bm.rdu2.centos.org
Relocations : (not relocatable)
Packager : CentOS BuildSystem <http://bugs.centos.org>
Vendor : CentOS
URL : http://www.nongnu.org/dmidecode/
Summary : Tool to analyse BIOS DMI data
Description :
dmidecode reports information about x86 & ia64 hardware as described
in the
system BIOS according to the SMBIOS/DMI standard. This information
typically includes system manufacturer, model name, serial number,
BIOS version, asset tag as well as a lot of other details of varying
level of interest and reliability depending on the manufacturer.

This will often include usage status for the CPU sockets, expansion

Security, Updating, and Package Management Chapter 6

[315]

slots (e.g. AGP, PCI, ISA) and memory module slots, and the list of
I/O ports (e.g. serial, parallel, USB).

One trick that I find useful is to output specific information in a pseudo-YAML
fashion. This can be handy for logging the versions of packages, and can be
accomplished with the --queryformat option:

$ rpm -q --queryformat "---\nName: %{NAME}\n Version: %{VERSION}\n
Release: %{RELEASE}\n" dmidecode

Name: dmidecode
 Version: 3.0
 Release: 5.el7

I joke about how RPM is old hat, but there are a considerable
number of areas in which it excels, and in a lot of cases it's much
quicker to run a package query using the rpm command than any of
its available frontends, meaning that it is great for scripts. Just be
aware that using both RPM and YUM together (to install things) can
cause problems.

If you want to use something a bit more recent, the current incarnation of the nice
frontend to RPM is called Yellowdog Updater Modified (YUM), and was originally
developed for Yellow Dog Linux.

YUM is generally used because it handles dependency resolution (automatic
downloading and installing of dependent packages) as well as installation from
configured remote repositories.

Those of you that had a Playstation 3 in the mid-2000s might be
interested to know that Yellow Dog was targeted to run on those
consoles, during the brief period that Sony allowed for the
installation of third-party operating systems alongside its own Orbis
OS (based on FreeBSD.)

To list all installed packages with YUM, use list installed:

$ yum list installed
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
 * base: mirror.vorboss.net
 * extras: mirror.econdc.com
 * updates: mirror.cwcs.co.uk
Installed Packages
GeoIP.x86_64

Security, Updating, and Package Management Chapter 6

[316]

1.5.0-11.el7
@anaconda
NetworkManager.x86_64
1:1.10.2-13.el7
@anaconda
NetworkManager-libnm.x86_64
1:1.10.2-13.el7
@anaconda
NetworkManager-team.x86_64
1:1.10.2-13.el7
@anaconda
NetworkManager-tui.x86_64
1:1.10.2-13.el7
@anaconda
<SNIP>
yum-plugin-fastestmirror.noarch
1.1.31-45.el7
@anaconda
yum-utils.noarch
1.1.31-45.el7
@anaconda
zlib.x86_64
1.2.7-17.el7
@anaconda

You can also use yum to query individual pieces of information, just like we did with
RPM, as follows:

$ yum info zlib
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
 * base: mirror.vorboss.net
 * extras: mirror.econdc.com
 * updates: mirror.cwcs.co.uk
Installed Packages
Name : zlib
Arch : x86_64
Version : 1.2.7
Release : 17.el7
Size : 181 k
Repo : installed
From repo : anaconda
Summary : The compression and decompression library
URL : http://www.zlib.net/
Licence : zlib and Boost
Description : Zlib is a general-purpose, patent-free, lossless data
compression
 : library which is used by many different programs.

Security, Updating, and Package Management Chapter 6

[317]

Available Packages
Name : zlib
Arch : i686
Version : 1.2.7
Release : 17.el7
Size : 91 k
Repo : base/7/x86_64
Summary : The compression and decompression library
URL : http://www.zlib.net/
Licence : zlib and Boost
Description : Zlib is a general-purpose, patent-free, lossless data
compression
 : library which is used by many different programs.

Note that we also get the available packages by default, and those of you with sharp
eyes will have noticed that the only difference between these two packages is the fact
that the available one is the 32-bit version.

DNF (which doesn't stand for did not finish) is the newest of the
frontend package managers to take on the task of unifying Red Hat
installations. It has been the default in Fedora (a good distribution,
and also Red Hat's testing ground) for a while, which means that
there is a good chance it'll make it into the next version of CentOS
and Red Hat itself. For the most part, it's a drop-in replacement,
with a couple of newer features to justify its existence.

Debian
Under the hood, Debian uses the dpkg package manager to install and manage
packages. There are also various frontends available, such as apt and aptitude,
which make management more user friendly.

Starting with the basics, you can use dpkg-query to query installed packages on a
system:

$ dpkg-query -W
adduser 3.115
apt 1.4.8
apt-listchanges 3.10
apt-utils 1.4.8
base-files 9.9+deb9u5
base-passwd 3.5.43
bash 4.4-5
<SNIP>
xauth 1:1.0.9-1+b2

Security, Updating, and Package Management Chapter 6

[318]

xdg-user-dirs 0.15-2+b1
xkb-data 2.19-1+deb9u1
xml-core 0.17
xxd 2:8.0.0197-4+deb9u1
xz-utils 5.2.2-1.2+b1
zlib1g:amd64 1:1.2.8.dfsg-5

You'll no doubt notice that by default, the packages and versions are separated by a
tab character. Personally, I think this is hideous (because two spaces are the superior
option), but thankfully, we can customize the output by using showformat:

$ dpkg-query -W --showformat='${Package} - ${Version}\n'
adduser - 3.115
apt - 1.4.8
apt-listchanges - 3.10
apt-utils - 1.4.8
base-files - 9.9+deb9u5
base-passwd - 3.5.43
<SNIP>
xml-core - 0.17
xxd - 2:8.0.0197-4+deb9u1
xz-utils - 5.2.2-1.2+b1
zlib1g - 1:1.2.8.dfsg-5

This can be especially handy for scripts!

On top of dpkg-query, we have apt:

$ apt list --installed
Listing... Done
adduser/stable,now 3.115 all [installed]
apt/stable,now 1.4.8 amd64 [installed]
apt-listchanges/stable,now 3.10 all [installed]
apt-utils/stable,now 1.4.8 amd64 [installed]
<SNIP>
xdg-user-dirs/stable,now 0.15-2+b1 amd64 [installed,automatic]
xkb-data/stable,now 2.19-1+deb9u1 all [installed,automatic]
xml-core/stable,now 0.17 all [installed,automatic]
xxd/stable,now 2:8.0.0197-4+deb9u1 amd64 [installed]
xz-utils/stable,now 5.2.2-1.2+b1 amd64 [installed]
zlib1g/stable,now 1:1.2.8.dfsg-5 amd64 [installed]

This default output might be preferable to you.

apt is the newer way of interacting with packages on your system, though the
traditionalists among you (or those that have learned from traditionalists) might be
more familiar with the apt-get and apt-cache suite of tools.

Security, Updating, and Package Management Chapter 6

[319]

Lastly for this section, there's aptitude.

Aptitude is the first package manager that I can remember using,
and I also remember it being a pain to use, because occasionally, it
would drop me into a TUI (textual or text-based user interface), and
I wouldn't know what was happening.

It's possible to use aptitude on the command line, as follows:

$ aptitude search ~i --display-format '%p%v'
adduser
3.115
apt
1.4.8
apt-listchanges
3.10
apt-utils
1.4.8
aptitude
0.8.7-1
aptitude-common
0.8.7-1
base-files
9.9+deb9u5
base-passwd
3.5.43
<SNIP>
xdg-user-dirs
0.15-2+b1
xkb-data
2.19-1+deb9u1
xml-core
0.17
xxd
2:8.0.0197-4+d
xz-utils
5.2.2-1.2+b1
zlib1g
1:1.2.8.dfsg-5

Security, Updating, and Package Management Chapter 6

[320]

It's also possible to type aptitude on its own, and get dropped into the TUI:

This interface can be navigated either via the arrow keys on your keyboard, or by
using your mouse.

Right off the bat, however, we can see the listed Security Updates and Installed
Packages, which make up the 369 packages that we get on the command line:

$ aptitude search ~i --display-format '%p%v' | wc -l
369

We can double-click and drill down into the aptitude interface.

Security, Updating, and Package Management Chapter 6

[321]

In the following screenshot, I've shown the two kernels installed in our VM
(4.9.0-6 and 4.9.0-7):

You might also notice linux-image-amd64, which is a meta-
package, as opposed to a package in its own right.

We can look for these kernels on the command line, too:

$ aptitude search '~i linux-image' --display-format '%p%v'
linux-image-4.9.0-6-amd64
4.9.88-1+deb9u
linux-image-4.9.0-7-amd64
4.9.110-1
linux-image-amd64
4.9+80+deb9u5

How it works…
What you're effectively doing (in both cases) is querying the package database on
your system.

On your CentOS system, RPM and YUM are both looking inside /var/lib/rpm in
order to determine the state of your system.

Security, Updating, and Package Management Chapter 6

[322]

Similarly, on your Debian system, your package state is held within /var/lib/dpkg.

It is advisable to not mess with these folders outside of the applications that are used
to manage them, as modifying the nature of the packages installed on your system
(outside of a package manager) can cause odd, and sometimes destructive, behavior.

There's more…
Remember that you don't have to use the system's package manager to list versions; if
you would rather trust the output of the application itself, most applications have
some variation of the -v, --version standard.

bash, for example, is as follows:

$ bash --version
GNU bash, version 4.2.46(2)-release (x86_64-redhat-linux-gnu)
Copyright (C) 2011 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>

This is free software; you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

The following shows the code for ssh, which uses -V (uppercase):

$ ssh -V
OpenSSH_7.4p1, OpenSSL 1.0.2k-fips 26 Jan 2017

And, just to be awkward, Vagrant uses -v (lowercase):

$ vagrant -v
Vagrant 2.0.2

You may have noticed the distinct lack of Ubuntu in the preceding
examples; this is because anything that works on a Debian system is
extremely likely to work on an Ubuntu system.

Security, Updating, and Package Management Chapter 6

[323]

Checking the OS version
We will be using the same Vagrantfile that was used in the previous section.

In this section, we're going to list the canonical version of our operating system, as
well as the kernel version.

We will also take a look at the concept of LSB compliance.

How to do it…
We'll break this section into the different operating systems.

CentOS
We can determine the version of our CentOS installation by printing the contents of
the centos-release file, as follows:

$ cat /etc/centos-release
CentOS Linux release 7.5.1804 (Core)

Here's a fun fact (among a certain type of people): if you cat the contents of redhat-
release on your box, you'll get the same information, due to the fact that CentOS
and Red Hat systems are so closely aligned:

$ cat /etc/redhat-release
CentOS Linux release 7.5.1804 (Core)

cat (derived from concatenate) is a program that was historically
used to print the contents of multiple files to standard out.

Likewise, system-release is a symbolic link to centos-release:

$ cat /etc/system-release
CentOS Linux release 7.5.1804 (Core)

Security, Updating, and Package Management Chapter 6

[324]

If you wanted more detailed information, you could even print the contents of the
os-release file:

$ cat /etc/os-release
NAME="CentOS Linux"
VERSION="7 (Core)"
ID="centos"
ID_LIKE="rhel fedora"
VERSION_ID="7"
PRETTY_NAME="CentOS Linux 7 (Core)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:centos:centos:7"
HOME_URL="https://www.centos.org/"
BUG_REPORT_URL="https://bugs.centos.org/"

CENTOS_MANTISBT_PROJECT="CentOS-7"
CENTOS_MANTISBT_PROJECT_VERSION="7"
REDHAT_SUPPORT_PRODUCT="centos"
REDHAT_SUPPORT_PRODUCT_VERSION="7"

These commands tell you the release of your operating system; what they don't
provide you with is the kernel release, which is separate (think back to Chapter
1, Introduction and Environment Setup).

To determine the kernel release, one might query dmesg, as follows:

$ dmesg | grep "Linux version"
[0.000000] Linux version 3.10.0-862.2.3.el7.x86_64
(builder@kbuilder.dev.centos.org) (gcc version 4.8.5 20150623 (Red Hat
4.8.5-28) (GCC)) #1 SMP Wed May 9 18:05:47 UTC 2018

Alternatively, for a command that doesn't rely on a log file, you might run uname
with -a, in order to print all information about the system:

$ uname -a
Linux localhost.localdomain 3.10.0-862.2.3.el7.x86_64 #1 SMP Wed May 9
18:05:47 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux

For just the kernel release information, use -r, as follows:

$ uname -r
3.10.0-862.2.3.el7.x86_64

uname is definitely not a Linux-specific command; it'll work on most
Unix and Unix-like derivatives. Take a look at what it prints out on
your FreeBSD or OpenBSD systems (or your macOS box, if you're
not that sad).

Security, Updating, and Package Management Chapter 6

[325]

You can also use YUM, as listed previously:

$ yum -q info installed kernel
Installed Packages
Name : kernel
Arch : x86_64
Version : 3.10.0
Release : 862.2.3.el7
Size : 62 M
Repo : installed
From repo : koji-override-1
Summary : The Linux kernel
URL : http://www.kernel.org/
Licence : GPLv2
Description : The kernel package contains the Linux kernel (vmlinuz),
the core of any
 : Linux operating system. The kernel handles the basic
functions
 : of the operating system: memory allocation, process
allocation, device
 : input and output, etc.

If you are a real rebel, you can even take a look at what kernels you have installed in
/boot:

$ ls -l /boot
total 25980
-rw-r--r--. 1 root root 147823 May 9 18:19
config-3.10.0-862.2.3.el7.x86_64
drwxr-xr-x. 3 root root 17 May 12 18:50 efi
drwxr-xr-x. 2 root root 27 May 12 18:51 grub
drwx------. 5 root root 97 May 12 18:54 grub2
-rw-------. 1 root root 16506787 May 12 18:55
initramfs-3.10.0-862.2.3.el7.x86_64.img
-rw-r--r--. 1 root root 304926 May 9 18:21
symvers-3.10.0-862.2.3.el7.x86_64.gz
-rw-------. 1 root root 3409102 May 9 18:19
System.map-3.10.0-862.2.3.el7.x86_64
-rwxr-xr-x. 1 root root 6225056 May 9 18:19
vmlinuz-3.10.0-862.2.3.el7.x86_64

There's a good chance that the most recent version (emboldened in the preceding
code) is the one that you're running, though this doesn't always ring true.

Security, Updating, and Package Management Chapter 6

[326]

Debian
Things are much the same in the Debian world, although there are fewer OS version
files to be worried about.

In Debian, we can look at the contents of /etc/debian_version for the version that
we are running:

$ cat /etc/debian_version
9.5

Or, we can look in /etc/os-release, like with CentOS:

$ cat /etc/os-release
PRETTY_NAME="Debian GNU/Linux 9 (stretch)"
NAME="Debian GNU/Linux"
VERSION_ID="9"
VERSION="9 (stretch)"
ID=debian
HOME_URL="https://www.debian.org/"
SUPPORT_URL="https://www.debian.org/support"
BUG_REPORT_URL="https://bugs.debian.org/"

Also like in CentOS, we can grep the dmesg log for the version of our kernel:

$ sudo dmesg | grep "Linux version"
[0.000000] Linux version 4.9.0-7-amd64 (debian-
kernel@lists.debian.org) (gcc version 6.3.0 20170516 (Debian
6.3.0-18+deb9u1)) #1 SMP Debian 4.9.110-1 (2018-07-05)

Or, we could use uname, as follows:

$ uname -r
4.9.0-7-amd64

Yes, Debian has a much more recent version of the kernel at the time
of writing this book; this is a mixture of CentOS backporting fixes
and features into their older kernels (literally taking improvements
from upstream and applying them to older releases,) and the Debian
distribution having a much shorter release cycle.

Security, Updating, and Package Management Chapter 6

[327]

You can list the installed versions by using any of the methods listed previously; the
following is the dpkg-query example:

$ dpkg-query -W linux-image*
linux-image-4.9.0-6-amd64 4.9.88-1+deb9u1
linux-image-4.9.0-7-amd64 4.9.110-1
linux-image-amd64 4.9+80+deb9u5

There's also the trusty old /boot, as follows:

$ ls -l /boot
total 50264
-rw-r--r-- 1 root root 186567 May 7 22:38 config-4.9.0-6-amd64
-rw-r--r-- 1 root root 186568 Jul 5 01:29 config-4.9.0-7-amd64
drwxr-xr-x 5 root root 4096 Jul 17 01:50 grub
-rw-r--r-- 1 root root 18117609 Jul 17 01:48 initrd.img-4.9.0-6-amd64
-rw-r--r-- 1 root root 18125878 Jul 17 01:50 initrd.img-4.9.0-7-amd64
-rw-r--r-- 1 root root 3190138 May 7 22:38 System.map-4.9.0-6-amd64
-rw-r--r-- 1 root root 3192069 Jul 5 01:29 System.map-4.9.0-7-amd64
-rw-r--r-- 1 root root 4224800 May 7 22:38 vmlinuz-4.9.0-6-amd64
-rw-r--r-- 1 root root 4224800 Jul 5 01:29 vmlinuz-4.9.0-7-amd64

Ubuntu
Like all good distributions, Ubuntu also lets you cat a file to get information; but,
unlike some others, it also tells you when you log in (by default).

SSHing to our Ubuntu box should print something like the following:

$ vagrant ssh ubuntu1804
Welcome to Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-34-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 System information as of Sun Sep 30 14:55:26 UTC 2018

 System load: 0.0 Processes: 95
 Usage of /: 9.8% of 9.63GB Users logged in: 0
 Memory usage: 12% IP address for enp0s3: 10.0.2.15
 Swap usage: 0%

 * Read about Ubuntu updates for L1 Terminal Fault Vulnerabilities
(L1TF).
 - https://ubu.one/L1TF

Security, Updating, and Package Management Chapter 6

[328]

 * Having fun with some surprising Linux desktop apps... Alan keeps
 the family entertained over the summer/winter holidays.
 - https://bit.ly/top_10_entertainment_apps

 * Want to make a highly secure kiosk, smart display or touchscreen?
 Here's a step-by-step tutorial for a rainy weekend, or a startup.
 - https://bit.ly/secure-kiosk

 Get cloud support with Ubuntu Advantage Cloud Guest:
 http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

Last login: Sun Sep 30 14:15:35 2018 from 10.0.2.2

Note the emboldened line, which tells you right when you log in what version of
Ubuntu you are running.

This message of the day (MOTD) is actually built from several files; the header is 00-
header:

$ cat /etc/update-motd.d/00-header

Within this file are some lines, as follows:

[-r /etc/lsb-release] && . /etc/lsb-release

if [-z "$DISTRIB_DESCRIPTION"] && [-x /usr/bin/lsb_release]; then
 # Fall back to using the very slow lsb_release utility
 DISTRIB_DESCRIPTION=$(lsb_release -s -d)
fi

printf "Welcome to %s (%s %s %s)\n" "$DISTRIB_DESCRIPTION" "$(uname -
o)" "$(uname -r)" "$(uname -m)"

Here, we can check to see whether the lsb-release file exists (and is readable)
before it's sourced (. /etc/lsb-release) for the version.

Then, we have an if statement, which says that if the DISTRIB_DESCRIPTION
variable is empty, and the lsb_release binary is executable, we fall back to using
that utility to determine the release version (lsb_release -s -d).

We then print the output, which is what we saw at the top of the login message.

Security, Updating, and Package Management Chapter 6

[329]

Failing the MOTD, we can cat /etc/lsb-release ourselves, using the following
command:

$ cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=18.04
DISTRIB_CODENAME=bionic
DISTRIB_DESCRIPTION="Ubuntu 18.04.1 LTS"

Or, we can use os-release again, as follows:

$ cat /etc/os-release
NAME="Ubuntu"
VERSION="18.04.1 LTS (Bionic Beaver)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 18.04.1 LTS"
VERSION_ID="18.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/pr
ivacy-policy"
VERSION_CODENAME=bionic
UBUNTU_CODENAME=bionic

For the kernel, it's much the same as the previous actions; check the uname, as
follows:

$ uname -r
4.15.0-34-generic

Check the installed versions, as follows:

$ dpkg-query -W linux-image*
linux-image
linux-image-4.15.0-34-generic 4.15.0-34.37
linux-image-unsigned-4.15.0-34-generic
linux-image-virtual 4.15.0.34.36

Or, take a look at /boot, as follows:

$ ls -l /boot
total 32720
-rw------- 1 root root 4044038 Aug 27 14:45 System.map-4.15.0-34-
generic
-rw-r--r-- 1 root root 1537610 Aug 27 14:45 abi-4.15.0-34-generic
-rw-r--r-- 1 root root 216905 Aug 27 14:45 config-4.15.0-34-generic

Security, Updating, and Package Management Chapter 6

[330]

drwxr-xr-x 5 root root 4096 Sep 21 12:13 grub
-rw-r--r-- 1 root root 19423451 Sep 21 12:00 initrd.img-4.15.0-34-
generic
-rw-r--r-- 1 root root 0 Aug 27 14:45 retpoline-4.15.0-34-
generic
-rw------- 1 root root 8269560 Aug 27 15:06 vmlinuz-4.15.0-34-generic

The vmlinuz object, as seen previously, is the compressed
executable of the Linux kernel.

How it works…
When you are querying these files, you are asking the OS what version it thinks it is.

This is useful in everything from security to writing scripts. Not only do you want to
know when the version of an OS you're running is insecure, you might also want to
add a sanity check to the top of any scripts, to ensure they're only run on systems
they're designed for, that is, you can write a script for CentOS systems, and step one
can be to "check we're actually being executed on a CentOS system."

uname (Unix name) is more interesting, because instead of querying files for the OS
version, what we were actually doing was querying the running kernel for its
information.

uname uses the uname system call (confused yet?), which is not only POSIX-
compliant, but has roots that go all the way back to the 1970s and PWB/Unix.

There's more…
You might have noticed the Ubuntu usage of lsb_release to grab its OS version; the
same can be done on CentOS, but first, lsb_release needs to be installed:

$ sudo yum install redhat-lsb-core

Security, Updating, and Package Management Chapter 6

[331]

Now, we can run the same command that Ubuntu uses in order to get OS
information:

$ lsb_release -s -d
"CentOS Linux release 7.5.1804 (Core) "

The same can be done on Debian, without having to install anything by default:

$ lsb_release -s -d
Debian GNU/Linux 9.5 (stretch)

Linux Standard Base (LSB) is basically a standard that multiple distributions sign up
to. It specifies a Filesystem Hierarchy Standard (FHS), as well as various other
components of a Linux system.

The LSB also suggests the package format of RPM, although Debian
and Ubuntu obviously don't use this by default, opting for .deb
instead. To get around this, Debian offers the alien package, which
is used to transform .rpm files into .deb files prior to installation. It
is something of a dirty hack, and it doesn't guarantee compliance; it
is more a sort of courtesy nod.

See also...
Take a look at the old Unix programs and conventions, and you'll be surprised by
how many of them have survived till the modern day.

GNU is not Unix, though, so why do Linux systems also have uname? The answer is,
because it's Unix-like, and a lot of the commands and conventions pioneered by Unix
were rewritten by the GNU operating system and free software movement, for the
convenience of familiarity.

Checking for updates
In this section, we will use the Vagrantfile that was used in part of the first
section. Now that we know the versions of software associated with our system
(packages, OS, and kernel), we're going to look at what updates are available to us,
and how we might install them.

We will check for both specific package updates and updates to all packages.

Security, Updating, and Package Management Chapter 6

[332]

How to do it…
In this section, we're going to drop into our CentOS and Debian boxes, skipping
Ubuntu, as the same rules from Debian will apply.

We are going to use the kernel throughout these examples, although any package on
your system can be substituted.

CentOS
In CentOS, the easiest way to check for updates to a package is with YUM, as follows:

$ yum -q info kernel
Installed Packages
Name : kernel
Arch : x86_64
Version : 3.10.0
Release : 862.2.3.el7
Size : 62 M
Repo : installed
From repo : koji-override-1
Summary : The Linux kernel
URL : http://www.kernel.org/
Licence : GPLv2
Description : The kernel package contains the Linux kernel (vmlinuz),
the core of any
 : Linux operating system. The kernel handles the basic functions
 : of the operating system: memory allocation, process allocation,
device
 : input and output, etc.

Available Packages
Name : kernel
Arch : x86_64
Version : 3.10.0
Release : 862.14.4.el7
Size : 46 M
Repo : updates/7/x86_64
Summary : The Linux kernel
URL : http://www.kernel.org/
Licence : GPLv2
Description : The kernel package contains the Linux kernel (vmlinuz),
the core of any
 : Linux operating system. The kernel handles the basic functions
 : of the operating system: memory allocation, process allocation,
device

Security, Updating, and Package Management Chapter 6

[333]

 : input and output, etc.

Note that we are not limiting the output to installed packages; instead, we are
checking what we have installed, and what is available.

The output tells us that while the version number has not changed, the release of the
kernel has been updated, and is available from the updates/7/x86_64 repo.

To update our kernel, we would simply run a yum upgrade command, as follows:

$ sudo yum upgrade -y kernel

We've previously mentioned the list of packages-that-will-change
when running YUM commands. With '-y' we auto-accept these
changes, but if you're unsure, it's a good idea to omit the '-y' flag
and sanity-check manually by reading the presented list.

So, specific packages are pretty simple, but how do we check all installed packages on
our system?

With YUM, of course!

We can use either update or upgrade, which are basically the same on modern
installations:

$ sudo yum upgrade

Using upgrade (rather than update) should technically be different,
as it also uses logic to obsolete and replace obsoleted programs, but
because this is behavior that most people desire, obsoletes=1 is
also set in yum.conf, making update and upgrade functionally the
same by default.

Our preceding command should result in a screen like the following:

Security, Updating, and Package Management Chapter 6

[334]

Note that without flags added to the command, the update will stop
here, with a prompt for you to choose y/d/N (with N being the
default).

If you are ready to upgrade, passing y to this command will update and install the
preceding packages.

If you are not ready to upgrade, passing d will only download the packages.

As we've said before, typically, the only programs that require a
reboot to update are the kernel and systemd (the init system), as
these are the soul of your installation, and you're basically killing
the old program to make way for the new (which will be selected by
default on most systems, following an upgrade).

Security, Updating, and Package Management Chapter 6

[335]

Running our yum info command will now show two installed kernels, and no
available ones, as follows:

$ yum -q info kernel
Installed Packages
Name : kernel
Arch : x86_64
Version : 3.10.0
Release : 862.2.3.el7
Size : 62 M
Repo : installed
From repo : koji-override-1
Summary : The Linux kernel
URL : http://www.kernel.org/
Licence : GPLv2
Description : The kernel package contains the Linux kernel (vmlinuz),
the core of any
 : Linux operating system. The kernel handles the basic
functions
 : of the operating system: memory allocation, process
allocation, device
 : input and output, etc.

Name : kernel
Arch : x86_64
Version : 3.10.0
Release : 862.14.4.el7
Size : 62 M
Repo : installed
From repo : updates
Summary : The Linux kernel
URL : http://www.kernel.org/
Licence : GPLv2
Description : The kernel package contains the Linux kernel (vmlinuz),
the core of any
 : Linux operating system. The kernel handles the basic
functions
 : of the operating system: memory allocation, process
allocation, device
 : input and output, etc.

Debian
On Debian, we're going to use apt, which is the newest and, in my opinion,
friendliest tool.

Security, Updating, and Package Management Chapter 6

[336]

Unlike YUM, we can easily and independently update the list of available packages:

$ sudo apt update
Ign:1 http://deb.debian.org/debian stretch InRelease
Hit:2 http://deb.debian.org/debian stretch Release
Hit:4 http://security.debian.org/debian-security stretch/updates
InRelease
Reading package lists... Done
Building dependency tree
Reading state information... Done
15 packages can be upgraded. Run 'apt list --upgradable' to see them.

Note that it only updates its list, not the programs themselves.

Now, we can look for specific information by using the suggested command:

$ apt list --upgradable linux-image*
Listing... Done
linux-image-4.9.0-7-amd64/stable 4.9.110-3+deb9u2 amd64 [upgradable
from: 4.9.110-1]
linux-image-amd64/stable 4.9+80+deb9u6 amd64 [upgradable from:
4.9+80+deb9u5]

Without adding the regex-matched package on the end, this command will list all
packages that are upgradable:

$ apt list --upgradable
Listing... Done
libcurl3-gnutls/stable 7.52.1-5+deb9u7 amd64 [upgradable from:
7.52.1-5+deb9u6]
libfuse2/stable 2.9.7-1+deb9u1 amd64 [upgradable from: 2.9.7-1]
libpython2.7-minimal/stable 2.7.13-2+deb9u3 amd64 [upgradable from:
2.7.13-2+deb9u2]
libpython2.7-stdlib/stable 2.7.13-2+deb9u3 amd64 [upgradable from:
2.7.13-2+deb9u2]
libpython3.5-minimal/stable 3.5.3-1+deb9u1 amd64 [upgradable from:
3.5.3-1]
libpython3.5-stdlib/stable 3.5.3-1+deb9u1 amd64 [upgradable from:
3.5.3-1]
linux-image-4.9.0-7-amd64/stable 4.9.110-3+deb9u2 amd64 [upgradable
from: 4.9.110-1]
linux-image-amd64/stable 4.9+80+deb9u6 amd64 [upgradable from:
4.9+80+deb9u5]
openssh-client/stable 1:7.4p1-10+deb9u4 amd64 [upgradable from:
1:7.4p1-10+deb9u3]
openssh-server/stable 1:7.4p1-10+deb9u4 amd64 [upgradable from:
1:7.4p1-10+deb9u3]
openssh-sftp-server/stable 1:7.4p1-10+deb9u4 amd64 [upgradable from:

Security, Updating, and Package Management Chapter 6

[337]

1:7.4p1-10+deb9u3]
python2.7/stable 2.7.13-2+deb9u3 amd64 [upgradable from:
2.7.13-2+deb9u2]
python2.7-minimal/stable 2.7.13-2+deb9u3 amd64 [upgradable from:
2.7.13-2+deb9u2]
python3.5/stable 3.5.3-1+deb9u1 amd64 [upgradable from: 3.5.3-1]
python3.5-minimal/stable 3.5.3-1+deb9u1 amd64 [upgradable from:
3.5.3-1]

As with YUM, we can upgrade a single package by using apt:

$ sudo apt install linux-image-amd64
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 linux-image-4.9.0-8-amd64
Suggested packages:
 linux-doc-4.9 debian-kernel-handbook
The following NEW packages will be installed:
 linux-image-4.9.0-8-amd64
The following packages will be upgraded:
 linux-image-amd64
1 upgraded, 1 newly installed, 0 to remove and 14 not upgraded.
Need to get 39.1 MB of archives.
After this operation, 193 MB of additional disk space will be used.
Do you want to continue? [Y/n]

Note that we specifically use the install option instead of upgrade, as upgrade
would try to do all packages, instead of just linux-image-amd64.

If we wanted to upgrade everything, we would use upgrade or full-upgrade:

$ sudo apt full-upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following NEW packages will be installed:
 linux-image-4.9.0-8-amd64
The following packages will be upgraded:
 libcurl3-gnutls libfuse2 libpython2.7-minimal libpython2.7-stdlib
libpython3.5-minimal libpython3.5-stdlib linux-image-4.9.0-7-amd64
linux-image-amd64 openssh-client
 openssh-server openssh-sftp-server python2.7 python2.7-minimal
python3.5 python3.5-minimal
15 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 88.3 MB of archives.

Security, Updating, and Package Management Chapter 6

[338]

After this operation, 193 MB of additional disk space will be used.
Do you want to continue? [Y/n]

The reason that I used full-upgrade is because using only upgrade can result in
packages not being upgraded (if that upgrade requires the removal of another
package).

There may be moments when upgrade is preferable to full-
upgrade, so I would advocate checking the output of your upgrade
command prior to confirming that it is what you want to do.

How it works…
When you run the preceding package manager commands, what you are doing is
querying whichever upstream servers they're configured to talk to, and asking if there
are any newer versions of the installed packages available.

Configured repositories are in /etc/yum.repos.d/ on CentOS and
/etc/apt/sources.list.d (or sources.list.conf).

If there are newer versions of your software available, you have the option to install
or download for later. Generally, it's a good idea to ensure that all your software is
kept up to date, but this is especially true for public-facing services, such as web
servers and SSH daemons.

There's more…
Some popular and tricky software exists outside the realm of sense (as far as this
opinionated author is concerned).

Of particular note are the Hashicorp suite of tools, which check to see if there's a new
version of themselves available when invoked. This means that when you run
Terraform, there is a chance that it will inform you that it is out of date, and you
should download a newer version:

$ terraform --version
Terraform v0.11.7

Your version of Terraform is out of date! The latest version
is 0.11.8. You can update by downloading from
www.terraform.io/downloads.html

Security, Updating, and Package Management Chapter 6

[339]

The package maintainers for distributions usually do not keep on top of this, through
no fault of their own, and quite a few won't even bother to package software that does
this at the moment. What this means is that frequently people will instead add
Terraform, Packer, and other pieces of cool software outside of their package
manager, doubling the number of package management systems you need to keep
track of (one being your system's, and the other being you).

Automating updates
In this section, we will use the Vagrantfile that was used in part of the first section.

Something of a slur, "automatic updating" is a sticky subject for a lot of system
administrators, because historically, it was frequently the case that updates would
brick a system.

This is less and less likely these days, and there are ways you can automate updates
on your boxes without worry (though I still wouldn't do this in production,
personally).

We will also discuss programmatically rebuilding systems.

How to do it…
Jump into each of your boxes in turn, in this section.

It is important to note that you might not want to automatically install updates at all,
especially if you are in an environment where machines are periodically destroyed
and rebuilt.

There might also be in-house procedures that tie your hands, meaning that whatever
you are technically capable of doing, bureaucracy can always get in the way.

CentOS
On CentOS systems, we have a handy tool called yum-cron:

$ sudo yum install yum-cron -y

It comes with two configuration files, located in /etc/yum/.

Security, Updating, and Package Management Chapter 6

[340]

By default, the /etc/yum/yum-cron.conf file will be used, and it has a random
sleep inside it that we are going to disable:

$ sudo sed -i "s/random_sleep = 360/random_sleep = 0/g" /etc/yum/yum-
cron.conf

Now, this means that when yum-cron is called, it will automatically run, applying
the default settings of yum-cron.conf:

$ sudo yum-cron
$

If there are no updates, yum-cron will not show any output (as seen previously).

If there are updates, by default, you will get a notification that they have downloaded
successfully:

Security, Updating, and Package Management Chapter 6

[341]

If you wanted to apply the updates automatically, that would involve another config
file change, as follows:

$ sudo sed -i "s/apply_updates = no/apply_updates = yes/g"
/etc/yum/yum-cron.conf

Running yum-cron again will apply the downloaded updates:

We have mentioned previously (but it is worth saying again) that this does not
necessarily mean that services will instantly be fixed, or will have new features.

That is where the command needs-restarting comes in.

Security, Updating, and Package Management Chapter 6

[342]

You can also run this with a timer (or cron, if you must) to list processes that need
restarting after they've been updated, or a component they utilize has:

$ sudo needs-restarting
2617 : /usr/lib/systemd/systemd-udevd
1082 : qmgr -l -t unix -u
603 : /usr/sbin/crond -n
609 : /sbin/agetty --noclear tty1 linux
574 : /usr/sbin/chronyd
397 : /usr/lib/systemd/systemd-journald
851 : /usr/sbin/sshd -D -u0
1070 : /usr/libexec/postfix/master -w
1 : /usr/lib/systemd/systemd --system --deserialize 21
2155 : sshd: vagrant [priv]
<SNIP>

If you would like nicer output, you can specify services, as follows:

$ sudo needs-restarting -s
rpcbind.service
chronyd.service
systemd-logind.service
NetworkManager.service
postfix.service
dbus.service
getty@tty1.service
crond.service
lvm2-lvmetad.service
sshd.service
gssproxy.service
systemd-udevd.service
systemd-journald.service
polkit.service

Security, Updating, and Package Management Chapter 6

[343]

Or only if a reboot is needed, use the following command:

$ sudo needs-restarting -r
Core libraries or services have been updated:
 kernel -> 3.10.0-862.14.4.el7
 systemd -> 219-57.el7_5.3
 linux-firmware -> 20180220-62.2.git6d51311.el7_5

Reboot is required to ensure that your system benefits from these
updates.

More information:
https://access.redhat.com/solutions/27943

A really simple way of starting yum-cron is with the following line:

$ sudo systemctl enable --now yum-cron

Debian
In the Debian (and Ubuntu) world, we use a package called unattended-upgrades.
It's been around for quite a while, and is usually the option people go with for
automatically updating their Debian-based distributions.

Jump into your stretch box and run a quick install of the package, as follows:

$ sudo apt install unattended-upgrades

If you now ls the /etc/apt/apt.conf.d/ directory, you will see a couple of new
files:

$ ls -l /etc/apt/apt.conf.d/
total 44
-rw-r--r-- 1 root root 49 Jul 17 01:48 00aptitude
-rw-r--r-- 1 root root 82 Jul 17 01:46 00CDMountPoint
-rw-r--r-- 1 root root 40 Jul 17 01:46 00trustcdrom
-rw-r--r-- 1 root root 769 Sep 13 2017 01autoremove
-r--r--r-- 1 root root 1768 Jul 17 01:49 01autoremove-kernels
-rw-r--r-- 1 root root 80 Dec 11 2016 20auto-upgrades
-rw-r--r-- 1 root root 202 Apr 10 2017 20listchanges
-rw-r--r-- 1 root root 4259 Oct 1 16:49 50unattended-upgrades
-rw-r--r-- 1 root root 182 May 21 2017 70debconf
-rw-r--r-- 1 root root 27 Jul 17 01:49 99translations

Security, Updating, and Package Management Chapter 6

[344]

These are the crux of the unattended-upgrades package.

If we take a look at the block in the 50unattended-upgrades configuration file that
handles which updates to pull in, we will see the following:

Unattended-Upgrade::Origins-Pattern {
 // Codename based matching:
 // This will follow the migration of a release through different
 // archives (e.g. from testing to stable and later oldstable).
// "o=Debian,n=jessie";
// "o=Debian,n=jessie-updates";
// "o=Debian,n=jessie-proposed-updates";
// "o=Debian,n=jessie,l=Debian-Security";

 // Archive or Suite based matching:
 // Note that this will silently match a different release after
 // migration to the specified archive (e.g. testing becomes the
 // new stable).
// "o=Debian,a=stable";
// "o=Debian,a=stable-updates";
// "o=Debian,a=proposed-updates";
 "origin=Debian,codename=${distro_codename},label=Debian-Security";
};

Note that the only uncommented line is the bottom one (before the closing brace).

We are going to uncomment the lines that precede it, as follows:

$ sudo sed -i 's/\/\/ "o=Debian,a=stable";/
"o=Debian,a=stable";/g' /etc/apt/apt.conf.d/50unattended-upgrades
$ sudo sed -i 's/\/\/ "o=Debian,a=stable-updates";/
"o=Debian,a=stable-updates";/g' /etc/apt/apt.conf.d/50unattended-
upgrades
$ sudo sed -i 's/\/\/ "o=Debian,a=proposed-updates";/
"o=Debian,a=proposed-updates";/g' /etc/apt/apt.conf.d/50unattended-
upgrades

You can run and test your configuration by starting the command in debug mode:

$ sudo unattended-upgrade -d

Security, Updating, and Package Management Chapter 6

[345]

It might look something like the following:

Noticed how the upgrades were actually installed, and a log file was created.

How it works…
yum-cron is actually just an easy way to use YUM from within a cron job (which we
mentioned disparagingly earlier, while discussing systemd timers). Because of this,
you would find it easy to incorporate into a custom timer (see earlier chapters) or a
cron job that might run nightly.

In general, you could apply all updates to a development environment nightly, and
then potentially stagger updates to other (higher) environments throughout the week,
upgrading production to the next Tuesday. That is entirely up to you, as the all-
powerful sysadmin.

Security, Updating, and Package Management Chapter 6

[346]

If you have taken the suggestion of enabling yum-cron as a service, you should now
find that the following file exists:

$ ls /var/lock/subsys/yum-cron
/var/lock/subsys/yum-cron

This enables the two cron jobs, as follows:

$ ls /etc/cron.daily/0yum-daily.cron
/etc/cron.daily/0yum-daily.cron
$ ls /etc/cron.hourly/0yum-hourly.cron
/etc/cron.hourly/0yum-hourly.cron

These will use the configuration files that we mentioned.

In the case of Debian's unattended-upgrades, and as with most modern systems,
systemd is used to run this job daily.

List your systemd timers, as follows:

$ sudo systemctl list-timers
NEXT LEFT LAST
PASSED UNIT ACTIVATES
Mon 2018-10-01 20:34:32 GMT 3h 16min left Mon 2018-10-01 16:48:00 GMT
30min ago apt-daily.timer apt-daily.service
Tue 2018-10-02 06:56:19 GMT 13h left Mon 2018-10-01 16:48:00 GMT
30min ago apt-daily-upgrade.timer apt-daily-upgrade.service
Tue 2018-10-02 17:03:03 GMT 23h left Mon 2018-10-01 17:03:03 GMT
15min ago systemd-tmpfiles-clean.timer systemd-tmpfiles-clean.service

3 timers listed.
Pass --all to see loaded but inactive timers, too.

Note the two apt jobs, the first of which runs the following:

[Service]
Type=oneshot
ExecStart=/usr/lib/apt/apt.systemd.daily update

The second one runs the following:

[Service]
Type=oneshot
ExecStart=/usr/lib/apt/apt.systemd.daily install
KillMode=process
TimeoutStopSec=900

Security, Updating, and Package Management Chapter 6

[347]

There's more…
Like unattended upgrades on Debian, yum-cron has the ability to work through only
specific types of upgrades. By default, this is set to default, as seen in the following
snippet, which is why we didn't modify it earlier:

$ cat /etc/yum/yum-cron.conf
[commands]
What kind of update to use:
default = yum upgrade
security = yum --security upgrade
security-severity:Critical = yum --sec-severity=Critical
upgrade
minimal = yum --bugfix update-minimal
minimal-security = yum --security update-minimal
minimal-security-severity:Critical = --sec-severity=Critical
update-minimal
update_cmd = default

There's nothing stopping you from changing this, perhaps specifying that only
security upgrades should be applied automatically?

Automatic provisioning
In the prelude I suggested that we would touch on this, and it is definitely worth
discussing.

Once, it was the case that physical machines roamed the earth, preying on
unsuspecting sysadmins that dared to enter their swamps and server cages.

Nowadays, servers still exist, but they have been given a more tech-unfriendly and
media-savvy name, becoming colloquially known as the cloud, and being made
transparent enough that sysadmins no longer know whether their favorite hipster
distribution is running on a Dell, HPE, or IBM machine.

This has given rise to transient servers, or servers that periodically cease to exist in the
evening, only to be born anew the next morning.

Aside from giving you an existential crisis about whether or not you cease to exist
when you go to sleep for the night, this might start to give you ideas about never
updating your machines, instead simply ensuring that they come back up with all
updates already applied.

Security, Updating, and Package Management Chapter 6

[348]

The notion of automatically provisioning your infrastructure on a schedule is gaining
traction, and what it boils down to is creating an image programmatically (with a
program such as Packer) before uploading and/or moving it to a different portion of
your virtual infrastructure, where another program (Terraform) can use the new
image to spin up a lot of shiny new boxes.

Obviously, this works all the way up to a production network without issues, because
there are no customers around on your dev instances (I hope—I really, really hope). It
does present a problem in production, but then you start to think about wild and
crazy things such as blue/green deployments.

Checking mailing lists and errata pages
Outside of our systems, we will take a look at where you go for news on how your
operating systems are performing, in general. Are they healthy? Do they need some
space? Are they going to implode pretty soon?

It's good practice to get into this habit, because occasionally, system and behavioral
changes may require manual intervention on the part of the sysadmin, even if you
automate all of your other problems away.

Servers – who needs them?

Getting ready
In this section, we will be using our VMs a bit, and the almighty internet.

How to do it…
We're going to take a look at our VMs a little bit, but we are mostly going to be
focusing on online locations for news.

There are various methods and places that you might go for information, so let's work
through some of the more popular ones.

Security, Updating, and Package Management Chapter 6

[349]

Package changelogs
If you want information about a package, one thing that you might like is the
changelog, accessible from your system with a simple RPM command.

First, find the package you want to check; we're going to grab the most recently
installed kernel:

$ rpm -q kernel --last
kernel-3.10.0-862.14.4.el7.x86_64 Sun 30 Sep 2018 16:40:08
UTC
kernel-3.10.0-862.2.3.el7.x86_64 Sat 12 May 2018 18:51:56
UTC

Now, open the changelog for that kernel (it's long):

$ rpm -q --changelog kernel-3.10.0-862.14.4.el7.x86_64 | less

You will get something like the following:

Security, Updating, and Package Management Chapter 6

[350]

This can be a good way to check for specific changes, but it can also sometimes be a
bit tricky (depending on the nature of the log).

To show that it's available for other packages, too, here's lsof, which is a lot more
sparse:

Under Debian and Ubuntu, we can use apt to accomplish the same thing, as follows:

$ apt changelog linux-image-amd64

Security, Updating, and Package Management Chapter 6

[351]

Admittedly, the output isn't as verbose, as shown in the following screenshot:

Official sources and mailing Lists
Red Hat, through the goodness of their collective hearts, provide a page to reference
for errata and update news: https:/ /access. redhat. com/ security/ updates/
advisory

There are some important and very helpful links on this page, such as a link to the
Red Hat Common Vulnerabilities and Exposures (CVE) database: https:/ /access.
redhat.com/security/ security- updates/ #/ cve

https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve
https://access.redhat.com/security/security-updates/#/cve

Security, Updating, and Package Management Chapter 6

[352]

If you have a Red Hat login, there's also a link to their own errata
page on the customer portal.

Mailing lists are a big part of this world, with some going back several decades, and
you, too, can receive far too much email (most of which you'll never read)!

Most of the big projects have mailing lists (sometimes several of them), and it would
be next to pointless to subscribe to all of them (for example, why sign up to the
PowerPC mailing list for the kernel, when you got rid of your New World Macintosh
in the mid 2000s?)

Select the ones that interest you, and that might be useful for administration. Security
lists are generally a good place to start:

Red Hat maintains a few at the following at https:/ / www.redhat. com/
mailman/ listinfo.
CentOS has their own mailing list at https:/ / lists. centos. org/ mailman/
listinfo/ .
Debian have their mailing list at https:/ /lists. debian. org/ . (It includes
handy documentation on which lists you might find useful.)
And, of course, Ubuntu has their list at https:/ /lists. ubuntu. com/ . (It is
also nicely formatted, such as Debian.)

Good lists to sign up to include announcement lists; for example, the
CentOS-announce list covers general and security information.

Included on the official sources list should be the various publicly viewable source
trees of projects, and their associated Issues sections (in places such as GitHub). Be
sure to keep an eye on any pet projects that you like the look of, or those that might
underpin your infrastructure (Terraform, and suchlike).

Other sources
BBC, HackerNews, The Register, and Reddit have all previously informed me of
problems that I should have been aware of before reading about them on the front
page of popular news sites; don't underestimate the mainstream media when it comes
to wanting to drum up panic.

https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.centos.org/mailman/listinfo/
https://lists.debian.org/
https://lists.debian.org/
https://lists.debian.org/
https://lists.debian.org/
https://lists.debian.org/
https://lists.debian.org/
https://lists.debian.org/
https://lists.debian.org/
https://lists.debian.org/
https://lists.debian.org/
https://lists.ubuntu.com/
https://lists.ubuntu.com/
https://lists.ubuntu.com/
https://lists.ubuntu.com/
https://lists.ubuntu.com/
https://lists.ubuntu.com/
https://lists.ubuntu.com/
https://lists.ubuntu.com/
https://lists.ubuntu.com/
https://lists.ubuntu.com/

Security, Updating, and Package Management Chapter 6

[353]

How it works…
These projects are public, and those involved are well aware of the stakes when
there's a problem. One only has to take a look at the panic caused when big
vulnerabilities are revealed to appreciate why notification avenues are so widely used
and appreciated.

If a project had no means of communicating critical problems with its users, it would
very quickly find itself inundated with concerned individuals, just wanting to know
that the software they're using is being kept up to date.

All that we can do in this fight against security issues and breaking changes is keep
informed, and act swiftly when we need to.

There's more…
There is a lot more, really; check for blogs, such as CentOS (https:/ /blog. centos.
org/), and individual mailing lists for other packages and projects.

OpenSSL, for example, is a good one to keep an eye on (https:/ / www.openssl. org/
community/mailinglists. html), and I don't say that for any particular heart-health-
related reason.

A big one is the kernel mailing list selection, viewable through https:/ /lkml. org/ ;
here, kernel news is generally broken first.

Using snaps
In this section, we're going to use our Ubuntu VM.

Snaps (by Canonical) are one of two new kids in the neighborhood. They are a
method for packaging software in a universal fashion, so that one package can be
deployed to any OS that supports snaps.

At the time of writing this book, Ubuntu probably has the best support for snaps, but
Canonical proudly lists installation instructions for quite a few distributions on their
website (despite the fact that three of these are just downstream Ubuntu
distros), https:/ /docs. snapcraft. io/ core/ install.

https://blog.centos.org/
https://blog.centos.org/
https://blog.centos.org/
https://blog.centos.org/
https://blog.centos.org/
https://blog.centos.org/
https://blog.centos.org/
https://blog.centos.org/
https://blog.centos.org/
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://www.openssl.org/community/mailinglists.html
https://lkml.org/
https://lkml.org/
https://lkml.org/
https://lkml.org/
https://lkml.org/
https://lkml.org/
https://lkml.org/
https://lkml.org/
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install

Security, Updating, and Package Management Chapter 6

[354]

I am usually pretty harsh on Canonical, so let me just say that I applaud this effort. It
has been true for a while that the disparate packaging methods on Linux are one of
the many reasons that some developers stay away, and anything that aims to close
that gap is a welcome addition to the community.

How to do it…
Jump onto the Ubuntu machine we created earlier, as follows:

$ vagrant ssh ubuntu1804

On our VM, the snapd service will already be started and running (or it should be;
check with systemctl).

Searching out snaps
To search for snaps, we use the snap command-line utility. In this example, I am
going to look for another Canonical product (lxd):

$ snap search lxd
Name Version Publisher Notes Summary
lxd-demo-server 0+git.f3532e3 stgraber - Online software
demo sessions using LXD
lxd 3.5 canonical - System
container manager and API
nova ocata james-page - OpenStack
Compute Service (nova)
satellite 0.1.2 alanzanattadev - Advanced
scalable Open source intelligence platform
nova-hypervisor ocata james-page - OpenStack
Compute Service - KVM Hypervisor (nova)

We get a few results, variously published by Canonical and a few other names.

It's not limited to daemons either; in the following code I'm searching for the aws-
cli tool:

$ snap search aws-cli
Name Version Publisher Notes Summary
aws-cli 1.15.71 aws√ classic Universal Command Line Interface
for Amazon Web Services

Security, Updating, and Package Management Chapter 6

[355]

Note the tick next to the publisher's name; this means that the
package is from a verified account (in this case, Amazon Web
Services).

Installing snaps
The snap that we want has the name lxd, making our installation easy:

$ sudo snap install lxd

You will see a progress bar similar to the following:

Once finished, you will have the lxd container manager installed from a snap.

Listing installed snaps
We can list our installed snaps with snap list, as follows:

$ snap list
Name Version Rev Tracking Publisher Notes
core 16-2.35.2 5548 stable canonical√ core
lxd 3.5 8959 stable canonical√ -

Interacting with daemon snaps
Because LXD is a daemon, we can enable it by using the snap command-line tool
again; first, we should check the active state of our service, as follows:

$ sudo snap services
Service Startup Current
lxd.activate enabled inactive
lxd.daemon enabled inactive

Security, Updating, and Package Management Chapter 6

[356]

It is inactive, but we can activate it (we have the technology), as follows:

$ sudo snap start lxd
Started.

Checking the services again, we can see it has started:

$ sudo snap services
Service Startup Current
lxd.activate enabled inactive
lxd.daemon enabled active

Under systemd, the service is called snap.lxd.daemon.service,
if you want to use traditional tools to check its status.

To prove that it has started and that we can interact with the daemon, we can use the
bundled lxc package, as follows:

$ lxd.lxc list
Error: Get http://unix.socket/1.0: dial unix
/var/snap/lxd/common/lxd/unix.socket: connect: permission denied

You can see that it tries to communicate with the socket; and, while it has given us a
permission denied error in the preceding snippet, this does serve to highlight that the
socket exists in the /var/snap/ directory.

Let's try again, with sudo:

$ sudo lxd.lxc list
+------+-------+------+------+------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+------+-------+------+------+------+-----------+

Awesome!

Removing snaps
Finally, we can use our tool to remove lxd without prejudice:

$ sudo snap remove lxd
lxd removed

Security, Updating, and Package Management Chapter 6

[357]

How it works…
Snaps work like any other package manager, installing and managing packages
brought in from a repository on your system.

You'll also have noticed the core installation on our list of installed snaps; this is
effectively the base platform that snaps work on top of.

snapd is the daemon that underpins snaps; it's the environment that manages the
installed snaps, dealing with installs, updates, and deletion of old versions.

When you install a snap, what you actually download is a read-only squashfs file
that lives in /var/lib/snapd/snaps/:

$ ls
core_5548.snap lxd_8959.snap partial

The numbers are snap revision numbers.

When these squashfs images are mounted by snapd, you can see them personified
as loop devices with df:

$ df -h | grep loop
/dev/loop0 67M 67M 0 100% /snap/lxd/8959
/dev/loop1 88M 88M 0 100% /snap/core/5548

You can also see the specific mount information with mount:

$ mount | grep snap
/var/lib/snapd/snaps/lxd_8959.snap on /snap/lxd/8959 type squashfs
(ro,nodev,relatime,x-gdu.hide)
/var/lib/snapd/snaps/core_5548.snap on /snap/core/5548 type squashfs
(ro,nodev,relatime,x-gdu.hide)
tmpfs on /run/snapd/ns type tmpfs
(rw,nosuid,noexec,relatime,size=100896k,mode=755)
nsfs on /run/snapd/ns/lxd.mnt type nsfs (rw)

Note that we can navigate into the locations where these snaps are mounted, as
follows:

$ cd /snap/lxd/8959/bin/

Security, Updating, and Package Management Chapter 6

[358]

However, because the filesystem is read only, we cannot write anything inside of it:

$ touch test
touch: cannot touch 'test': Read-only file system

Neat, right?

We can use our snaps without calling the binaries directly, because of various snap
entries in our $PATH:

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/game
s:/usr/local/games:/snap/bin:/snap/bin:/var/lib/snapd/snap/bin:/snap/b
in:/var/lib/snapd/snap/bin

The PATH is the list of defined locations where your shell will look
for binaries; when you run ls, you're locating is the binary
somewhere within your PATH.

Snaps are also self-contained, meaning that libraries and runtimes are bundled into
the package (which makes portability between distributions easy).

There's more…
If you want detailed information about a snap, there's also the snap info command.

The following is the output when the command is run against the lxd package:

$ snap info lxd
name: lxd
summary: System container manager and API
publisher: Canonical√
contact: https://github.com/lxc/lxd/issues
license: unset
description: |
 LXD is a container manager for system containers.
 It offers a REST API to remotely manage containers over the network,
using an image based workflow
 and with support for live migration.
 Images are available for all Ubuntu releases and architectures as
well as for a wide number of
 other Linux distributions.
 LXD containers are lightweight, secure by default and a great
alternative to virtual machines.

Security, Updating, and Package Management Chapter 6

[359]

commands:
 - lxd.benchmark
 - lxd.buginfo
 - lxd.check-kernel
 - lxd.lxc
 - lxd
 - lxd.migrate
services:
 lxd.activate: oneshot, enabled, inactive
 lxd.daemon: simple, enabled, inactive
snap-id: J60k4JY0HppjwOjW8dZdYc8obXKxujRu
tracking: stable
refresh-date: today at 16:44 UTC
channels:
 stable: 3.5 (8959) 69MB -
 candidate: 3.5 (8959) 69MB -
 beta: ↑
 edge: git-47f0414 (8984) 69MB -
 3.0/stable: 3.0.2 (8715) 65MB -
 3.0/candidate: 3.0.2 (8715) 65MB -
 3.0/beta: ↑
 3.0/edge: git-d1a5b4d (8957) 65MB -
 2.0/stable: 2.0.11 (8023) 28MB -
 2.0/candidate: 2.0.11 (8023) 28MB -
 2.0/beta: ↑
 2.0/edge: git-92a4fdc (8000) 26MB -
installed: 3.5 (8959) 69MB -

This should tell you most of what you need to know about any particular snap.

See also...
You don't have to search for snaps on the command line, if you live in the 21st
century.

You can also use the snapcraft.io website at https:/ /snapcraft. io/ :

https://snapcraft.io/
https://snapcraft.io/
https://snapcraft.io/
https://snapcraft.io/
https://snapcraft.io/
https://snapcraft.io/
https://snapcraft.io/
https://snapcraft.io/

Security, Updating, and Package Management Chapter 6

[360]

In the Store section, you will find a visual search, which can help you to find what
you are after in a friendly, click-button fashion. In the following screenshot, I've
searched for aws:

Security, Updating, and Package Management Chapter 6

[361]

Using Flatpak
Flatpak (by Alex Larsson and the Flatpak team) is the second in the trendy clique of
complete-solution package managers. It is also a good way of packaging software so
that one package can be deployed to any OS that supports Flatpak installations.
Sound familiar?

Really, though, we are also getting into conflicting technology development (yet
again) and holy wars (yet again).

To kick things off, I should point out that Flatpak really does emphasize desktop
applications over server applications, from their complex run commands to the fact
that they are mostly graphical tools. Snaps are definitely more of a mixture between
the two worlds.

Obviously if you want to install a GUI on your server, there's
nothing stopping you, you could even use VNC for management!
However, it's not really done, like fish fingers and custard.

Getting ready
In this section, we will continue to use our Ubuntu VM (mostly because it's the one I
still have open, after having written the last section).

There's no reason why we couldn't use our Debian or CentOS box, instead; a host of
other distributions are also supported, including (but not limited to) the following:

Arch
Fedora
Gentoo
Solus
Alpine
openSUSE

Security, Updating, and Package Management Chapter 6

[362]

To set up our VM for Flatpak, we have to install it, although it is available in the
default repositories (potentially after an upgrade, depending on when you're reading
this; if you're reading this prior to 2017, I'm impressed by your temporal-
displacement abilities, but you should know that the future is dark and full of
lemons):

$ sudo apt update && sudo apt upgrade -y
$ sudo apt install flatpak -y

Next, we need to enable the remote flathub repo from https:/ /flathub. org:

$ sudo flatpak remote-add --if-not-exists flathub
https://flathub.org/repo/flathub.flatpakrepo

Now, we can install stuff!

How to do it…
For the purposes of this section, I've chosen the relatively lightweight vim package to
install from Flathub.

Searching for a package
First, let's look for the package:

$ sudo flatpak search vim
Application ID Version Branch Remotes Description
org.vim.Vim v8.1.0443 stable flathub Edit text files
net.mediaarea.AVIMetaEdit 1.0.2 stable flathub Embed, validate,
and export AVI files metadata
org.gnome.Devhelp stable flathub A developer tool
for browsing and searching API documentation
org.openshot.OpenShot 2.4.3 stable flathub An easy to use,
quick to learn, and surprisingly powerful video editor
org.gnome.Builder 3.30.1 stable flathub An IDE for GNOME

Again, we have a few results, but the top one is what we're after.

Installing our package
We can install the package with a small command, as follows:

$ flatpak install flathub org.vim.Vim -y

https://flathub.org
https://flathub.org
https://flathub.org
https://flathub.org
https://flathub.org
https://flathub.org
https://flathub.org

Security, Updating, and Package Management Chapter 6

[363]

This can take quite some time to download, and it takes up more
space than you might expect (despite being a relatively lightweight
package).

Running our package
Once the installation is complete, you can run your new version of Vim:

$ flatpak run org.vim.Vim

The package identifier is in three parts: usually org/com.<company
or team>.<app name>.

It's not the prettiest command, but it will drop you into the tried and true text editor,
as follows:

Security, Updating, and Package Management Chapter 6

[364]

If we look at the versions of the Flatpak installation and the native Vim install, we can
see the difference:

$ flatpak run org.vim.Vim --version | head -n3
VIM - Vi IMproved 8.1 (2018 May 18, compiled Oct 1 2018 10:15:08)
Included patches: 1-443
Compiled by buildbot
$ vim --version | head -n3
VIM - Vi IMproved 8.0 (2016 Sep 12, compiled Apr 10 2018 21:31:58)
Included patches: 1-1453
Modified by pkg-vim-maintainers@lists.alioth.debian.org

Listing installed packages
Now that we have something to actually show, we can list our installed flatpak
packages:

$ flatpak list
Ref Options
org.vim.Vim/x86_64/stable system,current
org.freedesktop.Platform.ffmpeg/x86_64/1.6 system,runtime
org.freedesktop.Platform/x86_64/1.6 system,runtime

Note that it also tells us that the package is a system package, rather than a per-user
package.

User installations
Flatpak also has the concept of local user installations, meaning that we can install
our packages as our user, too:

$ flatpak --user remote-add --if-not-exists flathub
https://flathub.org/repo/flathub.flatpakrepo
$ flatpak --user install flathub org.vim.Vim -y

Removing packages
When you inevitably get bored with Vim and go back to using ed for your day to day
editing needs (because ed is the standard text editor), you can remove your package
easily, as follows:

$ sudo flatpak uninstall org.vim.Vim --user -y

Security, Updating, and Package Management Chapter 6

[365]

Here, we're specifically removing the user-installed version; the
system one will remain.

How it works…
When you install a package using Flatpak, it ends up in one of two places:

System packages end up in /var/lib/flatpak.
User packages end up in ~/.local/share/flatpak/.

Looking into these locations, we can find an app directory, and within that, our
package:

$ pwd
/home/vagrant/.local/share/flatpak/app
$ ls
org.vim.Vim

Within this directory, there are yet more layers, which house the current version of
your package and the various binary files.

Packages are built atop runtimes, like those that you saw when you listed installed
packages earlier. These runtimes are distribution agnostic, meaning that they can be
installed on all of the Ubuntu, CentOS, and Fedora systems of the world.

If there is something additional required for an application to function, such as a
specific library, you can bundle that in your package, too.

There's more…
At the time of writing this book, there are 585 packages available to install from
flathub, with the number growing every day:

$ flatpak remote-ls flathub | wc -l
585

You can also update your applications with one command, as follows:

$ flatpak update
Looking for updates...

Security, Updating, and Package Management Chapter 6

[366]

See also...
For those of you that hate Vim with a passion, despite its obvious superiority, Flathub
has you covered:

$ flatpak search emacs
Application ID Version Branch Remotes Description
org.gnu.emacs 26.1 stable flathub An extensible text editor
org.gnome.Devhelp stable flathub A developer tool for browsing
and searching API documentation

There are many more packages available, but, as I've said previously, you are actually
unlikely to find yourself using Flatpak on a server, simply because it's a desktop-
focused endeavor.

On your own computer, though, snaps and Flatpak packages can be installed side by
side.

I once tried to use Solus as my daily driver, but wanted to ensure
that I did nothing out of the ordinary with my installation. At the
time, Solus had its own packages, snap support, and Flatpak
support. This actually resulted in me using specific snaps for
managing a Kubernetes setup, Flatpak to install Slack, and the
system's own package manager for everything else; it was a bit of a
mess by the end, but a consistent mess!

Using Pip, RubyGems, and other package
managers
Aside from YUM, Apt, snaps, and Flatpak, there are a host of other package
management systems. Pip and RubyGems are programming-language related
methods of distributing packages to systems; there are more than these two, but
they're by far the most popular right now.

Pip installs packages (Pip) is included by default in recent Python
installations. Gem is just a play on the fact that it is for packaging
Ruby elements; it, too, is included in recent Ruby installations.

We're going to touch on installing software using these package managers.

Security, Updating, and Package Management Chapter 6

[367]

Getting ready
In this section, we will continue to use our Ubuntu VM.

Install Pip and RubyGems on your Ubuntu machine (Python will already be installed,
but it's a separate package for Pip in this instance), as follows:

$ sudo apt update && sudo apt upgrade -y
$ sudo apt install libgmp3-dev make gcc ruby ruby-dev python3-
setuptools -y

Python2 and Python3 are both widely used, although these days,
you really shouldn't be writing anything new in Python2 (which
will be going out of support in 2020).

We now want to install pip, using the easy_install3 script:

$ sudo python3 /usr/lib/python3/dist-packages/easy_install.py pip

There is a way to install python3-pip using apt, but this version
will be frequently out of date, and the whole point of using Pip is
that you get the latest version of everything; hence why we use
easy_install. Together with that, if you try to upgrade the
system-installed version of Pip, it might very well work, but you'll
be changing system-controlled packages outside of the system-
method-of-control... phew.

How to do it…
We will now run through some basic things that you might do with each of these
package managers.

Pip
Starting with Pip, you can check which version you're running with the --version
argument:

$ pip3 --version
pip 18.1 from /usr/local/lib/python3.6/dist-packages/pip-18.1-
py3.6.egg/pip (python 3.6)

Security, Updating, and Package Management Chapter 6

[368]

You can list which packages you have installed (and their versions) with list, as
follows:

$ pip3 list
Package Version
------------------- ---------
asn1crypto 0.24.0
attrs 17.4.0
Automat 0.6.0
blinker 1.4
certifi 2018.1.18
chardet 3.0.4
click 6.7
cloud-init 18.3
colorama 0.3.7

You can search for the package that you want; here, I'm checking for Ansible:

$ pip3 search ansible
ovirt-ansible (0.3.2) - oVirt Ansible utility
polemarch-ansible (1.0.5) - Wrapper for Ansible cli.
kapellmeister-ansible (0.1.0) - Ansible Playbook manager.
ansible-alicloud (1.5.0) - Ansible provider for Alicloud.
ansible-kernel (0.8.0) - An Ansible kernel for Jupyter
ansible-roles (0.1.4) - Manage ansible roles.
ansible-shell (0.0.5) - Interactive shell for ansible
ansible-toolkit (1.3.2) - The missing Ansible tools
ansible-toolset (0.7.0) - Useful Ansible toolset
...

There are a lot of packages in the Python package index (PyPI), so
you might get a lot of results from your search; this is where
learning some regex and invoking grep can be useful.

Once it's located, we can also install our package, as follows:

$ pip3 install ansible --user

Note the lack of sudo; this is because we want to install it as our user, meaning that
the package ends up in a .local directory in our home directory (~):

$ ls .local/bin/
ansible ansible-connection ansible-doc ansible-inventory
ansible-pull easy_install
ansible-config ansible-console ansible-galaxy ansible-playbook
ansible-vault easy_install-3.6

Security, Updating, and Package Management Chapter 6

[369]

By default, the .local/bin directory is in our PATH (if we log out and back in):

$ echo $PATH
/home/vagrant/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr
/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin

This means that we can just run ansible from our shell:

$ ansible --version
ansible 2.7.0
 config file = None
 configured module search path =
['/home/vagrant/.ansible/plugins/modules',
'/usr/share/ansible/plugins/modules']
 ansible python module location =
/home/vagrant/.local/lib/python3.6/site-packages/ansible
 executable location = /home/vagrant/.local/bin/ansible
 python version = 3.6.6 (default, Sep 12 2018, 18:26:19) [GCC 8.0.1
20180414 (experimental) [trunk revision 259383]]

After our package has been installed, we may find that we actually need an older
version; thankfully, Pip lets you specify this easily, as follows:

$ pip3 install ansible==2.5.0 --user

And, at a later date, if we decide that we need the latest version (because the old
playbook has finally been updated to work without deprecated features), we can
upgrade, as follows:

$ pip3 install ansible --upgrade --user

RubyGems
Like Pip, we can check which version of RubyGems we have installed with a simple
gem command:

$ gem --version
2.7.6

To list the installed gems, we can use list, funnily enough:

$ gem list

*** LOCAL GEMS ***

bigdecimal (default: 1.3.4)
cmath (default: 1.0.0)

Security, Updating, and Package Management Chapter 6

[370]

csv (default: 1.0.0)
date (default: 1.0.0)
dbm (default: 1.0.0)
did_you_mean (1.2.0)
...

If we want to search for a package, we use gem search (we also have the --exact
option in RubyGems, which Pip lacks):

$ gem search -e chef

*** REMOTE GEMS ***

chef (14.5.33 ruby universal-mingw32, 12.3.0 x86-mingw32)

We can also install (as a user) with gem install:

$ gem install chef --user-install

Note that by default, the .local gem installation location will not be in your PATH,
but we can call it with its full path from our home directory (to be added to our PATH
at a later date):

$ ~/.gem/ruby/2.5.0/bin/chef-client --version
Chef: 14.5.33

As with Pip, we can install other versions of packages:

$ gem install chef -v14.2.0 --user-install
$ ~/.gem/ruby/2.5.0/gems/chef-14.2.0/bin/chef-client --version
Chef: 14.2.0

Note that we used a different path here, dropping into the /gems/ portion of the
installation directory to call the package by its version.

If you go to uninstall the package, you now get a choice, as follows:

$ gem uninstall chef

Select gem to uninstall:
 1. chef-14.2.0
 2. chef-14.5.33
 3. All versions
>

Choose to uninstall 14.5.33 (option 2).

Security, Updating, and Package Management Chapter 6

[371]

We now have one version of chef installed, as follows:

$ gem list -e chef

*** LOCAL GEMS ***

chef (14.2.0)

Also like with Pip, we can upgrade this, as follows:

$ gem update chef --user-install
$ gem list -e chef

*** LOCAL GEMS ***

chef (14.5.33, 14.2.0)

Note how it also leaves the old version installed, by default.

How it works…
Pip and RubyGems try to be relatively self-contained, but they're still package
managers, meaning that all they're effectively doing is querying an upstream
repository for a package, and then downloading it onto your system.

When you update your PATH to update whichever binary location the new
executables live in, you're able to run the packages that you've just installed.

There's more…
Pip and RubyGems are huge topics, with a large ethereal-blog-post potential for each,
so it makes sense that there is a lot more to them that we have not covered. A couple
of the more obvious things to mention will be covered in the following sections.

When to use programming-language package
managers
So, here is the thing.

Ansible and Chef are available in the Ubuntu repositories, carefully tailored and
packaged for Ubuntu systems the world over.

Security, Updating, and Package Management Chapter 6

[372]

So, why would I use Pip to install it instead?

It's simple; at the time of writing, the Ansible version in the Ubuntu repositories is
2.5.1, and the version in the PyPI repository is 2.7.0, which is quite a significant bump.

If you want the latest and greatest features of a program, or newer libraries than your
distribution ships, you may very well find yourself tempted to install outside of Apt,
and that's not necessarily a problem. The problem is remembering how all these
packages are installed, and making sure that you know how to keep each up to date.

--user/ --system (pip) and --user-install (gem)
As with Flatpak, we have the option to install packages on either a user level or
system-wide. For the examples used, I chose to install things locally, meaning that the
packages will generally only be available to my user by default.

$ pip3 install ansible==2.5.0 --user

Python virtualenv
Python has an inherent problem – conflicting package versions – and because of this,
virtualenv is a thing. Effectively, virtualenv is a way to segregate installs so that they
don't conflict, and you can (potentially) easily install multiple versions of the same
package.

One use case for this might be Molecule, a testing framework designed for Ansible
roles. Versions 1 and 2 of Molecule are incompatible with each other, but you could
definitely have some Ansible roles in your infrastructure written for version 1 (which
no one is going to update any time soon, because there's more pressing issues...
there's always more pressing issues.) We have virtualenv though, so we can install
both Molecule 1 and Molecule 2 without worrying about them conflicting.

See also
As with any other package manager, Pip and RubyGems manage packages.

Some of you will have spotted a problem with this, and it is one that people rarely
realize can be an issue. If you have multiple package managers on a system, each
maintaining its own packages and adjusting your PATH, you can end up with
packages installed from the system's package manager and those installed from third-
party package managers conflicting.

Security, Updating, and Package Management Chapter 6

[373]

In some cases, you will get name clashes.

I once saw an instance of the Puppet binary factor conflicting with another binary of
the exact same name, causing strange and wonderful problems on a machine – that
was fun.

Dependency hell (a quick word)
We will now take a trip down memory lane; specifically, the author is going to curl
up into a ball for a couple of hours while he recalls hours of yelling at servers for
being dumb.

Dependency hell is the notion that a package can have dependencies on things that
either conflict with other versions of dependent packages or libraries that you have
installed, or can try to use incompatible versions, for whatever reason.

In the case of Python and Pip, we've already discussed the concept of virtualenv, but
historically, this has also been a problem in other package managers, too. RPM-based
distributions are notorious for these issues, developing the term RPM Hell to
specifically reference their problems.

You can also get into a situation where there are a few options for dependencies when
installing software; programs like Apt attempt to mitigate this by presenting several
options to the user, and asking them to select which one they want to use.

Getting ready
In this section, we're only going to run a couple of commands on our VMs, in order to
look at the output.

Jump into your Debian 9 box and ensure Pip is installed and up to date:

$ vagrant ssh debian9
$ sudo apt install gcc python3-dev python3-setuptools -y
$ sudo easy_install3 pip
$ pip --version
pip 18.1 from /usr/local/lib/python3.5/dist-packages/pip-18.1-
py3.5.egg/pip (python 3.5)

Security, Updating, and Package Management Chapter 6

[374]

Now, jump into our Ubuntu box and install pip by using apt:

$ sudo apt update
$ sudo apt install python3-pip -y

Check the version, as follows:

$ pip3 --version
pip 9.0.1 from /usr/lib/python3/dist-packages (python 3.6)

Then, upgrade it (only on the Ubuntu box), as follows:

$ pip3 install pip --upgrade

Log out (an important step) and check the version again:

$ pip3 --version
pip 18.1 from /home/vagrant/.local/lib/python3.6/site-packages/pip
(python 3.6)

How to do it…
To visualize what dependency problems can look like, take a look at the following.

System-installed and third-party installed versions
of Pip
In our Ubuntu box, we installed pip by using the system package manager (apt) only
to then use Pip to upgrade itself.

This means that apt thinks the package looks like this:

$ apt list python3-pip -a
Listing... Done
python3-pip/bionic-updates,now 9.0.1-2.3~ubuntu1 all [installed]

Our local session thinks that pip looks like this:

$ pip3 --version
pip 18.1 from /home/vagrant/.local/lib/python3.6/site-packages/pip
(python 3.6)

This is a problem, as future packages could rely on Pip 9 and expect it to be installed
correctly on the box, despite the different versions.

Security, Updating, and Package Management Chapter 6

[375]

In this case, what we've actually done is use the system-installed
version of Pip to install and upgraded the version locally; hence, the
reason that the version string comes from our .local directory, but
it's still not an ideal scenario.

Dependency problems in conflicting Pip packages
To better understand why virtualenv is a thing, we can look at an installation of
Molecule.

In your Debian instance, install the Molecule testing framework
(specifically, 2.15.0):

$ pip install molecule==2.15.0 --user

All being well, the installation should go fine, and you'll be able to check your
Molecule version:

$.local/bin/molecule --version
molecule, version 2.15.0

However, we're now going to use install ansible-lint (the latest version, at the
time of writing this book):

$ pip install ansible-lint==3.4.23 --user

Our installation works, but in the middle of it, we get a nasty warning:

molecule 2.15.0 has requirement ansible-lint==3.4.21, but you'll have
ansible-lint 3.4.23 which is incompatible.

If we check the installed version, ansible-lint looks good:

$.local/bin/ansible-lint --version
ansible-lint 3.4.23

However, if we run our Molecule installation again, we get informed that it has
helpfully downgraded ansible-lint for us:

Installing collected packages: ansible-lint
 Found existing installation: ansible-lint 3.4.23
 Uninstalling ansible-lint-3.4.23:
 Successfully uninstalled ansible-lint-3.4.23
 Running setup.py install for ansible-lint ... done
Successfully installed ansible-lint-3.4.21

Security, Updating, and Package Management Chapter 6

[376]

This is obviously an easy example to show you, as there are only two packages
involved; imagine how hectic and stressful this could get with five, ten, or even
twenty packages managed by Pip.

Apt's conflict solution
The following is an example of Apt detecting dependency problems and refusing to
carry on with an installation:

$ sudo apt install postfix exim4-base
Reading package lists... Done
Building dependency tree
Reading state information... Done
Some packages could not be installed. This may mean that you have
requested an impossible situation or if you are using the unstable
distribution that some required packages have not yet been created
or been moved out of Incoming.
The following information may help to resolve the situation:

The following packages have unmet dependencies:
 exim4-base : Depends: exim4-config (>= 4.82) but it is not going to
be installed or
 exim4-config-2
E: Unable to correct problems, you have held broken packages.

Note that if you then install postfix by itself and attempt to install exim, you will be
given the following result:

$ sudo apt install exim4-base
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer
required:
 postfix-sqlite ssl-cert
Use 'sudo apt autoremove' to remove them.
The following additional packages will be installed:
 exim4-config exim4-daemon-light guile-2.0-libs libgsasl7
libkyotocabinet16v5 libltdl7 liblzo2-2
 libmailutils5 libmariadbclient18 libntlm0 libpython2.7 libpython2.7-
minimal libpython2.7-stdlib
 mailutils mailutils-common mysql-common psmisc python2.7 python2.7-
minimal
Suggested packages:
 eximon4 exim4-doc-html | exim4-doc-info spf-tools-perl swaks
mailutils-mh mailutils-doc

Security, Updating, and Package Management Chapter 6

[377]

 python2.7-doc binfmt-support
The following packages will be REMOVED:
 postfix
The following NEW packages will be installed:
 exim4-base exim4-config exim4-daemon-light guile-2.0-libs libgsasl7
libkyotocabinet16v5 libltdl7
 liblzo2-2 libmailutils5 libmariadbclient18 libntlm0 libpython2.7
mailutils mailutils-common
 mysql-common psmisc
The following packages will be upgraded:
 libpython2.7-minimal libpython2.7-stdlib python2.7 python2.7-minimal
4 upgraded, 16 newly installed, 1 to remove and 7 not upgraded.
Need to get 13.2 MB of archives.
After this operation, 27.5 MB of additional disk space will be used.
Do you want to continue? [Y/n]

The line that tells you that postfix will be ripped out of your system if you proceed
is in bold.

Potential solutions
In spite of these annoying (and sometimes tedious) problems, there are some
solutions to these issues.

We have already mentioned virtualenv, and now, we're going to mention it again,
just to hammer the point home. Go out and seek knowledge on it, as it could save you
a severe headache in the future.

Docker is another potential solution, and although the idea of jailing applications into
their own little environments is nothing new (see Solaris Zones and FreeBSD jails),
Docker provides a quick and simple interface to utilize Linux kernel features for
segregating apps and dependencies.

Multiple VMs might also be your way forward. It used to be the case that we needed
to buy one, two, or maybe three servers, and use multiple packages on each server;
nowadays, that isn't as true, and, while you might still have a handful of physical
boxes, you're much more likely to be using VMs on each, which provide a great way
to completely segregate whole operating systems.

Security, Updating, and Package Management Chapter 6

[378]

How it works…
Package management works because diligent people make it work. Dependency
problems are still an issue, even though they're mostly transparent to the user these
days. It becomes more of an issue with the more packages that you support, meaning
that Debian, with its thousands of packages, has a tough job of making sure each will
always work, or that conflict is detected before it causes issues.

Let's give a shout out to the hardworking package maintainers in each distribution,
and thank them for their tireless efforts in ensuring that our systems don't try to
install packages and libraries that are incompatible with each other.

If you ever have to make a package of your own, best of luck to you!

Compiling from source
"Oh, it's Linux; call me when you've finished recompiling your kernel!" This is a statement
from every uninformed techy ever.

Packages aren't the only way to install software on your system; if you have the
source code (the recipe for the software that you want to install), you can compile the
program yourself, in your own way!

It's not done very frequently these days, outside of in-house software, as compiling
software can be a time-consuming and resource-intensive task. The likes of the
Gentoo users of the world might like it, and there are arguments that it can speed up
and slim down installations, but these are generally negligible benefits on modern
hardware.

Getting ready
Here, we're going to grab the source code of htop, a popular and interactive process
monitor.

This isn't a sales pitch, but I do happen to like htop, and I make a
point of installing it on my personal systems, as well as systems I
manage, when I get the chance.

Security, Updating, and Package Management Chapter 6

[379]

You will need access to the GitHub page of the source code, at https:/ /github. com/
hishamhm/htop.

You will also be using your CentOS VM.

Log in to your CentOS VM and install unzip and wget, as follows:

$ vagrant ssh centos7
$ sudo yum install unzip wget -y

Navigate to /usr/local/src, the place where we will put source code for locally
installed software, by convention:

$ cd /usr/local/src

Download the most recent version of the htop repository (here, I use https):

$ sudo wget https://github.com/hishamhm/htop/archive/master.zip

How to do it…
You should now have a master.zip file in your directory:

$ ls -lha
total 248K
drwxr-xr-x. 2 root root 24 Oct 7 03:34 .
drwxr-xr-x. 12 root root 131 May 12 18:50 ..
-rw-r--r--. 1 root root 248K Oct 7 03:34 master.zip

We need to unzip this, change the ownership for convenience, and jump inside:

$ sudo unzip master.zip
$ sudo chown -R vagrant:vagrant htop-master/
$ cd htop-master

Inside this directory, you'll find a whole host of files, mostly of the C variety, but with
a few others here and there. One file you'll almost always find in a source directory is
a README, which is an excellent place to start:

$ less README

https://github.com/hishamhm/htop
https://github.com/hishamhm/htop
https://github.com/hishamhm/htop
https://github.com/hishamhm/htop
https://github.com/hishamhm/htop
https://github.com/hishamhm/htop
https://github.com/hishamhm/htop
https://github.com/hishamhm/htop
https://github.com/hishamhm/htop
https://github.com/hishamhm/htop

Security, Updating, and Package Management Chapter 6

[380]

READMEs are always different, but I've yet to find a serious project where they aren't
good. See the following example:

Security, Updating, and Package Management Chapter 6

[381]

This file will tell you, in a few words, any dependencies that you need to install, and
then the appropriate method for installing the package itself.

As we downloaded the sources, we need the autogen.sh line from the preceding
screenshot. If we attempt to run the script, we will be given an error:

$./autogen.sh
./autogen.sh: line 3: autoreconf: command not found

This is because the autoconf package isn't installed; proceed to do so, then try the
script again:

$ sudo yum install autoconf -y
$./autogen.sh
Can't exec "aclocal": No such file or directory at
/usr/share/autoconf/Autom4te/FileUtils.pm line 326.
autoreconf: failed to run aclocal: No such file or directory

Another yum that tells us the automake package isn't installed, so let's install it!

$ sudo yum install automake -y
$./autogen.sh
configure.ac:23: installing './compile'
configure.ac:16: installing './config.guess'
configure.ac:16: installing './config.sub'
configure.ac:18: installing './install-sh'
configure.ac:18: installing './missing'
Makefile.am: installing './INSTALL'
Makefile.am: installing './depcomp

Good! This time, it worked.

Security, Updating, and Package Management Chapter 6

[382]

The README suggested checking out the INSTALL file; so, let's take a look at that next:

Security, Updating, and Package Management Chapter 6

[383]

In quite a few words, this gives us the installation process for most packages
packaged in this way.

Back in the README file, we're going to try the next bit of the installation step, as
follows:

$./configure
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking target system type... x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /usr/bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
checking whether make supports nested variables... yes
checking for gcc... no
checking for cc... no
checking for cl.exe... no
configure: error: in `/usr/local/src/htop-master':
configure: error: no acceptable C compiler found in $PATH
See `config.log' for more details

We have something else missing; in this case, the error is telling us that a C compiler
wasn't found.

The default C compiler in most systems is GCC, but there are others that may or may
not work (such as musl):

$ sudo yum install gcc -y
$./configure
<SNIP>
checking for strdup... yes
checking whether gcc -std=c99 option works... yes
checking if compiler supports -Wextra... yes
checking for addnwstr in -lncursesw6... no
checking for addnwstr in -lncursesw... no
checking for addnwstr in -lncurses... no
configure: error: You may want to use --disable-unicode or install
libncursesw.

Security, Updating, and Package Management Chapter 6

[384]

We can go further now, but as the script checks for requirements, we can see that we
can't find a libncursesw installation.

It gives us two options: disabling unicode, or installing libncursesw. For
completeness, let's install the ncurses-devel package:

$ sudo yum install ncurses-devel -y
$./configure
<SNIP>
checking that generated files are newer than configure... done
configure: creating ./config.status
config.status: creating Makefile
config.status: creating htop.1
config.status: creating config.h
config.status: executing depfiles commands

Now, we get to the end of the configuration script with no more errors. Hurrah!

Lastly, we make the package, which is the actual step that compiles the source code
into usable programs:

$ make

Security, Updating, and Package Management Chapter 6

[385]

It can be noisy, as shown in the following screenshot:

Security, Updating, and Package Management Chapter 6

[386]

In our directory, we now have an htop binary, as follows:

$ ls -lah htop
-rwxrwxr-x. 1 vagrant vagrant 756K Oct 7 03:51 htop

Give it a whirl:

$./htop --version
htop 2.2.0 - (C) 2004-2018 Hisham Muhammad
Released under the GNU GPL.

Lastly, we need to install the program to its appropriate locations; this is done with
the make install command. This does need sudo, as we're moving things out of
our local folder and into the rest of the filesystem:

$ sudo make install
make install-am
make[1]: Entering directory `/usr/local/src/htop-master'
make[2]: Entering directory `/usr/local/src/htop-master'
 /usr/bin/mkdir -p '/usr/local/bin'
 /usr/bin/install -c htop '/usr/local/bin'
 /usr/bin/mkdir -p '/usr/local/share/applications'
 /usr/bin/install -c -m 644 htop.desktop
'/usr/local/share/applications'
 /usr/bin/mkdir -p '/usr/local/share/man/man1'
 /usr/bin/install -c -m 644 htop.1 '/usr/local/share/man/man1'
 /usr/bin/mkdir -p '/usr/local/share/pixmaps'
 /usr/bin/install -c -m 644 htop.png '/usr/local/share/pixmaps'
make[2]: Leaving directory `/usr/local/src/htop-master'
make[1]: Leaving directory `/usr/local/src/htop-master'

Now, we can run a whereis and find out its installed location (although we can also
see it in the preceding code snippet):

$ whereis htop
htop: /usr/local/bin/htop

How it works…
For most Linux programs (certainly of the C variety), this pattern is fairly standard.
Copy down the source code, configure it with its defaults (or make any changes that
you want), compile the software, and install it variously on the filesystem.

Security, Updating, and Package Management Chapter 6

[387]

The INSTALL file provides a good overview of the different steps, but in short, they
look like this:

configure: Creates a Makefile that contains system-specific options,
based on your environment. These can be quite long; the htop file comes
out at 1,422 lines.
make: This is invoked to correctly compile any source code that needs it,
creating binaries and supplementing files that might be needed.
make install: This puts the files into their appropriate places.

Easy, right?

There's more…
Things like the kernel can be compiled too, but will take much longer given the sheer
number of parts and subsystems that have to be accounted for. Long compile-times
are the main reason people and projects have defaulted to using pre-compiled binary
blobs these days (because few people want to wait around for their code to compile,
unless they're deliberately trying to avoid work.)

Even Gentoo, which is famous for allowing customizability (at the expense of
installation time), has precompiled binaries that you can install for the larger
programs, if you don't want to sit around for a week waiting for your code to
compile.

There's also cross-compiling, which is the act of compiling software for different
architectures. For example, I may want to compile htop for aarch64 hardware on my
x86_64 VM, because it's got 32 cores and my aarch64 board is a Raspberry Pi 3.

See also...
There are other ways to compile software, depending on the language used. Go, for
example, will have you go get the package source code that you want to compile,
but it uses the make command to perform the actual build, whereas the Rust
programming language uses a tool called cargo.

Security, Updating, and Package Management Chapter 6

[388]

Technical requirements
In this section, we will use all three of our virtual machines, adding additional
repositories to each. This is to showcase how the different package management
systems do things differently.

Adding additional repositories
There are default repositories installed when your system is created; there are also
wilder and more out-there repositories that may contain that one piece of software
that you really need (or can't be bothered to compile yourself).

Some common repositories are as follows:

EPEL
RPMfusion
Remi
ZFS, on Linux

Here, we will look at adding additional repositories, and the ramifications of doing
so.

Getting ready
You can go through this section in any order, but it's probably sensible to start at the
start, and finish at the finish.

How to do it…
Log in to your VM. We're going to start with CentOS. To begin, let's take a look at the
default repositories that we have to play with, using the yum repolist command:

$ yum repolist
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
 * base: mirrors.melbourne.co.uk
 * extras: repo.uk.bigstepcloud.com
 * updates: centos.mirroring.pulsant.co.uk
repo id repo name

Security, Updating, and Package Management Chapter 6

[389]

status
base/7/x86_64 CentOS-7 - Base
9,911
extras/7/x86_64 CentOS-7 - Extras
432
updates/7/x86_64 CentOS-7 - Updates
1,540
repolist: 11,883

We see three repositories enabled by default, Base, Extras, and Updates.

CentOS – Adding the EPEL repository with epel-
release
Extra Packages for Enterprise Linux (EPEL) is one of the more popular additional
repositories in the CentOS/Red Hat space.

Because of this, it actually has a very easy method for installation, from the given
repositories:

$ sudo yum install epel-release -y

Looking in our repo directory, you'll now see two new files:

$ ls -lha /etc/yum.repos.d/epel*
-rw-r--r--. 1 root root 951 Oct 2 2017 /etc/yum.repos.d/epel.repo
-rw-r--r--. 1 root root 1.1K Oct 2 2017 /etc/yum.repos.d/epel-
testing.repo

And yum repolist will show it, too:

$ yum repolist
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
epel/x86_64/metalink
| 31 kB 00:00:00
 * base: mirrors.melbourne.co.uk
 * epel: anorien.csc.warwick.ac.uk
 * extras: mirrors.melbourne.co.uk
 * updates: anorien.csc.warwick.ac.uk
epel
| 3.2 kB 00:00:00
(1/3): epel/x86_64/group_gz
| 88 kB 00:00:00
(2/3): epel/x86_64/updateinfo
| 948 kB 00:00:00

Security, Updating, and Package Management Chapter 6

[390]

(3/3): epel/x86_64/primary
| 3.6 MB 00:00:01
epel
12721/12721
repo id repo name
status
base/7/x86_64 CentOS-7 - Base
9,911
epel/x86_64 Extra Packages for Enterprise Linux 7
- x86_64 12,721
extras/7/x86_64 CentOS-7 - Extras
432
updates/7/x86_64 CentOS-7 - Updates
1,540
repolist: 24,604

Note that epel-testing isn't listed; this is because it's disabled, by default.

We can use this repository to search for packages that might not be in the defaults
(such as htop, for example):

$ yum whatprovides htop
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
 * base: mirrors.melbourne.co.uk
 * epel: mirror.bytemark.co.uk
 * extras: mirrors.melbourne.co.uk
 * updates: centos.mirroring.pulsant.co.uk
htop-2.2.0-1.el7.x86_64 : Interactive process viewer
Repo : epel

CentOS – Adding the ELRepo repository by file
As suggested in the previous section, all that the package installation did was add
appropriate GPG keys and the YUM configuration files for additional repositories;
there's nothing stopping you from doing the same thing manually.

ELRepo is a popular repo, mostly due to the fact that it offers more up-to-date
versions of the Linux kernel, for those people who like the layout and style of CentOS
but who really want the latest drivers and features that the kernel can offer.

First, we need to import the repository's public key, like so:

$ sudo rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org

Security, Updating, and Package Management Chapter 6

[391]

It's a good idea to make sure that the key you're installing is
legitimate; there are various ways of doing this, including checking
that TLS certificates are legitimate, comparing it with other systems,
or ringing up the owner of the key and pestering them until they
read the whole thing out to you.

At this point, we can either download and yum install the rpm file from the
elrepo site, or we download it ourselves and extract the contents, so that we can take
a look at what it does:

$ wget
https://www.elrepo.org/elrepo-release-7.0-3.el7.elrepo.noarch.rpm
$ rpm2cpio elrepo-release-7.0-3.el7.elrepo.noarch.rpm | cpio -id

The rpm2cpio command does what it suggests, and allows us to use
cpio to extract the archive.

If we now cat the directory that we've just unarchived, we can see the file that it's
going to drop into our system:

$ cat etc/yum.repos.d/elrepo.repo
Name: ELRepo.org Community Enterprise Linux Repository for el7
URL: http://elrepo.org/

[elrepo]
name=ELRepo.org Community Enterprise Linux Repository - el7
baseurl=http://elrepo.org/linux/elrepo/el7/$basearch/
 http://mirrors.coreix.net/elrepo/elrepo/el7/$basearch/
 http://mirror.rackspace.com/elrepo/elrepo/el7/$basearch/
 http://repos.lax-noc.com/elrepo/elrepo/el7/$basearch/
 http://mirror.ventraip.net.au/elrepo/elrepo/el7/$basearch/
mirrorlist=http://mirrors.elrepo.org/mirrors-elrepo.el7
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-elrepo.org
protect=0
...

There's more, as there are multiple repo designations in this file. Let's just copy the
elrepo block and output it to a file of our own making, like so:

$ cat <<HERE | sudo tee /etc/yum.repos.d/elrepocustom.repo
[elrepo]
name=ELRepo.org Community Enterprise Linux Repository - el7

Security, Updating, and Package Management Chapter 6

[392]

baseurl=http://elrepo.org/linux/elrepo/el7/$basearch/
 http://mirrors.coreix.net/elrepo/elrepo/el7/$basearch/
 http://mirror.rackspace.com/elrepo/elrepo/el7/$basearch/
 http://repos.lax-noc.com/elrepo/elrepo/el7/$basearch/
 http://mirror.ventraip.net.au/elrepo/elrepo/el7/$basearch/
mirrorlist=http://mirrors.elrepo.org/mirrors-elrepo.el7
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-elrepo.org
protect=0
HERE

Note that the repo has enabled=1 set, meaning that we can now just run a yum
update to make sure that our system is synced and aware of the upstream repository
(although if we wanted to permanently disable this repo, we could change it to a 0,
and yum would ignore it):

$ sudo yum update

Now, if we want to, we can also list all of the packages in the repo that we've just
added:

$ yum list available --disablerepo=* --enablerepo=elrepo
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
 * elrepo: www.jules.fm
Available Packages
CAENVMELib.x86_64 2.50-2.el7.elrepo
elrepo
VirtualGL.x86_64 2.3.3-4.el7.elrepo
elrepo
VirtualGL-devel.x86_64 2.3.3-4.el7.elrepo
elrepo
VirtualGL-libs.i686 2.3.3-4.el7.elrepo
elrepo
bumblebee.x86_64 3.2.1-10.el7.elrepo
elrepo
bumblebee-selinux.x86_64 1.0-1.el7.elrepo
elrepo
drbd84-utils.x86_64 9.3.1-1.el7.elrepo
elrepo
...

Security, Updating, and Package Management Chapter 6

[393]

Debian – Adding additional repositories
Debian is famous for having a shed-load of packages available to the end users. If you
can think of a package, there's a good chance that it's available for installation out of
the box, or that someone somewhere is working on how to maintain the package for
you.

FreeBSD is probably the only OS that springs to mind that might
have more packages available in its base installation.

Because of this famous fact, there's a good chance that you'll never need to install
additional repositories, but never say never (despite me just doing so).

A good place to look for some unofficial repositories is the maintained unofficial page
at https://wiki. debian. org/ DebianRepository/ Unofficial.

Here, we can find various repositories, including one for Google Chrome, which we'll
add.

First, we will look at the default sources.list file that's shipped with our image:

$ cat /etc/apt/sources.list
#

deb cdrom:[Debian GNU/Linux 9.4.0 _Stretch_ - Official amd64 NETINST
20180310-11:21]/ stretch main

#deb cdrom:[Debian GNU/Linux 9.4.0 _Stretch_ - Official amd64 NETINST
20180310-11:21]/ stretch main

deb http://deb.debian.org/debian stretch main
deb-src http://deb.debian.org/debian stretch main

deb http://security.debian.org/debian-security stretch/updates main
deb-src http://security.debian.org/debian-security stretch/updates
main

It looks fairly sparse, with only the stretch main and stretch/updates main
repositories enabled.

https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial
https://wiki.debian.org/DebianRepository/Unofficial

Security, Updating, and Package Management Chapter 6

[394]

As with YUM, we need to make sure that we have a legitimate GPG key in place;
Google's is installed like so:

$ wget https://dl.google.com/linux/linux_signing_key.pub
$ sudo apt-key add linux_signing_key.pub
OK

Now, we need to add the repository – in this case, Google Chrome:

$ cat <<HERE | sudo tee -a /etc/apt/sources.list
deb http://dl.google.com/linux/chrome/deb/ stable main
HERE

Run sudo apt update to make sure that your list of available packages is up to
date:

$ sudo apt update
Ign:1 http://deb.debian.org/debian stretch InRelease
Hit:2 http://deb.debian.org/debian stretch Release
Hit:4 http://security.debian.org/debian-security stretch/updates
InRelease
Ign:5 http://dl.google.com/linux/chrome/deb stable InRelease
Get:6 http://dl.google.com/linux/chrome/deb stable Release [1,189 B]
Get:7 http://dl.google.com/linux/chrome/deb stable Release.gpg [819 B]
Get:8 http://dl.google.com/linux/chrome/deb stable/main amd64 Packages
[1,381 B]
Fetched 3,389 B in 1s (2,285 B/s)
Reading package lists... Done
Building dependency tree
Reading state information... Done
11 packages can be upgraded. Run 'apt list --upgradable' to see them.

Then, do a search for Chrome:

$ sudo apt search google-chrome
Sorting... Done
Full Text Search... Done
google-chrome-beta/stable 70.0.3538.45-1 amd64
 The web browser from Google

google-chrome-stable/stable 69.0.3497.100-1 amd64
 The web browser from Google

google-chrome-unstable/stable 71.0.3569.0-1 amd64
 The web browser from Google

Voilà!

Security, Updating, and Package Management Chapter 6

[395]

This is not a Chrome advertisement, either, and actually, the open
source version of Chrome (Chromium) is already available in the
default repositories. I would probably advise installing that, instead.

Mostly, you'll probably be adding the contrib repository, which contains non-free software:
deb http://ftp.debian.org/debian stable main contrib non-free

Ubuntu – Adding PPAs
Interestingly, this is one significant place in which the Ubuntu and Debian worlds
differ. In Ubuntu-land, there's the concept of Personal Package Archives (PPAs),
which can be used to install third-party software.

You can install regular repositories, too, but PPAs are arguably a little more targeted.
Do bear in mind that there's very little stopping anyone from creating a PPA, so make
sure to follow due diligence before adding just anything.

PPAs can be searched out on the Canonical site, at https:/ / launchpad. net/ubuntu/
+ppas.

We'll add the LibreOffice Fresh PPA, as an example:

$ sudo add-apt-repository ppa:libreoffice/ppa

You may be prompted to accept the additional repository, simply by pressing Enter.

The repository configuration that you just added is in the apt sources.list.d
directory:

$ cat /etc/apt/sources.list.d/libreoffice-ubuntu-ppa-bionic.list
deb http://ppa.launchpad.net/libreoffice/ppa/ubuntu bionic main
deb-src http://ppa.launchpad.net/libreoffice/ppa/ubuntu bionic main

This means that you can now install the bleeding edge version of LibreOffice! You'll
be the cool kid of the word processing world at last.

https://launchpad.net/ubuntu/+ppas
https://launchpad.net/ubuntu/+ppas
https://launchpad.net/ubuntu/+ppas
https://launchpad.net/ubuntu/+ppas
https://launchpad.net/ubuntu/+ppas
https://launchpad.net/ubuntu/+ppas
https://launchpad.net/ubuntu/+ppas
https://launchpad.net/ubuntu/+ppas
https://launchpad.net/ubuntu/+ppas
https://launchpad.net/ubuntu/+ppas

Security, Updating, and Package Management Chapter 6

[396]

How it works…
Repositories are generally just places that house packages you might want to install.
There's nothing special about them, as they're generally web servers that react as any
might, serving you the contents (package) when you request it.

Adding additional repositories is a fairly common sysadmin activity, usually because
you're adding your in-house proxy (commonly Artifactory at the moment,) or your
developers really need the latest version of NodeJS.

Whatever the reason for adding repositories, just remember that basic security goes a
long way (you are, after all, trusting the upstream not to have anything malicious in
it), and appreciate that you can create problems for yourself if the repository
disappears (which has happened, and will continue to happen).

Roundup – security, updating, and
package management
It's easy to forget about updates. It's comforting to get a system to a stable state,
where no matter how much it's hammered, it's going to continue to chug along, doing
what you've told it to do, and nothing more. What's uncomfortable is the idea of
breaking that perfect peace, and that's where updates come in.

Software doesn't stand still; there are features being developed, security holes being
patched, and tougher encryption methods being implemented, and all of these need
to be accounted for by you, the sysadmin.

Package maintainers can do a lot, and they do, but it's up to you to make sure that
what you're updating is tested, that it won't break anything else in your environment,
and that those developers that were using an exploit to get their code to work on your
platform have been thoroughly reprimanded.

At the end of the day, things are likely to go wrong, but that's why development and
testing environments should exist.

Security, Updating, and Package Management Chapter 6

[397]

Yes, it was nerve-wracking to perform an update in the past, and that's why we came
in on weekends and did updates in the middle of the night, when no one would
notice if it broke for a bit. Those breakages can still happen, but now, we've learned
from them; we have warnings and erratas and the general public will understand if
your site has to go offline for a couple of hours to make sure that their credit card
information doesn't get leaked, thanks to a malicious exploit.

At the end of the day, software is stupid, and it's put together by humans, who are
fallible. Keep your systems up to date, make sure that you check your sources (in
other words, don't install random executables from untraveled corners of the
internet), and make sure that you let your superiors know that yes, you might have to
take the website offline for a little bit, or shut down their phone system, but it's better
than appearing on the front page of the BBC website the next day.

Of course, if you're really interested in the intricacies of how a distribution is built,
how the packages all fit together, and why they're built or installed in the way that
they are, then there are tools out there that can help you to learn.

Linux from Scratch is one such tool, effectively a book on the ins and outs of building
your own version of Linux. It's not for beginners, and it can be frustrating at times (or
slightly outdated, as software evolves), but it's a great way to learn why things are the
way they are, and I'd encourage everyone to perform the Linux from scratch
installation at least once in their professional careers.

7
Monitoring and Logging

This chapter will cover the following topics:

Reading local logs
Using journalctl on systemd systems
Centralizing logging
Local resource measuring tools
Local monitoring tools
Remote monitoring tools
Centralizing logging with the Elastic Stack

Introduction
Servers are all well and good when they work, but we don't live in a perfect world,
and it's perfectly possible that problems can occur (either through bad code, created
by humans, or mismanagement, introduced by humans).

In theory, it would be great to simply install the program you want, set it running,
and forget about it, but this is the real world, not some fantasy land where everything
goes 100 percent right 100 percent of the time. This is where logging and monitoring
shine.

Logging is there so that when something does, inevitably, go wrong, you don't have
to keep your program in a broken state while you try and work out what's broken
(though, on odd occasions, this might be precisely what you have to do; more about
that later). You can bring your system back online, and start to parse the log files to
find out precisely why your web server suddenly started replacing all images on your
website with pictures of puppies.

Monitoring and Logging Chapter 7

[399]

Monitoring is the secondary component in keeping your life simple. There to ensure
you have a smooth experience when using your software, and keeping tabs on the
resource allocation on your systems, monitoring can detect issues before a human
being even wakes up in the morning (actually this happens frequently; don't expect a
normal sleep pattern if you are on call).

Both of these systems combined can make you appear godlike to those who are
watching your every move; like Morpheus, you can feel your watch vibrate with a
notification in a meeting, informing you that the company website is under heavy
load and about to crash, and calmly inform those talking nonsense around you that
you feel a disturbance in the force, before excusing yourself to fix the issue before the
customers notice.

Come to think of it, good logging and monitoring can result in your job appearing
pointless—what's that Futurama quote?

"When you do things right, people won't be sure you've done anything at all." –
Sentient gas cloud

Technical requirements
In this chapter, we're going to use two CentOS boxes and two Debian boxes but,
again, the principles we discuss will be fairly universal in nature.

The following Vagrantfile should be enough to get you started:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.define "centos1" do |centos1|
 centos1.vm.box = "centos/7"
 centos1.vm.box_version = "1804.02"
 centos1.vm.network "private_network", ip: "192.168.33.10"
 centos1.vm.hostname = "centos1"
 centos1.vm.provider "virtualbox" do |centos1p|
 centos1p.memory = 2048
 centos1p.cpus = 2
 end
 end

 config.vm.define "centos2" do |centos2|
 centos2.vm.box = "centos/7"

Monitoring and Logging Chapter 7

[400]

 centos2.vm.box_version = "1804.02"
 centos2.vm.network "private_network", ip: "192.168.33.11"
 centos2.vm.hostname = "centos2"
 end

 config.vm.define "debian1" do |debian1|
 debian1.vm.box = "debian/stretch64"
 debian1.vm.box_version = "9.5.0"
 debian1.vm.network "private_network", ip: "192.168.33.12"
 debian1.vm.hostname = "debian1"
 debian1.vm.provider "virtualbox" do |debian1p|
 debian1p.cpus = 1
 end
 end

 config.vm.define "debian2" do |debian2|
 debian2.vm.box = "debian/stretch64"
 debian2.vm.box_version = "9.5.0"
 debian2.vm.network "private_network", ip: "192.168.33.13"
 debian2.vm.hostname = "debian2"
 debian2.vm.provider "virtualbox" do |debian2p|
 debian2p.cpus = 1
 end
 end

end

Reading local logs
In this section, we're going to look at the default place for logging on our machines.

Logging is great— it can tell you variously how healthy your system is, how busy it
is, who's trying to attack it, and who's successfully gained access in the last few
minutes.

It's fairly standardized these days, unless you're working with a Java application, and
if you've got the patience to read through a log file, you might want to give War and
Peace a shot afterward.

Monitoring and Logging Chapter 7

[401]

Getting ready
Log on to your centos1 VM:

$ vagrant ssh centos1

How to do it…
Hier manual pages tell us that if we want to find miscellaneous log files, we should
start by looking in /var/log/:

 /var/log
 Miscellaneous log files.

Navigating to /var/log and listing its contents shows us that this is the case:

$ cd /var/log
$ ls -l
total 156
drwxr-xr-x. 2 root root 219 May 12 18:55 anaconda
drwx------. 2 root root 23 Oct 9 16:55 audit
-rw-------. 1 root root 6 Oct 9 16:55 boot.log
-rw-------. 1 root utmp 0 May 12 18:51 btmp
drwxr-xr-x. 2 chrony chrony 6 Apr 12 17:37 chrony
-rw-------. 1 root root 807 Oct 9 17:01 cron
-rw-r--r--. 1 root root 28601 Oct 9 16:55 dmesg
-rw-r--r--. 1 root root 193 May 12 18:51 grubby_prune_debug
-rw-r--r--. 1 root root 292292 Oct 9 17:21 lastlog
-rw-------. 1 root root 198 Oct 9 16:55 maillog
-rw-------. 1 root root 91769 Oct 9 17:23 messages
drwxr-xr-x. 2 root root 6 Aug 4 2017 qemu-ga
drwxr-xr-x. 2 root root 6 May 12 18:55 rhsm
-rw-------. 1 root root 2925 Oct 9 17:21 secure
-rw-------. 1 root root 0 May 12 18:52 spooler
-rw-------. 1 root root 0 May 12 18:50 tallylog
drwxr-xr-x. 2 root root 23 Oct 9 16:55 tuned
-rw-rw-r--. 1 root utmp 1920 Oct 9 17:21 wtmp

On CentOS systems, the main log file is the messages log; under Debian and Ubuntu,
this is called syslog, but it's effectively the same thing.

Monitoring and Logging Chapter 7

[402]

Having a look at the last few lines of this log file should show you various output
from some of the programs running on your system:

$ sudo tail -10 messages
Dec 28 18:37:18 localhost nm-dispatcher: req:11 'connectivity-change':
start running ordered scripts...
Dec 28 18:37:22 localhost systemd-logind: New session 3 of user
vagrant.
Dec 28 18:37:22 localhost systemd: Started Session 3 of user vagrant.
Dec 28 18:37:22 localhost systemd: Starting Session 3 of user vagrant.
Dec 28 18:38:13 localhost chronyd[567]: Selected source 95.215.175.2
Dec 28 18:39:18 localhost chronyd[567]: Selected source 178.79.155.116
Dec 28 18:39:35 localhost systemd-logind: Removed session 2.
Dec 28 18:39:46 localhost systemd: Started Session 4 of user vagrant.
Dec 28 18:39:46 localhost systemd-logind: New session 4 of user
vagrant.
Dec 28 18:39:46 localhost systemd: Starting Session 4 of user vagrant.

Here, we can see chronyd complaining a bit, and we can see the point at which I
logged in, and systemd was kind enough to create me a session.

You can also see the secure log, for the likes of sshd, sudo, and PAM:

$ sudo tail -5 secure
Dec 28 18:39:46 localhost sshd[3379]: Accepted publickey for vagrant
from 10.0.2.2 port 44394 ssh2: RSA
SHA256:7EOuFLwMurYJNPkZ3e+rZvez1FxmGD9ZNpEq6H+wmSA
Dec 28 18:39:46 localhost sshd[3379]: pam_unix(sshd:session): session
opened for user vagrant by (uid=0)
Dec 28 18:39:55 localhost sudo: vagrant : TTY=pts/0 ; PWD=/var/log ;
USER=root ; COMMAND=/bin/tail -10 messages
Dec 28 18:40:19 localhost sudo: vagrant : TTY=pts/0 ; PWD=/var/log ;
USER=root ; COMMAND=/bin/tail -10 secure
Dec 28 18:40:37 localhost sudo: vagrant : TTY=pts/0 ; PWD=/var/log ;
USER=root ; COMMAND=/bin/tail -5 secure

And files such as the cron log for cron:

$ sudo cat cron
Dec 28 18:36:57 localhost crond[612]: (CRON) INFO (RANDOM_DELAY will
be scaled with factor 89% if used.)
Dec 28 18:36:58 localhost crond[612]: (CRON) INFO (running with
inotify support)

As these files are just text, you can manipulate them using any of the standard tools at
your disposal.

Monitoring and Logging Chapter 7

[403]

I might want to grep out mentions of vagrant from the messages log, and then only
print the month, timestamp, and the program doing the logging:

$ sudo grep "vagrant." messages | cut -d" " -f 1,3,5
Dec 18:37:07 systemd:
Dec 18:37:07 systemd:
Dec 18:37:07 systemd:
Dec 18:37:07 systemd-logind:
Dec 18:37:07 systemd:

Why you'd want to do this I don't know, but people have weird hobbies.

So that log files don't get too big and become a real pain to even open (really, a
million lines is too many), we also have logrotate, which periodically runs to swap
out the old files for new ones to be written to.

Here, I force logrotate to run, so we can see the output:

$ sudo logrotate -f /etc/logrotate.conf
$ ls -lh
total 168K
drwxr-xr-x. 2 root root 219 May 12 18:55 anaconda
drwx------. 2 root root 23 Oct 9 16:55 audit
-rw-------. 1 root root 0 Oct 9 17:35 boot.log
-rw-------. 1 root root 6 Oct 9 17:35 boot.log-20181009
-rw-------. 1 root utmp 0 Oct 9 17:35 btmp
-rw-------. 1 root utmp 0 May 12 18:51 btmp-20181009
drwxr-xr-x. 2 chrony chrony 6 Apr 12 17:37 chrony
-rw-------. 1 root root 0 Oct 9 17:35 cron
-rw-------. 1 root root 807 Oct 9 17:01 cron-20181009
-rw-r--r--. 1 root root 28K Oct 9 16:55 dmesg
-rw-r--r--. 1 root root 193 May 12 18:51 grubby_prune_debug
-rw-r--r--. 1 root root 286K Oct 9 17:28 lastlog
-rw-------. 1 root root 0 Oct 9 17:35 maillog
-rw-------. 1 root root 198 Oct 9 16:55 maillog-20181009
-rw-------. 1 root root 145 Oct 9 17:35 messages
-rw-------. 1 root root 90K Oct 9 17:28 messages-20181009
drwxr-xr-x. 2 root root 6 Aug 4 2017 qemu-ga
drwxr-xr-x. 2 root root 6 May 12 18:55 rhsm
-rw-------. 1 root root 0 Oct 9 17:35 secure
-rw-------. 1 root root 5.3K Oct 9 17:35 secure-20181009
-rw-------. 1 root root 0 Oct 9 17:35 spooler
-rw-------. 1 root root 0 May 12 18:52 spooler-20181009
-rw-------. 1 root root 0 May 12 18:50 tallylog
drwxr-xr-x. 2 root root 23 Oct 9 16:55 tuned
-rw-rw-r--. 1 root utmp 0 Oct 9 17:35 wtmp
-rw-rw-r--. 1 root utmp 1.9K Oct 9 17:21 wtmp-20181009

Monitoring and Logging Chapter 7

[404]

Note how the old files have been moved and date stamped, and the new ones have
been given the same name.

Using cat on the messages file now will show one line, telling us that the rsyslogd
daemon was HUPed:

$ sudo cat messages
Dec 28 18:41:38 centos1 rsyslogd: [origin software="rsyslogd"
swVersion="8.24.0" x-pid="898" x-info="http://www.rsyslog.com"]
rsyslogd was HUPed

Personally, I think it should be HUP'd, but I can see the argument
for HUPed.

How it works…
The daemon logging to text files is rsyslogd (on some older systems, it might
be syslog-ng).

This reliable and extended syslogd program writes messages that it reads from one of
two locations, imuxsock (old) and imjournal (new); this comes directly from the
syslog(3) syscall man page:

syslog() and vsyslog()
syslog() generates a log message, which will be distributed by syslogd(8).

Note that syslogd (referenced here) is an old program, superseded by rsyslogd.

Monitoring and Logging Chapter 7

[405]

If there's more than one entry of the same name, in the man pages,
you can specify the section by using the number. In this case, it
would be man 3 syslog on the command line.

rsyslogd configuration resides at /etc/rsyslog.conf and gives us the first bit of
information on how specific logs are written where. This is the RULES section:

RULES

Log all kernel messages to the console.
Logging much else clutters up the screen.
#kern.* /dev/console

Log anything (except mail) of level info or higher.
Don't log private authentication messages!
*.info;mail.none;authpriv.none;cron.none
/var/log/messages

The authpriv file has restricted access.
authpriv.*
/var/log/secure

Log all the mail messages in one place.
mail.* -
/var/log/maillog

Log cron stuff
cron.* /var/log/cron

Everybody gets emergency messages
.emerg :omusrmsg:

Save news errors of level crit and higher in a special file.
uucp,news.crit
/var/log/spooler

Save boot messages also to boot.log
local7.*
/var/log/boot.log

Monitoring and Logging Chapter 7

[406]

This shows us the various rules that are applied when certain messages hit the log
location: if they're mail messages, they go to /var/log/maillog; if they're anything
that's not mail (of info level or higher), authpriv, or cron, they go
to /var/log/messages.

The logger command can be used to write to the log directly, and can be very handy
for testing purposes and shell scripts, to show how this works:

$ logger "So long, and thanks for all the fish."
$ sudo tail -1 /var/log/messages
Oct 9 18:03:03 centos1 vagrant: So long, and thanks for all the fish.

The logger command also lets you specify the facility, and the level of the log:

$ logger -p cron.err "I'M A PARADOXICAL LOG MESSAGE."
$ sudo tail -3 /var/log/cron
Oct 9 18:07:01 centos1 anacron[3373]: Job `cron.weekly' started
Oct 9 18:07:01 centos1 anacron[3373]: Job `cron.weekly' terminated
Oct 9 18:07:23 centos1 vagrant: I'M A PARADOXICAL LOG MESSAGE.

This seems noisy, so let's create a dedicated log file for cron error messages.

We need a rule, placed in the rsyslog.d directory for such things:

$ cat <<HERE | sudo tee /etc/rsyslog.d/cronerr.conf
cron.err
/var/log/cron.err
HERE

Now, we restart rsyslog, and send our logger message again:

$ sudo systemctl restart rsyslog
$ logger -p cron.err "I'M A PARADOXICAL LOG MESSAGE."
$ sudo cat /var/log/cron.err
Oct 9 18:17:32 centos1 vagrant: I'M A PARADOXICAL LOG MESSAGE.

This is much cleaner; our custom rule looks good!

Monitoring and Logging Chapter 7

[407]

Log levels are one of the following, and there's only loosely defined guidelines for
when the different levels are used, though generally it's considered good manners not
to log trivial events as critical problems:

0 emerg
1 alert
2 crit
3 err
4 warning
5 notice
6 info
7 debug

The numbers are the numerical designation of the individual levels.

There's more…
When we rotated the logs, and HUPed the syslog daemon, we actually ran this script
in logrotate:

$ cat /etc/logrotate.d/syslog
/var/log/cron
/var/log/maillog
/var/log/messages
/var/log/secure
/var/log/spooler
{
 missingok
 sharedscripts
 postrotate
 /bin/kill -HUP `cat /var/run/syslogd.pid 2> /dev/null` 2>
/dev/null || true
 endscript
}

Of course, there's no reason an application has to use the syslog(3) call to log
messages, and it could just as easily write a stream of text to /tmp, but that's entirely
up to the application developer in question.

All you need to know as an admin is that most logs will probably end up in text
format in /var/log, and you can generally configure log file locations on a program-
by-program basis.

Monitoring and Logging Chapter 7

[408]

Happy logging!

Using journalctl on systemd systems
Modern Linux distributions don't just rely on syslog files; in fact, they don't need to
rely on syslog at all. Debian, Ubuntu, and CentOS all have systemd as an init
system, and bundled with systemd is a service called journald (systemd-
journald.service).

This service acts as the journaling solution for your system, and utilizes binary logs
instead of text-based logs.

While it's possible to ignore syslog entirely, and just use journald,
a lot of systems now use both, to make the transition from one
format to another easier. If you're using something like Arch or
Gentoo, you may decide to dismiss syslog solutions entirely, in
favour of journald alone.

Getting ready
For this section, we can use the Vagrantfile from the first section.

We will only be using centos1.

SSH to centos1:

$ vagrant ssh centos1

How to do it…
As mentioned earlier, journald utilizes a binary logging format, meaning it can't be
opened with traditional text parsers and editors. Instead, we use the journalctl
command to read logs.

Simply running the following opens your log:

$ sudo journalctl

Monitoring and Logging Chapter 7

[409]

The output for the preceding command is shown here:

This is familiar to anyone who's looked as a regular old syslog file; note that the
format is the same by default.

It is quite noisy though, and on a busy system we might not want to see everything
historic.

Maybe we want to just watch the log as it's written? If this is true, we can follow it
with -f:

$ sudo journalctl -f
-- Logs begin at Tue 2018-10-09 18:43:07 UTC. --
Oct 10 17:07:03 centos1 chronyd[554]: System clock was stepped by
80625.148375 seconds
Oct 10 17:07:03 centos1 systemd[1]: Time has been changed
Oct 10 17:07:25 centos1 sshd[1106]: Accepted publickey for vagrant
from 10.0.2.2 port 55300 ssh2: RSA
SHA256:TTGYuhFa756sxR2rbliMhNqgbggAjFNERKg9htsdvSw
Oct 10 17:07:26 centos1 systemd[1]: Created slice User Slice of
vagrant.
Oct 10 17:07:26 centos1 systemd[1]: Starting User Slice of vagrant.
Oct 10 17:07:26 centos1 systemd[1]: Started Session 1 of user vagrant.
Oct 10 17:07:26 centos1 systemd-logind[545]: New session 1 of user
vagrant.

Monitoring and Logging Chapter 7

[410]

Oct 10 17:07:26 centos1 sshd[1106]: pam_unix(sshd:session): session
opened for user vagrant by (uid=0)
Oct 10 17:07:26 centos1 systemd[1]: Starting Session 1 of user
vagrant.
Oct 10 17:07:28 centos1 sudo[1131]: vagrant : TTY=pts/0 ;
PWD=/home/vagrant ; USER=root ; COMMAND=/bin/journalctl -f

Whenever a log message is written, it will appear before you, streamed (use Ctrl + C
to quit out).

We can specifically look at kernel logs (as if we were running dmesg) with the -k
flag:

$ sudo journalctl -k --no-pager | head -n8
-- Logs begin at Tue 2018-10-09 18:43:07 UTC, end at Wed 2018-10-10
17:09:08 UTC. --
Oct 09 18:43:07 localhost.localdomain kernel: Initializing cgroup
subsys cpuset
Oct 09 18:43:07 localhost.localdomain kernel: Initializing cgroup
subsys cpu
Oct 09 18:43:07 localhost.localdomain kernel: Initializing cgroup
subsys cpuacct
Oct 09 18:43:07 localhost.localdomain kernel: Linux version
3.10.0-862.2.3.el7.x86_64 (builder@kbuilder.dev.centos.org) (gcc
version 4.8.5 20150623 (Red Hat 4.8.5-28) (GCC)) #1 SMP Wed May 9
18:05:47 UTC 2018
Oct 09 18:43:07 localhost.localdomain kernel: Command line:
BOOT_IMAGE=/vmlinuz-3.10.0-862.2.3.el7.x86_64
root=/dev/mapper/VolGroup00-LogVol00 ro no_timer_check console=tty0
console=ttyS0,115200n8 net.ifnames=0 biosdevname=0 elevator=noop
crashkernel=auto rd.lvm.lv=VolGroup00/LogVol00
rd.lvm.lv=VolGroup00/LogVol01 rhgb quiet
Oct 09 18:43:07 localhost.localdomain kernel: e820: BIOS-provided
physical RAM map:
Oct 09 18:43:07 localhost.localdomain kernel: BIOS-e820: [mem
0x0000000000000000-0x000000000009fbff] usable

Note that here, I've disabled the pager (in the exact same way it's done in
systemctl-land), and I've only dumped the first eight lines of the log, as the
kernel is quite noisy, especially at boot.

This also serves to show that the logs can still be manipulated on the command line;
you've just got to query them first (adding a bit of overhead).

Monitoring and Logging Chapter 7

[411]

That's not to say you have to use journalctl and a combination of other commands;
there's a good chance you can get what you need with journalctl alone. Here, I
choose a very specific time range to query the logs for:

$ sudo journalctl --since=17:07 --until=17:09
-- Logs begin at Tue 2018-10-09 18:43:07 UTC, end at Wed 2018-10-10
17:12:51 UTC. --
Oct 09 18:43:18 centos1 chronyd[554]: Selected source 188.114.116.1
Oct 09 18:43:18 centos1 chronyd[554]: System clock wrong by
80625.148375 seconds, adjustment started
Oct 10 17:07:03 centos1 chronyd[554]: System clock was stepped by
80625.148375 seconds
Oct 10 17:07:03 centos1 systemd[1]: Time has been changed
Oct 10 17:07:25 centos1 sshd[1106]: Accepted publickey for vagrant
from 10.0.2.2 port 55300 ssh2: RSA
SHA256:TTGYuhFa756sxR2rbliMhNqgbggAjFNERKg9htsdvSw
Oct 10 17:07:26 centos1 systemd[1]: Created slice User Slice of
vagrant.
Oct 10 17:07:26 centos1 systemd[1]: Starting User Slice of vagrant.
Oct 10 17:07:26 centos1 systemd[1]: Started Session 1 of user vagrant.
Oct 10 17:07:26 centos1 systemd-logind[545]: New session 1 of user
vagrant.
Oct 10 17:07:26 centos1 sshd[1106]: pam_unix(sshd:session): session
opened for user vagrant by (uid=0)
Oct 10 17:07:26 centos1 systemd[1]: Starting Session 1 of user
vagrant.
Oct 10 17:07:28 centos1 sudo[1131]: vagrant : TTY=pts/0 ;
PWD=/home/vagrant ; USER=root ; COMMAND=/bin/journalctl -f
Oct 10 17:08:08 centos1 chronyd[554]: Selected source 194.80.204.184
Oct 10 17:08:41 centos1 sudo[1145]: vagrant : TTY=pts/0 ;
PWD=/home/vagrant ; USER=root ; COMMAND=/bin/journalctl -k
Oct 10 17:08:52 centos1 sudo[1148]: vagrant : TTY=pts/0 ;
PWD=/home/vagrant ; USER=root ; COMMAND=/bin/journalctl -k

In 2 minutes, we get 15 lines of log, but this is much easier to sift through and digest
(assuming the time is correct on your box of course!)

These timestamps are just examples; you could use a full date (--
since="2018-10-10 17:07:00") or even relative statements (--
since=yesterday --until=now).

If it's not a range of time you're after, but rather the logs of a specific systemd unit,
journalctl also has you covered:

$ sudo journalctl -u chronyd
-- Logs begin at Tue 2018-10-09 18:43:07 UTC, end at Wed 2018-10-10

Monitoring and Logging Chapter 7

[412]

17:18:58 UTC. --
Oct 09 18:43:09 centos1 systemd[1]: Starting NTP client/server...
Oct 09 18:43:09 centos1 chronyd[554]: chronyd version 3.2 starting
(+CMDMON +NTP +REFCLOCK +RTC +PRIVDROP +SCFILTER +SECHASH +SIGND
+ASYNCDNS +IPV6 +DEBUG)
Oct 09 18:43:09 centos1 chronyd[554]: Frequency -3.308 +/- 6.027 ppm
read from /var/lib/chrony/drift
Oct 09 18:43:09 centos1 systemd[1]: Started NTP client/server.
Oct 09 18:43:18 centos1 chronyd[554]: Selected source 188.114.116.1
Oct 09 18:43:18 centos1 chronyd[554]: System clock wrong by
80625.148375 seconds, adjustment started
Oct 10 17:07:03 centos1 chronyd[554]: System clock was stepped by
80625.148375 seconds
Oct 10 17:08:08 centos1 chronyd[554]: Selected source 194.80.204.184

Here, I used the -u (unit) flag to only look at logs from chronyd, minimizing the
amount of output I have to deal with.

What we also get in the preceding example are the systemd logs that interact with
the chronyd unit. But if we only want logs from the chronyd binary, we can do that
too:

$ sudo journalctl /usr/sbin/chronyd
-- Logs begin at Tue 2018-10-09 18:43:07 UTC, end at Wed 2018-10-10
17:21:08 UTC. --
Oct 09 18:43:09 centos1 chronyd[554]: chronyd version 3.2 starting
(+CMDMON +NTP +REFCLOCK +RTC +PRIVDROP +SCFILTER +SECHASH +SIGND
+ASYNCDNS +IPV6 +DEBUG)
Oct 09 18:43:09 centos1 chronyd[554]: Frequency -3.308 +/- 6.027 ppm
read from /var/lib/chrony/drift
Oct 09 18:43:18 centos1 chronyd[554]: Selected source 188.114.116.1
Oct 09 18:43:18 centos1 chronyd[554]: System clock wrong by
80625.148375 seconds, adjustment started
Oct 10 17:07:03 centos1 chronyd[554]: System clock was stepped by
80625.148375 seconds
Oct 10 17:08:08 centos1 chronyd[554]: Selected source 194.80.204.184

Seriously, how cool is that?

But wait, there's more!

The journald command can be more powerful still, as it has the concept of message
explanations, or message context if you prefer. Some log lines can be output in a more
verbose fashion (with -x) to better understand what's happening.

Monitoring and Logging Chapter 7

[413]

Take the following two examples using the sshd unit, with and without the -x flag:

$ sudo journalctl -u sshd
-- Logs begin at Tue 2018-10-09 18:43:07 UTC, end at Wed 2018-10-10
17:25:46 UTC. --
Oct 09 18:43:14 centos1 systemd[1]: Starting OpenSSH server daemon...
Oct 09 18:43:14 centos1 sshd[853]: Server listening on 0.0.0.0 port
22.
Oct 09 18:43:14 centos1 sshd[853]: Server listening on :: port 22.
Oct 09 18:43:14 centos1 systemd[1]: Started OpenSSH server daemon.
Oct 10 17:07:25 centos1 sshd[1106]: Accepted publickey for vagrant
from 10.0.2.2 port 55300 ssh2: RSA
SHA256:TTGYuhFa756sxR2rbliMhNqgbggAjFNERKg9htsdvSw
$ sudo journalctl -u sshd -x
-- Logs begin at Tue 2018-10-09 18:43:07 UTC, end at Wed 2018-10-10
17:26:04 UTC. --
Oct 09 18:43:14 centos1 systemd[1]: Starting OpenSSH server daemon...
-- Subject: Unit sshd.service has begun start-up
-- Defined-By: systemd
-- Support:
http://lists.freedesktop.org/mailman/listinfo/systemd-devel
--
-- Unit sshd.service has begun starting up.
Oct 09 18:43:14 centos1 sshd[853]: Server listening on 0.0.0.0 port
22.
Oct 09 18:43:14 centos1 sshd[853]: Server listening on :: port 22.
Oct 09 18:43:14 centos1 systemd[1]: Started OpenSSH server daemon.
-- Subject: Unit sshd.service has finished start-up
-- Defined-By: systemd
-- Support:
http://lists.freedesktop.org/mailman/listinfo/systemd-devel
--
-- Unit sshd.service has finished starting up.
--
-- The start-up result is done.
Oct 10 17:07:25 centos1 sshd[1106]: Accepted publickey for vagrant
from 10.0.2.2 port 55300 ssh2: RSA
SHA256:TTGYuhFa756sxR2rbliMhNqgbggAjFNERKg9htsdvSw

Note that the systemd specific lines suddenly have a lot more context.

We've covered some good basics, but journalctl can still be more complex. After
passing options to the output, we can add specific matches to our statements (in the
format FIELD=VALUE).

Monitoring and Logging Chapter 7

[414]

Looking at SSH, we can see this in action:

$ sudo journalctl --since=yesterday _SYSTEMD_UNIT=sshd.service
_PID=853
-- Logs begin at Tue 2018-10-09 18:43:07 UTC, end at Wed 2018-10-10
17:31:48 UTC. --
Oct 09 18:43:14 centos1 sshd[853]: Server listening on 0.0.0.0 port
22.
Oct 09 18:43:14 centos1 sshd[853]: Server listening on :: port 22.

Here, we've said that we want all the messages from yesterday, generated by the
systemd sshd unit, but only those from PID 853 (which happens to be the server
daemon PID on this box).

For more on matches, take a look at the systemd.journal-fields man page.

Lastly, as with syslog, we can specify the priority of messages we want to see. Here,
we're looking at the entire log, but we're only after err level messages:

$ sudo journalctl -p err
-- Logs begin at Tue 2018-10-09 18:43:07 UTC, end at Wed 2018-10-10
17:55:48 UTC. --
Oct 09 18:43:09 centos1 systemd[504]: Failed at step STDIN spawning
/usr/libexec/selinux/selinux-policy-migrate-local-changes.sh:
Inappropriate ioctl for device
Oct 09 18:43:09 centos1 systemd[1]: Failed to start Migrate local
SELinux policy changes from the old store structure to the new
structure.
Oct 09 18:43:14 centos1 rsyslogd[857]: imjournal: loaded invalid
cursor, seeking to the head of journal [v8.24.0 try
http://www.rsyslog.com/e/2027]

How it works…
Configured in /etc/systemd/journald.conf, journald is a great piece of software
but, at least on CentOS 7, it's something of a second class citizen, with syslog still
being the primary method of keeping an eye on logs for a lot of people.

Logs aren't persisted through reboots (more on this later) so it's only good for
querying the state of a system since boot (which can also be enough, 9 times out of
10).

Monitoring and Logging Chapter 7

[415]

The file, as we said, is in binary format, and journald pulls in various sources to create
its log journals:

Kernel log messages (/dev/kmsg)
Simple log messages (the syslog libc call mentioned previously)
Structured journal log messages from the Journal API (imported into
rsyslog with the imjournal module)
The stdout and stderr of service unit files
Audit records from the kernel audit subsystem

Like syslog, this means logger can be used to show we can still populate the log
manually, here showing only those messages received from the syslog transport
mechanism:

$ logger -p cron.err "I'M ANOTHER PARADOXICAL LOG MESSAGE."
$ sudo journalctl -p err _TRANSPORT=syslog --since 18:00
-- Logs begin at Tue 2018-10-09 18:43:07 UTC, end at Wed 2018-10-10
18:11:15 UTC. --
Oct 10 18:08:18 centos1 vagrant[1736]: I'M ANOTHER PARADOXICAL LOG
MESSAGE.

In the future, there's a good chance that syslog will be dropped and journald will
become the new norm, but given how long syslog as a concept has been around for,
it'll be a very long time before that becomes the case.

The fact journald logs in a binary way is something of a point of
contention for a lot of traditionalists but, like Columbus, it didn't
arrive on the scene first, it's just the one that got all the attention.
Those of you who've ever used OpenBSD, and its firewall pf, will
perhaps find the notion of binary logging a comfort.

There's more…
One thing to be aware of is the space that the journal log will use. The size limitations
are governed by options in journald.conf.

The options SystemMaxUse and RuntimeMaxUse govern the maximum disk space
the journal can use; these default to 10% of the size of the filesystem, with a cap of 4
GB.

Monitoring and Logging Chapter 7

[416]

The SystemKeepFree and RuntimeKeepFree options govern how much disk space
journald leaves free for other uses; these default to 15% of the size of the filesystem,
and are also capped to 4 GB.

There are various scenarios governing size but, basically, journald will try its
hardest not to be the reason your filesystem fills up, and it's that sort of attention to
detail that makes me love it.

See also
On our CentOS system, the log file is transient, being lost upon reboot. While it's live,
it exists in /run/log/journal/:

$ ls /run/log/journal/
4eabd6271dbf4ed0bc608378f4311df8
$ sudo ls -lh /run/log/journal/4eabd6271dbf4ed0bc608378f4311df8/
total 4.0M
-rwxr-x---+ 1 root systemd-journal 4.0M Oct 9 18:43 system.journal

We could actually change this behavior quite easily, by adding a
/var/log/ directory specifically for the journal, and using a one-
liner to change the permissions: sudo systemd-tmpfiles --
create --prefix /var/log/journal

You can also list the boots journalctl is aware of from the command line:

$ sudo journalctl --list-boots
 0 b4c3669c7a9841ba841c330a75125e35 Tue 2018-10-09 18:43:07 UTC—Wed
2018-10-10 18:13:27 UTC

Centralizing logging
You don't want to log on to each and every box in your estate to check logs, you just
don't. In this age of the cloud and automatically provisioned infrastructure, it's a lot
more faff than it's worth, and it's a great case for centralizing your logs in one
(redundant) location.

Being data, our logs can be manipulated and moved relatively easily. Both rsyslog
and journald have the capability to do this, and, in this section, we're going to be
streaming our logs around the place, showcasing how useful this can be.

Monitoring and Logging Chapter 7

[417]

Everything we cover here will be natively possible in the respective programs; this is
different to some of the centralized logging solutions that are provided by software
such as the Elastic Stack.

For the purpose of these examples, we're not utilizing TLS, meaning
logs will be streamed in a plain format. I would advise against doing
this sort of thing in production, without investing in HTTPS setups
or tunneled solutions.

Getting ready
For this section, we can use the Vagrantfile from the first section.

We will be using centos1 and centos2 for the first part, and then debian1 and
debian2 for the second part, sending logs from one box to the other.

Open two Terminals and connect to both centos1 and centos2; install tcpdump on
both boxes:

$ vagrant ssh centos1
$ sudo yum install tcpdump -y

$ vagrant ssh centos2
$ sudo yum install tcpdump -y

For part two (journald), connect to both debian1 and debian2, and install
tcpdump and systemd-journal-remote on both boxes:

$ vagrant ssh debian1
$ sudo apt install tcpdump systemd-journal-remote -y

$ vagrant ssh debian2
$ sudo apt install tcpdump systemd-journal-remote -y

How to do it…
We'll go through both of the logging daemons in turn, starting with rsyslog and
then doing the same basic thing with journald.

Monitoring and Logging Chapter 7

[418]

Remote logging with rsyslog – UDP example
In order to enable logging to a remote machine with rsyslog, you need to enable
both streaming to a remote location on your client, and receiving on your server.

For this, centos1 will be our client, and centos2 will be our server.

On centos1 first:

$ sudo sed -i 's/#*.* @@remote-host:514/*.* @192.168.33.11/g'
/etc/rsyslog.conf
$ sudo systemctl restart rsyslog

Now on centos2:

$ sudo sed -i 's/#$ModLoad imudp/$ModLoad imudp/g' /etc/rsyslog.conf
$ sudo sed -i 's/#$UDPServerRun 514/$UDPServerRun 514/g'
/etc/rsyslog.conf
$ sudo systemctl restart rsyslog

We can check this is working immediately with tcpdump on our centos2 VM; start it
using the following command:

$ sudo tcpdump port 514 -i eth1

Now, generate a message on centos1 to send; here, we're spoofing a syslog.info
message:

$ logger -p syslog.info "I'm a regular info message."

On centos2, you should see something like the following:

And, of course, in the /var/log/messages file where our log line will end up, you
will see the following:

$ sudo tail -3 /var/log/messages
Oct 11 18:35:45 centos2 kernel: device eth1 entered promiscuous mode
Oct 11 18:35:48 centos1 vagrant: I'm a regular info message.
Oct 11 18:36:23 centos2 kernel: device eth1 left promiscuous mode

Monitoring and Logging Chapter 7

[419]

Here, we can also see eth1 being put in promiscuous mode by
tcpdump, prior to and after us delivering our syslog message.

Remote logging with rsyslog – TCP example
The previous example covered UDP, which is simply a stream of information with no
confirmation that the server on the other side received the noise. With a TCP
connection, the syslog servers communicate with each other to establish a
connection first.

On your centos1 machine, replace the single @ sign in your destination address with
two @@ signs:

$ sudo sed -i 's/*.* @192.168.33.11/*.* @@192.168.33.11/g'
/etc/rsyslog.conf
$ sudo systemctl restart rsyslog

Our client is now set, but no logs can be sent until the connection is established.

On centos2, let's set the rsyslog server to receive TCP connections and data:

$ sudo sed -i 's/#$ModLoad imtcp/$ModLoad imtcp/g' /etc/rsyslog.conf
$ sudo sed -i 's/#$InputTCPServerRun 514/$InputTCPServerRun 514/g'
/etc/rsyslog.conf
$ sudo systemctl restart rsyslog

An rsyslog server can listen on UDP and TCP at the same time.

Let's test it out! On centos2, set up your tcpdump again:

$ sudo tcpdump port 514 -i eth1

And send a log message from centos1:

$ logger -p syslog.err "I'm a confusing error message."

Monitoring and Logging Chapter 7

[420]

Your tcpdump output should look similar to the following:

And, again, your messages file should have the new alert:

$ sudo tail -3 /var/log/messages
Oct 11 18:39:09 centos1 vagrant: I'm a confusing error message.
Oct 11 18:39:15 centos2 kernel: device eth1 left promiscuous mode
Oct 11 18:39:27 centos1 systemd-logind: Removed session 3.

Remote logging with journald
The systemd-journal-remote command allows you to receive journal messages
over a network. Sadly, it's a fairly recent addition to the systemd suite, and isn't yet
available on CentOS systems.

On your first Debian system (debian1), set up your remote upload location:

$ sudo sed -i 's/# URL=/URL=http:\/\/192.168.33.13/g'
/etc/systemd/journal-upload.conf

On your second box (debian2), start by editing the listening service, using
systemctl edit:

$ sudo systemctl edit systemd-journal-remote

When presented with the empty editor, add the following three lines:

[Service]
ExecStart=
ExecStart=/lib/systemd/systemd-journal-remote --listen-http=-3 --
output=/var/log/journal/remote

Monitoring and Logging Chapter 7

[421]

It should look something like the following:

Save and exit (Ctrl + O, Enter, Ctrl + X).

Now you need to make the remote folder location, and make sure it has the
appropriate permissions, before finally restarting the service:

$ sudo mkdir -p /var/log/journal/remote
$ sudo chown systemd-journal-remote /var/log/journal/remote
$ sudo systemctl restart systemd-journal-remote

And don't forget to start the service on debian1:

$ sudo systemctl restart systemd-journal-upload

Give it a test by following your log on debian2:

$ sudo journalctl -D /var/log/journal/remote/ -f

It can also be tested by using our trusty logger command on debian1:

$ logger -p syslog.err "Debian1 logs, on Debian2!"

Monitoring and Logging Chapter 7

[422]

With any luck, you'll see the following:

How it works…
What we're effectively doing is opening up a listener for logs in both the syslog and
journald solutions. A network port is opened on our boxes, and the daemon is
aware of a source of data that it might be forced to read from. In the case of syslog,
we had to enable specific modules in the rsyslog daemon to make this happen;
systemd and journald required specific packages.

Obviously, journald's implementation appears a bit clunkier, but that's mostly
because it's newer.

Fundamentally, we're just dealing with streaming log data, and neither syslog nor
journald care where that data comes from, as long as it's in a format that they can
understand.

Monitoring and Logging Chapter 7

[423]

There's more…
Time is very important when centralizing logging. Think about how confusing it can
be to look in a log file that features multiple hosts, and discover interspersed time
jumps.

It can also make log parsing hard, as we can use specific timestamps to properly
arrange data, and we could miss something critical if our remote box has the wrong
time.

TLS and secure transport are also something to think about, as mentioned in the
introduction to this section. You can configure systemd-journal-remote to listen
on HTTPS, instead of HTTP, as long as you sort your certificates properly.

For syslog, TLS and encryption can be a bit trickier, but there are more solutions to
consider, such as streaming log data over an SSH tunnel, or using a program such
as spipe to offload the heavy work of TLS.

Local resource measuring tools
Occasionally, it can be incredibly handy to know what a box is doing right this
second. Usually, this will be during a debugging session, when you're trying to work
out why the website is responding an order of magnitude slower, or why it's taking 5
minutes to type your SSH command on a remote session.

Here, local resource monitors come in handy. We've already touched on these briefly,
but this section will look at them in slightly more detail, and will cover some of the
more obscure tools that you might find useful when remotely connected to your
server.

We're going to look at the classics of free and top, before moving on to the more
recent additions, such as netdata and htop.

Monitoring and Logging Chapter 7

[424]

Getting ready
For this section, we're going to use our centos1 and debian1 VMs.

All of the programs we look at will be universally available in one form or another.

SSH to your centos1 VM, and ensure that the EPEL repository is enabled:

$ vagrant ssh centos1
$ sudo yum install epel-release -y
$ sudo yum install htop -y

SSH to your debian1 VM, very specifically, forwarding port 19999 to your local
machine (more on this later):

$ vagrant ssh debian1 -- -L 127.0.0.1:19999:127.0.0.1:19999

How to do it…
As with most of what we look at, there are classic examples of software that has been
kicking around in one form or another since roughly the 1970s, back when most
programs had names of two or three characters (ls, cp, mv). One of these is top and
another is free, both of which still have their place.

Then there are the more modern, slick, and beautiful programs. Gone are the
monochrome CRT-designed applications, and, in their place, are Terminal
applications that even support 256 colours!

Finally, there's NetData, which I touch on here because it's making quite the storm in
the world of local administration.

top
An old friend, and guaranteed to be installed on any Unix or Unix-like system, top is
your immediate window into what your system thinks it's doing:

$ top

Monitoring and Logging Chapter 7

[425]

The output for the preceding command is shown as follows:

Right from the start, we can see several things:

The time in the top left, and how long the box has been up – 17:09:46 up 8
min
The number of users logged in – 1 user
The load average – 0.00, 0.03, 0.03
The number of running, sleeping, and so on tasks
CPU usage information
Volatile memory information (RAM)
SWAP information (disk memory)

Monitoring and Logging Chapter 7

[426]

Breaking these down, let's look at some in more detail:

Load average: In detail, the load average is the load of the system over the
last 1, 5, and 15 minutes. This load average is a display of processes
running, or those waiting for resources such as CPU time or disk I/O.

The disk I/O element is important, as it's something that's pretty
Linux-specific and that a lot of people forget. You can have a system
that's completely free of load on the CPU, and yet has high load
average values; this can be an indication that you need to upgrade
that old and creaking HDD into a shiny new NVMe drive.

Tasks: Basically, you can think of tasks as the number of processes that are
running now, or that are in the sleeping/zombie/stopped state on your
system. It's the same number you'd get with ps aux.
%CPU: It's best to defer to the man page for this one:

 us, user : time running un-niced user processes
 sy, system : time running kernel processes
 ni, nice : time running niced user processes
 id, idle : time spent in the kernel idle handler
 wa, IO-wait : time waiting for I/O completion
 hi : time spent servicing hardware interrupts
 si : time spent servicing software interrupts
 st : time stolen from this vm by the hypervisor

KiB Mem: In digits, this is the amount of RAM available to your system,
broken down into the total, free, used, and buffers/caches.

Buffers/caches are memory that's in use, but which can be annexed
by any program that wishes to use it in an instant. Linux likes RAM,
and unused RAM is wasted RAM, so it will do everything it can to
use it.

KiB Swap: Also in digits, this is the amount of Swap available, broken
down once more.

If you want a nicer view, cycling through the options by hitting M a few times will
give you visual representations:

Monitoring and Logging Chapter 7

[427]

Lastly, we have the ever-changing process list and information about running jobs on
your system:

By default, this is organized by CPU usage (%CPU) but you can adjust that if you
wish.

Along the top, we have the following:

The PID of the task in question
The user running the process
PR, the priority of a task (the higher the priority, the more likely it is to get
prioritized)
NI, the nice value of a task; minus values have a higher priority
VIRT, the virtual memory being used by the task (all memory, including
the likes of shared libraries)
RES, the non-swapped physical memory being used by the task
SHR, mostly RES, without some bits that are too technical for this book

Monitoring and Logging Chapter 7

[428]

S, the state of the process (running, sleeping, zombie, and so on)
%CPU, how much CPU time a task has used since the last refresh, a
percentage of the total CPU time available
%MEM, how much available physical memory a task is currently using
TIME+, an update of TIME, it's the total CPU time the task has used since
starting; the plus increases granularity
COMMAND, the name of the task

Phew!

That's top, but it's so much more than that, and it might look slightly different on
different systems. It can also do color, but only one distribution I know of switches it
on out of the box.

It's a good idea to load top and hit H or ? for a helpful indication of what top is
capable of.

free
free is a great way to see how busy your system is at a glance; more specifically, it's
the quickest way of finding out how much memory is being used on your box.

Thankfully, free has fewer options than top. Mostly, the flags are just to change the
output of the command, making it more human-readable or less, if that's your thing.

Personally, I use -m which outputs the value in mebibytes, but if
your system has Gigs of memory, you might find -g more useful.

In the following, you will see free -ht on our centos1 VM: -h is used for human-
readable output, giving a nice mix of mebibyte and gibibyte values; -t is a flag to add
a Total line, giving a sum of Mem and Swap values:

Monitoring and Logging Chapter 7

[429]

The important field is available, as it effectively tells you how much physical
memory is available before the system starts swapping; if this is 0, you're going to be
constantly reading and writing to disk, which can slow a system drastically.

htop
htop is like top, but prettier. If a box is under my control (and providing the
appropriate approval has been given), you're very likely to find htop installed.

In a pinch, top is fine, and you're guaranteed to find it pre-installed on a box, but if
you want something that doesn't feel like it's from the 1970s, htop is extremely
helpful.

Here's htop on our centos1 VM:

Monitoring and Logging Chapter 7

[430]

Note that we still have all the same information that top gives us, only now we've
made use of what a modern Terminal emulator can do, giving us colors by default,
and nicely aligning output into a window that also supports mouse input (try it!).

Further to top, we have the ability to format our output quickly and easily by
changing the look of our window; the options such as Tree at the bottom of the
screen (F5) can provide a very useful tree view when pressed (note it changes to
read Sorted):

As with top, there are also options for changing what's shown in terms of columns
and information, although, unlike top, these are under the Setup menu (F3) and
changes are persisted to disk in the form of a configuration file, located at
~/.config/htop/htoprc.

Monitoring and Logging Chapter 7

[431]

NetData
Popular mainly due to being able to market itself effectively, NetData is an aggregator
of all the system information it can get hold of.

This is not an advert nor an endorsement, merely an example of
what third-party software can do. NetData does use a centralized
server for logging some data, such as system hostnames, meaning
you should check against your internal security policy if you intend
to use this tool. See the NetData security page for more information:

https:/ / docs. netdata. cloud/ docs/ netdata- security/

As with everything, understand what the software you're installing
does, before you blindly click Accept.

Flipping over to our Debian VM, we're going to install NetData here, as it's available
in the backports repository (software added to previously released Debian versions
after the fact).

First, we need to enable the backports repository and then we can install our
package:

$ echo "deb http://ftp.debian.org/debian stretch-backports main" |
sudo tee -a /etc/apt/sources.list
$ sudo apt update
$ sudo apt install netdata -y

As Debian typically starts services by default, after installation, NetData is now
enabled and started.

By default, though, it will only listen on localhost, which is why we needed to
forward that IP and port in our Getting ready section. If you've not done so, log off
from your debian1 VM and use the command from that section.

https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/
https://docs.netdata.cloud/docs/netdata-security/

Monitoring and Logging Chapter 7

[432]

Now, navigating to http://127.0.0.1:19999 in your local machine's web browser
will forward that connection through to your VM, and you should see the NetData
GUI:

NetData Homepage

Even I've got to admit, the interface is pretty swish.

Note that, on the right, it even gives you a snippet of information about what NetData
is doing, and where it's getting information from: netdata on debian1 collects 686
metrics every second, presented as 142 charts and monitored by 41 alarms, using 11
MB of memory for 1 hour, 6 minutes and 36 seconds of real-time history.

How it works…
top queries the kernel to gather information about a running system, making it very
fast at reflecting the nature of the box it's been run on. It's also incredibly lightweight,
meaning that unless a box is extremely overloaded, there's a good chance top will
still run (and if it is overloaded, you've got bigger issues). It's been around since the
1980s; it's tried and tested.

Monitoring and Logging Chapter 7

[433]

free takes a look at the values available in /proc/meminfo, meaning that while you
can query these files yourself (and some people do), free provides a nicer way of
looking at values (and gives you the option to refresh on a periodic basis, if that's
what you're after).

htop queries the system in much the same way as top (though this isn't necessarily
the same across operating systems such as macOS or the BSD family). The difference
with htop is that it uses the ncurses library to display itself, and while it's not as old
as top, it has been around for about 14 years at the time of writing.

NetData uses various sources (and can use custom plugins) to collect data every
second; it then displays this data to the user.

There's more…
NetData might look cool, and, at a glance, it can be a nifty way of finding out what
your server is up to (especially if you've got it on a wall in your office or something),
but this isn't an advertisement, and I would advise caution when using tools such as
this. Not because they're dangerous (though always check your sources), but because
they can be a little frivolous, and serve as nothing more than a dashboard that
management might like to see on your PC monitor occasionally.

Ooh! I've thought of another great use for NetData, maybe as some sort of
background set-dressing in some cheesy DC or SciFi TV show; that'd be neat too.

What we looked at here are only a sample of the tools on offer. The defaults will
always be available to you (the tops and frees of the world), but there are hundreds of
others to choose from, some of which might fit your needs, and some of which might
fit that wallboard in the corner of the office that no one else ever uses.

Have a look around, search the net, and try things out.

It's Linux, there are a hundred ways to accomplish the same thing.

Monitoring and Logging Chapter 7

[434]

Local monitoring tools
Like tools that keep an eye on the resources of your system here and now, there are
tools for looking at the historic data on your system. NetData could be considered one
of these, depending on how you use it, but there are more besides, and we'll look at a
few more that can help you to debug past problems.

We're going to take a look at the following:

atop

sar

vmstat

Getting ready
For this section, we're going to continue to use the Vagrantfile from the first
section of this chapter.

Log on to centos1, the VM we're going to be using in this section:

$ vagrant ssh centos1

Install the tools we'll be using:

$ sudo yum install epel-release -y
$ sudo yum install atop sysstat -y

How to do it…
Once you've got all your tools installed, work through each of the following sections.

atop
atop (Advanced System and Process Monitoring)

To begin, run atop normally:

$ atop

Monitoring and Logging Chapter 7

[435]

You should see something like this:

This gives us some good information, specifically the system and process activity
since boot, before it rotates onto a rolling display of the activity over the previous 10
seconds. In other words, 10 seconds later, it looks like this:

Furthermore, atop can be used to store data not just of the current boot, but also
periodically.

Enable the atop service as follows:

$ sudo systemctl enable atop --now

Monitoring and Logging Chapter 7

[436]

You will now find that historic days are logged to /var/log/atop in a binary format
and those same files can then be replayed at a future date, in case you want to know
what happened to your system in the middle of the night that caused all those red
alerts:

$ sudo ls /var/log/atop/
atop_20181013 daily.log

To read a file again, you can either specify the full filename, or the date you're after:

$ atop -r 20181013

Because we started the service at 18:56:14, that's what we see when we load this
file:

We can then adjust the samples by using t and T to move forward and backward.

atop is restarted at midnight by a cron job:

$ sudo cat /etc/cron.d/atop
daily restart of atop at midnight
0 0 * * * root systemctl try-restart atop

Monitoring and Logging Chapter 7

[437]

sar
sar is a way of reading system information, but it also allows you to read historic
information.

It's enabled with a systemctl command, which actually triggers a binary called sa1
to start at boot:

$ sudo systemctl enable --now sysstat

Run via a cron job, sar is executed every 10 minutes to grab system information. It
then has a daily summary created at 23:53:

$ sudo cat /etc/cron.d/sysstat
Run system activity accounting tool every 10 minutes
*/10 * * * * root /usr/lib64/sa/sa1 1 1
0 * * * * root /usr/lib64/sa/sa1 600 6 &
Generate a daily summary of process accounting at 23:53
53 23 * * * root /usr/lib64/sa/sa2 -A

To specify a sar file to open and read, use the -f flag:

$ sar -f /var/log/sa/sa13
Linux 3.10.0-862.2.3.el7.x86_64 (centos1) 13/10/18 _x86_64_
(1 CPU)

18:50:01 CPU %user %nice %system %iowait %steal
%idle
19:00:01 all 0.03 0.00 0.21 0.00 0.00
99.76
Average: all 0.03 0.00 0.21 0.00 0.00
99.76

19:07:51 LINUX RESTART

19:10:01 CPU %user %nice %system %iowait %steal
%idle
19:14:43 all 0.04 0.00 0.22 0.00 0.00
99.75
19:15:07 all 0.17 0.00 0.48 0.00 0.00
99.35
19:20:01 all 0.01 0.00 0.12 0.00 0.00
99.87
19:30:01 all 0.00 0.00 0.09 0.00 0.00
99.91
19:40:01 all 0.00 0.00 0.10 0.00 0.00
99.90

Monitoring and Logging Chapter 7

[438]

Average: all 0.01 0.00 0.12 0.00 0.00
99.87

Or, if you want to be more granular, you can specify start and stop times:

$ sar -f /var/log/sa/sa13 -s 19:10:00 -e 19:15:08
Linux 3.10.0-862.2.3.el7.x86_64 (centos1) 13/10/18 _x86_64_ (1 CPU)

19:10:01 CPU %user %nice %system %iowait %steal %idle
19:14:43 all 0.04 0.00 0.22 0.00 0.00 99.75
19:15:07 all 0.17 0.00 0.48 0.

00 0.00 99.35
Average: all 0.05 0.00 0.24 0.00 0.00 99.72

vmstat
vmstat is a great way to report on memory statistics; by default, its output looks like
this:

$ vmstat
procs -----------memory---------- ---swap-- -----io---- -system-- ----
--cpu-----
 r b swpd free buff cache si so bi bo in cs us
sy id wa st
 2 0 1544 65260 0 367336 0 0 57 78 45 47 0
0 100 0 0

Where vmstat excels, though, is the fact its initial report (the preceding output) is the
information since boot, and you can add a digit to the end of your command, to get a
rolling summary:

$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- -system-- ----
--cpu-----
 r b swpd free buff cache si so bi bo in cs us
sy id wa st
 2 0 1544 65140 0 367336 0 0 57 77 45 47 0
0 100 0 0
 0 0 1544 65140 0 367336 0 0 0 0 49 48 0
0 100 0 0
 0 0 1544 64768 0 367336 0 0 0 0 51 54 0
0 100 0 0
 0 0 1544 64768 0 367336 0 0 0 0 48 48 0
0 100 0 0
 0 0 1544 64768 0 367336 0 0 0 1 46 46 0
0 100 0 0

Monitoring and Logging Chapter 7

[439]

 0 0 1544 64768 0 367336 0 0 0 0 47 46 0
0 100 0 0
 0 0 1544 64588 0 367336 0 0 0 0 49 53 0
0 100 0 0
 0 0 1544 64784 0 367336 0 0 0 0 49 51 0
0 100 0 0
 0 0 1544 64784 0 367336 0 0 0 0 48 48 0
0 100 0 0
 1 0 1544 64784 0 367336 0 0 0 0 46 48 0
0 100 0 0

Again, like NetData, vmstat could fit in either category (this or the preceding section)
and, as a result, it falls to the user to decide how to do it. You could, for example,
write a systemd-timer to run vmstat 10 times, every hour, and output the result to
a file for you to peruse at a later date. This is a bit more manual than the out-of-the-
box solutions such as sar and atop, but it would be good practice for bigger projects.

How it works…
As with our previous section, out of the box, a lot of the atop and sar setup is done
for you, but further configuration changes can be made in the relevant configuration
files for the processes.

Under CentOS, these live in /etc/sysconfig, as is traditional:

$ cat /etc/sysconfig/atop
sysconfig atop
#

Current Day format
CURDAY=`date +%Y%m%d`
Log files path
LOGPATH=/var/log/atop
Binaries path
BINPATH=/usr/bin
PID File
PIDFILE=/var/run/atop.pid
interval (default 10 minutes)
INTERVAL=600

$ cat /etc/sysconfig/sysstat
sysstat-10.1.5 configuration file.
How long to keep log files (in days).
If value is greater than 28, then log files are kept in
multiple directories, one for each month.

Monitoring and Logging Chapter 7

[440]

HISTORY=28
Compress (using gzip or bzip2) sa and sar files older than (in
days):
COMPRESSAFTER=31
Parameters for the system activity data collector (see sadc manual
page)
which are used for the generation of log files.
SADC_OPTIONS="-S DISK"
Compression program to use.
ZIP="bzip2"

When atop is started (using systemd), the /usr/share/atop/atop.daily script is
triggered, using options from sysconfig.

When sysstat is enabled with systemd, it specifically tells sar to start with a
dummy record, signifying a new boot. This is in addition to the cron entries we saw
previously, and which are dictated by the configuration file in /etc/sysconfig.

It's a bit complicated using these tools, but you will soon find the data to be
invaluable to you if you get good at interpreting and using the information they
provide.

Remote monitoring tools
Being able to query a server locally and find out what it's doing is great, but that's
rarely how things are done in the real world (outside your single box that you might
maintain for personal projects). In company scenarios, it's much more likely that
you'll have a monitoring solution of some sort, perhaps with agents on your boxes,
which keeps an eye on the health of machines in your care.

Nagios is the undisputed king of monitoring installations the world over, not because
it's the best, or the most flashy, but simply because it's one of the oldest, and once a
monitoring solution is in place, you'll find teams are very hesitant about switching
over to a new one.

It has caused several clones to be created, and various offshoots (some using the
original source code and some not), but all of them will behave in a similar fashion.

In this part, we're going to install Nagios on centos1, and have it monitor both itself
and debian1, while we install Icinga2 on centos2, and have it monitor debian2.

Monitoring and Logging Chapter 7

[441]

Getting ready
For this section, the Vagrantfile from the first section will suffice. We will be using
all four of our VMs.

We'll run through the Nagios setup first, then move on to Icinga2 afterward.

Connect to each of your boxes, or start with centos1 and debian1, before moving on
to centos2 and debian2 later.

When connecting to centos1 for the Nagios installation, you will want to use the
following port forward:

$ vagrant ssh centos1 -- -L 127.0.0.1:8080:127.0.0.1:80

How to do it…
As mentioned, we'll run through Nagios first, and then Icinga2.

Nagios
On centos1, let's install Nagios from EPEL:

$ sudo yum install -y epel-release
$ sudo yum install -y httpd nagios nagios-plugins-all nagios-plugins-
nrpe

Now that's finished (which can take some time, as there are a lot of plugins), we
should start and enable our service, along with httpd, which should be installed by
default:

$ sudo systemctl enable --now nagios
$ sudo systemctl enable --now httpd

Out of the box, you will get an insecure nagios-web setup. If you've connected to your
Vagrant VM as suggested previously, you should now be able to navigate to the web
interface on the forwarded port (http://127.0.0.1:8080/nagios):

Monitoring and Logging Chapter 7

[442]

We actually haven't set our nagiosadmin password yet (for the basic http auth
prompt), so let's do that now:

$ sudo htpasswd /etc/nagios/passwd nagiosadmin
New password:
Re-type new password:
Updating password for user nagiosadmin

Once your password is set, try inputting it in the prompt box:

Monitoring and Logging Chapter 7

[443]

You should see the Nagios landing page:

As I've mentioned in other places, I wouldn't recommend using
basic HTTP authentication in this manner, as it's insecure. If you
can't use HTTPS/TLS to secure the web page, you should block it so
that it can only be accessed on the box locally, and use something
like SSH forwarding to encrypt connections to the portal. Ideally,
though, get a certificate from LetsEncrypt and make life easy for
yourself.

Now click on Services on the left-hand side; this is where you'll mostly want to be, as
it shows the hosts and services on that host that Nagios is currently monitoring:

Monitoring and Logging Chapter 7

[444]

By default, you can see that we're only monitoring our localhost, which is fine for
now, but we want to add debian1 into the mix. Back on the command line, let's get
to work by first pointing to our debian1 file in the Nagios configuration file:

$ echo "cfg_file=/etc/nagios/objects/debian1.cfg" | sudo tee -a
/etc/nagios/nagios.cfg

Now we need to create debian1.cfg:

$ sudo cp /etc/nagios/objects/localhost.cfg
/etc/nagios/objects/debian1.cfg

We've got all the same configuration as the localhost machine at the moment, so
we're going to replace these with debian1 specific values. We're also going to create
a new host group specifically for remote VMs, and we're going to change the local
checks to first use check_nrpe:

$ sudo sed -i 's/localhost/debian1/g' /etc/nagios/objects/debian1.cfg
$ sudo sed -i 's/127.0.0.1/192.168.33.12/g'
/etc/nagios/objects/debian1.cfg
$ sudo sed -i 's/linux-servers/remote-vms/g'
/etc/nagios/objects/debian1.cfg
$ sudo sed -i 's/check_local/check_nrpe!check_client/g'
/etc/nagios/objects/debian1.cfg

Monitoring and Logging Chapter 7

[445]

With those in place, we have to define the check_nrpe command:

$ cat <<HERE | sudo tee -a /etc/nagios/objects/commands.cfg
define command{
 command_name check_nrpe
 command_line \$USER1\$/check_nrpe -H \$HOSTADDRESS\$ -c
\$ARG1\$
 }
HERE

Once done, we can restart our Nagios installation:

$ sudo systemctl restart nagios

Looking again at your Services page, you'll now see debian1, likely with a lot of
checks failing.

This is because NRPE isn't set up on debian1, so let's SSH to debian1 and do that
now!

First, we need to install the various bits and pieces:

 $ sudo apt install monitoring-plugins nagios-nrpe-server -y

 Now, we need to allow our centos1 box to talk to debian1 (via port 5666):

$ sudo sed -i
's/allowed_hosts=127.0.0.1/allowed_hosts=127.0.0.1,192.168.33.10/g'
/etc/nagios/nrpe.cfg

We also need to define the client commands that our server is going to request be run
on the client:

$ cat <<HERE | sudo tee /etc/nagios/nrpe_local.cfg
command[check_client_load]=/usr/lib/nagios/plugins/check_load -w
5.0,4.0,3.0 -c 10.0,6.0,4.0
command[check_client_users]=/usr/lib/nagios/plugins/check_users -w 20
-c 50
command[check_client_disk]=/usr/lib/nagios/plugins/check_disk -w 20% -
c 10% -p /
command[check_client_swap]=/usr/lib/nagios/plugins/check_swap -w 20 -c
10
command[check_client_procs]=/usr/lib/nagios/plugins/check_procs -w 250
-c 400 -s RSZDT
HERE

Monitoring and Logging Chapter 7

[446]

Finally, we're at the point we can restart the nrpe service on debian1:

$ sudo systemctl restart nagios-nrpe-server

Now, looking back at the Nagios web interface (don't forget to SSH to the centos1
VM again if you disconnected), we should see our services being checked correctly:

Nagios Services Page with ‘debian1’

Note that we have a failing check (HTTP) because debian1 doesn't have a web server
installed and running.

If your checks haven't cycled through yet, you can force all services
on a host to be checked by clicking on the host's name and then
selecting the Schedule a check of all services on this
host command.

Icinga2
Like Nagios (which is where it was originally derived from), Icinga2 has the concept
of a central server, with agents on other hosts that it can keep an eye on.

Monitoring and Logging Chapter 7

[447]

We're going to install Icinga2 on our centos2 VM, and then monitor our debian2
VM from our first host.

To get started, jump on to centos2 and install Icinga2:

$ vagrant ssh centos2 -- -L 127.0.0.1:8181:127.0.0.1:80

Note the forwarding section; this will be for the GUI setup later on (port 8181):

$ sudo yum install epel-release -y
$ sudo yum install centos-release-scl -y
$ sudo yum install
https://packages.icinga.com/epel/icinga-rpm-release-7-latest.noarch.rp
m -y
$ sudo yum install httpd icinga2 icinga2-ido-mysql nagios-plugins-all
icinga2-selinux mariadb-server mariadb icingaweb2 icingacli
icingaweb2-selinux rh-php71-php-mysqlnd -y
$ sudo systemctl enable --now icinga2
$ sudo systemctl enable --now mariadb

Run through the mariadb installation script (the root password is blank by default;
set it to something you'll remember):

$ mysql_secure_installation

NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MariaDB
 SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP CAREFULLY!

In order to log into MariaDB to secure it, we'll need the current
password for the root user. If you've just installed MariaDB, and
you haven't set the root password yet, the password will be blank,
so you should just press enter here.

Enter current password for root (enter for none):
OK, successfully used password, moving on...

Setting the root password ensures that nobody can log into the MariaDB
root user without the proper authorisation.

Set root password? [Y/n] Y
New password:
Re-enter new password:
Password updated successfully!
Reloading privilege tables..
 ... Success!

By default, a MariaDB installation has an anonymous user, allowing
anyone

Monitoring and Logging Chapter 7

[448]

to log into MariaDB without having to have a user account created for
them. This is intended only for testing, and to make the installation
go a bit smoother. You should remove them before moving into a
production environment.

Remove anonymous users? [Y/n] Y
 ... Success!

Normally, root should only be allowed to connect from 'localhost'.
This
ensures that someone cannot guess at the root password from the
network.

Disallow root login remotely? [Y/n] Y
 ... Success!

By default, MariaDB comes with a database named 'test' that anyone can
access. This is also intended only for testing, and should be removed
before moving into a production environment.

Remove test database and access to it? [Y/n] Y
 - Dropping test database...
 ... Success!
 - Removing privileges on test database...
 ... Success!

Reloading the privilege tables will ensure that all changes made so
far
will take effect immediately.

Reload privilege tables now? [Y/n] Y
 ... Success!

Cleaning up...

All done! If you've completed all of the above steps, your MariaDB
installation should now be secure.

Thanks for using MariaDB!

Now set up mariadb for icinga. This information can be found in the Icinga2
Getting Started guide, https:/ /icinga. com/docs/ icinga2/ latest/ doc/ 02- getting-
started/#setting- up- icinga- web- 2:

$ mysql -u root -p<The Password You Set Above>

MariaDB [(none)]> CREATE DATABASE icinga;
Query OK, 1 row affected (0.00 sec)

https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2
https://icinga.com/docs/icinga2/latest/doc/02-getting-started/#setting-up-icinga-web-2

Monitoring and Logging Chapter 7

[449]

MariaDB [(none)]> GRANT SELECT, INSERT, UPDATE, DELETE, DROP, CREATE
VIEW, INDEX, EXECUTE ON icinga.* TO 'icinga'@'localhost' IDENTIFIED BY
'icinga';
Query OK, 0 rows affected (0.06 sec)

MariaDB [(none)]> quit
Bye

Finally, import the supplied schema database:

$ mysql -u root -p icinga < /usr/share/icinga2-ido-
mysql/schema/mysql.sql

Enable the actual plugin in icinga2, and restart the service:

$ sudo icinga2 feature enable ido-mysql
$ sudo systemctl restart icinga2

Once the database setup is done, we can move on to the actual web installation.

We included httpd (apache) in the installation step of this section, because it's what
Icinga2 recommends, though NGINX can be used too (and indeed is the default on
FreeBSD).

Begin by starting and enabling it:

$ sudo systemctl enable --now httpd

Next, enable the api feature of icinga2 and restart it:

$ sudo icinga2 api setup
$ sudo systemctl restart icinga2

A root user and random password will be added to api-users.conf:

$ sudo cat /etc/icinga2/conf.d/api-users.conf
/**
 * The ApiUser objects are used for authentication against the API.
 */
object ApiUser "root" {
 password = "40ebca8aaaf1eba0"
 // client_cn = ""

 permissions = ["*"]
}

Monitoring and Logging Chapter 7

[450]

Icinga2 web also needs FastCGI Process Manager (FPM) enabled, so do this:

$ sudo sed -i 's/;date.timezone =/date.timezone = UTC/g'
/etc/opt/rh/rh-php71/php.ini
$ sudo systemctl enable --now rh-php71-php-fpm.service

Once done, you should be able to hit the installed Icinga2 web setup in your browser
(using our forwarded connection), http://127.0.0.1:8181/icingaweb2/setup:

To find your setup code, get back to your centos2 command line and run the
following:

$ sudo icingacli setup token create
The newly generated setup token is: 052f63696e4dc84c

Monitoring and Logging Chapter 7

[451]

Enter your code and click next through the installation (making sure there's no red on
the Requirements page; yellow is okay for the Imagick PHP module):

When prompted for the authentication type, choose Database:

On the next page, you'll be prompted to provide a database name, a database
username, and a database password. Choose suitable values (don't worry if they're
not created yet, we'll do that next):

Monitoring and Logging Chapter 7

[452]

Here, you can see I chose icinga2web for the database name and username. Click
Next.

On the screen immediately following, you will be asked to pass in the credentials of a
user who can access MariaDB to create the new database; I chose to use the MariaDB
root user we set earlier:

Monitoring and Logging Chapter 7

[453]

You'll be prompted to choose a Backend Name, which is an aesthetic decision so that
you can recognise the backend later:

And you'll be asked to create a web user; I went with icingaweb:

Monitoring and Logging Chapter 7

[454]

I kept the Application Configuration as the default:

Lastly, you'll be prompted to confirm the settings you've put in; have a quick once-
over before continuing.

Clicking Next a couple more times brings you to the Monitoring Backend setup
(where IcingaWeb2 looks to find the monitoring database):

Monitoring and Logging Chapter 7

[455]

You'll be prompted to add connection details that can be used to query the icinga
database (which we set up using the MariaDB CLI ealier in this chapter). We set the
following defaults: username icinga, and password icinga:

Use the Validate Configuration button to validate your configuration.

On the Command Transport screen, you'll be prompted to enter the details of the API
user we created. We only added root, so let's use that for now (from the api-users.conf
file earlier):

Monitoring and Logging Chapter 7

[456]

Click Next until you get to the end, where you should end up with a happy green
banner:

Monitoring and Logging Chapter 7

[457]

Continue to the prompted login page, and log in with the web user we created:

Icinga2 Login Page

The design might have changed a bit by the time you get around to reading this book,
but hopefully you have something that's close to the following Icinga2 Dashboard:

Monitoring and Logging Chapter 7

[458]

Have a poke around, before moving onto the next section, where we'll add another
host.

Firstly, we have to establish our first server as the master before we install icinga2
on our client.

You do this with a setup script; I've put the only change needed in bold:

$ sudo icinga2 node wizard
Welcome to the Icinga 2 Setup Wizard!

We will guide you through all required configuration details.

Please specify if this is a satellite/client setup ('n' installs a
master setup) [Y/n]: n

Starting the Master setup routine...

Please specify the common name (CN) [centos2]:
Reconfiguring Icinga...
Checking for existing certificates for common name 'centos2'...
Certificate '/var/lib/icinga2/certs//centos2.crt' for CN 'centos2'
already existing. Skipping certificate generation.
Generating master configuration for Icinga 2.
'api' feature already enabled.

Master zone name [master]:

Default global zones: global-templates director-global
Do you want to specify additional global zones? [y/N]:
Please specify the API bind host/port (optional):
Bind Host []:
Bind Port []:

Do you want to disable the inclusion of the conf.d directory [Y/n]:
Disabling the inclusion of the conf.d directory...
Checking if the api-users.conf file exists...

Done.

Now restart your Icinga 2 daemon to finish the installation!

Do as it suggests and restart icinga2:

$ sudo systemctl restart icinga2

Monitoring and Logging Chapter 7

[459]

Generate a token for our client to use when connecting:

$ sudo icinga2 pki ticket --cn debian2
8c7ecd2c04e6ca73bb0d1a6cc62ae4041bf2d5d2

Now SSH to your debian2 box and install icinga2:

$ sudo apt install icinga2 -y

Run through the node installation, this time specifying that we're an agent, and
passing in the token from earlier when prompted:

$ sudo icinga2 node wizard
Welcome to the Icinga 2 Setup Wizard!

We'll guide you through all required configuration details.

Please specify if this is a satellite setup ('n' installs a master
setup) [Y/n]:
Starting the Node setup routine...
Please specify the common name (CN) [debian2]:
Please specify the master endpoint(s) this node should connect to:
Master Common Name (CN from your master setup): centos2
Do you want to establish a connection to the master from this node?
[Y/n]:
Please fill out the master connection information:
Master endpoint host (Your master's IP address or FQDN): 192.168.33.11
Master endpoint port [5665]:
Add more master endpoints? [y/N]:
Please specify the master connection for CSR auto-signing (defaults to
master endpoint host):
Host [192.168.33.11]:
Port [5665]:
information/base: Writing private key to
'/etc/icinga2/pki/debian2.key'.
information/base: Writing X509 certificate to
'/etc/icinga2/pki/debian2.crt'.
information/cli: Fetching public certificate from master
(192.168.33.11, 5665):

Certificate information:

 Subject: CN = centos2
 Issuer: CN = Icinga CA
 Valid From: Oct 13 22:34:30 2018 GMT
 Valid Until: Oct 9 22:34:30 2033 GMT

Monitoring and Logging Chapter 7

[460]

 Fingerprint: B5 0B 00 5D 5F 34 14 08 D7 48 8E DA E1 83 96 35 D9 0F 54
1F

Is this information correct? [y/N]: y
information/cli: Received trusted master certificate.

Please specify the request ticket generated on your Icinga 2 master.
 (Hint: # icinga2 pki ticket --cn 'debian2'):
8c7ecd2c04e6ca73bb0d1a6cc62ae4041bf2d5d2
information/cli: Requesting certificate with ticket
'8c7ecd2c04e6ca73bb0d1a6cc62ae4041bf2d5d2'.

information/cli: Created backup file
'/etc/icinga2/pki/debian2.crt.orig'.
information/cli: Writing signed certificate to file
'/etc/icinga2/pki/debian2.crt'.
information/cli: Writing CA certificate to file
'/etc/icinga2/pki/ca.crt'.
Please specify the API bind host/port (optional):
Bind Host []:
Bind Port []:
Accept config from master? [y/N]: y
Accept commands from master? [y/N]: y
information/cli: Disabling the Notification feature.
Disabling feature notification. Make sure to restart Icinga 2 for
these changes to take effect.
information/cli: Enabling the Apilistener feature.
Enabling feature api. Make sure to restart Icinga 2 for these changes
to take effect.
information/cli: Created backup file '/etc/icinga2/features-
available/api.conf.orig'.
information/cli: Generating local zones.conf.
information/cli: Dumping config items to file
'/etc/icinga2/zones.conf'.
information/cli: Created backup file '/etc/icinga2/zones.conf.orig'.
information/cli: Updating constants.conf.
information/cli: Created backup file
'/etc/icinga2/constants.conf.orig'.
information/cli: Updating constants file
'/etc/icinga2/constants.conf'.
information/cli: Updating constants file
'/etc/icinga2/constants.conf'.
Done.

Now restart your Icinga 2 daemon to finish the installation!

Monitoring and Logging Chapter 7

[461]

Restart icinga2 on debian2:

$ sudo systemctl restart icinga2

Now, we need to configure the master to actually check the client; we've got an
established connection, viewable with ss:

$ ss -t
State Recv-Q Send-Q Local
Address:Port Peer
Address:Port
ESTAB 0 0
10.0.2.15:ssh
10.0.2.2:44828
ESTAB 0 0 192.168.33.13:5665 192.168.33.11:49398

Now, back on centos2, add the following configuration:

$ cat <<HERE | sudo tee -a /etc/icinga2/zones.conf
object Endpoint "debian2" {
 host = "192.168.33.13"
}
object Zone "debian2" {
 endpoints = ["debian2"]
 parent = "master"
}
HERE

Create a hosts directory for the zone in question:

$ sudo mkdir -p /etc/icinga2/zones.d/master

And add an appropriate hosts configuration:

$ cat <<HERE | sudo tee /etc/icinga2/zones.d/master/hosts.conf
object Host "debian2" {
 check_command = "hostalive"
 address = "192.168.33.13"
 vars.client_endpoint = name
 vars.os = "Linux"
}
HERE

Restart icinga2:

$ sudo systemctl restart icinga2

Monitoring and Logging Chapter 7

[462]

At this point, you should see your client in the Icinga2 web GUI:

Icinga2 Hosts page with pending checks

It's a bit useless to just have ping check a host (well, mostly; ping alerts have saved
me before), so let's add some of the recommended service checks too:

$ cat <<HERE | sudo tee /etc/icinga2/zones.d/master/services.conf
apply Service "ping4" {
 check_command = "ping4"
 assign where host.address
}
apply Service "ssh" {
 check_command = "ssh"
 assign where host.vars.os == "Linux"
}
apply Service "disk" {
 check_command = "disk"
 command_endpoint = host.vars.client_endpoint
 assign where host.vars.client_endpoint

Monitoring and Logging Chapter 7

[463]

}
apply Service "icinga" {
 check_command = "icinga"
 command_endpoint = host.vars.client_endpoint
 assign where host.vars.client_endpoint
}
apply Service "ntp_time" {
 check_command = "ntp_time"
 command_endpoint = host.vars.client_endpoint
 assign where host.vars.client_endpoint
}
HERE

Restart the service again.

$ sudo systemctl restart icinga2

Looking back at our GUI, this will now show our debian2 box with some services
checks (where one of the five failed):

Icinga2 Hosts page with ‘debian2’

Monitoring and Logging Chapter 7

[464]

How it works…
By having a master server that is capable of seeing other servers in an estate, you give
yourself the visibility needed to know when problems have occurred that need your
immediate attention.

Monitoring tools such as Nagios and Icinga2 usually work by interacting with a
remote machine, querying its status by using either scripts on the box, or custom
commands remotely, and reporting on the output of those commands. This can be
done in a variety of ways, including, but not limited to, the NRPE agent, remote SSH
commands, or SNMP results queried from an SNMP daemon.

By creating a single-source-of-truth on the state of your infrastructure, you can learn
immediately when there's a problem with your estate, and even correlate data based
on multiple symptoms seen.

Icinga2, Nagios, Zabbix, and Sensu all behave in a relatively similar fashion, and all
ultimately are good tools for the job, but usually it's down to the personal preference
of the implementing team (or individual) as to which is adopted.

You won't go wrong by installing Nagios and having a play around with it, as it's
easily the one I've come across the most in the wild, and its children/cousins rule the
scene at the moment.

There's more…
Here, we spun up a Nagios and Icinga2 installation quickly, to show what both are
capable of with a few simple commands. These configurations aren't production-
ready, and consideration should be given to things such as reusable patterns for
monitoring checks, as well as security (for things such as TLS on the GUI, and
utilizing secure communication methods between the master and the clients).

As with a lot of the software in this book, you should now have a good
understanding of how to get started, but should consider all your options when
implementing a solution for your own systems. If you have a relatively small pool to
monitor, and it's unlikely to grow, you might considers the Nagios file-based
monitoring setup suitable; if you have a larger, multi-region spanning estate, you
may find Icinga2 and its zones more to your liking.

Monitoring and Logging Chapter 7

[465]

We also didn't touch on emails and alerting, only mentioning the visual alerts that
Nagios and Icinga2 produce. There are multiple ways of plugging alerts into both
solutions (such as SMS alerts, or flashing bulbs in the corner of the room) but, out of
the box, they both handle email relatively well (assuming you've got a functional
email server to pass alerts through).

Lastly, this is just a getting started guide, and there are many more ways to set up
both Icinga2 and Nagios. They can be thought of more as frameworks than software
in a lot of ways, being a fairly blank canvas out of the box and still enabling you to
build a production system in as complex or simple a fashion as you wish.

I've come across Icinga2 installations where I've been immensely cocky and sure of
myself (more so than usual), only to start scratching my head 5 minutes in as I tried to
unpick the mess of hand-cranked configuration that had been left for me.

See also
The monitoring plugins we used here are interesting, because there was a bitter
argument some years ago when the old nagios-plugins.org domain was
repointed from an independently maintained server to one controlled by Nagios
Enterprises.

What followed this repointing was an argument and split, which resulted in
monitoring-plugins and nagios-plugins becoming seperate entities. For what
it's worth, nagios-plugins is an alias to monitoring-plugins on Debian systems
at the time of writing.

More information can be found in this blog post: https:/ /www. monitoring- plugins.
org/news/new-project- name. html.

The Debian bug report can be found here: https:/ /bugs. debian. org/ cgi-bin/
bugreport.cgi? bug= 736331.

And here's the Red Hat bug report, with added drama (don't get involved): https:/ /
bugzilla.redhat. com/ show_ bug. cgi? id=1054340.

https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://www.monitoring-plugins.org/news/new-project-name.html
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=736331
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340
https://bugzilla.redhat.com/show_bug.cgi?id=1054340

Monitoring and Logging Chapter 7

[466]

Centralizing logging with the Elastic
Stack
Earlier, we mentioned solutions to remote logging that involved forwarding our
logging solutions (syslog and journald) to other hosts, running the same or similar
software, so that the logs could be aggregated in one spot.

This is a nice solution, and works well in a small environment, but it's not got a lot of
bells and whistles, and if there's one thing we like in IT, it's shiny things we can show
to management and then never use.

Elastic Stack is one such product; in their own words:

Built on an open source foundation, the Elastic Stack lets you reliably and securely
take data from any source, in any format, and search, analyze, and visualize it in
real time.

Bold claims, but certainly with backing. Elastic Stack is now the de facto aggregate
logging solution for most businesses above a medium size, perhaps with a few
contenders at the enterprise level.

We're going to set up a small solution on centos1, and forward our logs from
centos2, debian1, and debian2 to it.

I've spent the day wrestling with X-Pack and Elastic Stack, so if
anything I write sounds sarcastic or mean spirited, it's probably
intentional.

Getting ready
In this section, we're going to use all our VMs, and it might be an idea to vagrant
destroy and vagrant up them all first.

Please note that, for this section, we're going to be installing the version 6 release of
certain Elastic Stack components. The configuration has changed historically, and
may do again by the time you read this book; if anything doesn't work as you expect,
refer to the Elastic documentation for your version to fill in the gaps.

For this section, we're going to run through the initial setup on centos1, then pop
onto the other VMs and configure their logging destination.

Monitoring and Logging Chapter 7

[467]

Mostly, I don't suggest this, but it might be a good idea to reset your VMs to a fresh
starting point for this bit:

$ vagrant destroy -f
$ vagrant up
$ vagrant ssh centos1 -- -L127.0.0.1:5601:127.0.0.1:5601

For convenience, and because this isn't a book on installing and configuring the
Elastic Stack, we're going to run through an installation of Elasticsearch, Kibana, and
Logstash in quite rapid fashion.

First, we need Java:

$ sudo yum install java-1.8.0-openjdk -y

How to do it…
On centos1, let's grab the Elastic repository:

$ cat <<HERE | sudo tee /etc/yum.repos.d/elasticsearch.repo
[elasticsearch-6.x]
name=Elasticsearch repository for 6.x packages
baseurl=https://artifacts.elastic.co/packages/6.x/yum
gpgcheck=1
gpgkey=https://artifacts.elastic.co/GPG-KEY-elasticsearch
enabled=1
autorefresh=1
type=rpm-md
HERE

Now we need to install the various components:

$ sudo yum install elasticsearch kibana logstash -y

And we need to start them, with a number of configuration tweaks:

$ sudo systemctl daemon-reload
$ sudo systemctl enable --now elasticsearch
$ sudo systemctl enable --now kibana

We're going to use the Elastic syslog example (from https:/ /www. elastic. co/
guide/en/logstash/ 6. 4/ config- examples. html#_ processing_ syslog_ messages) to
configure our Logstash setup:

$ cat <<HERE | sudo tee /etc/logstash/conf.d/logstash-syslog.conf
input {

https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages
https://www.elastic.co/guide/en/logstash/6.4/config-examples.html#_processing_syslog_messages

Monitoring and Logging Chapter 7

[468]

 tcp {
 port => 5000
 type => syslog
 }
 udp {
 port => 5000
 type => syslog
 }
}

filter {
 if [type] == "syslog" {
 grok {
 match => { "message" => "%{SYSLOGTIMESTAMP:syslog_timestamp}
%{SYSLOGHOST:syslog_hostname}
%{DATA:syslog_program}(?:\[%{POSINT:syslog_pid}\])?:
%{GREEDYDATA:syslog_message}" }
 add_field => ["received_at", "%{@timestamp}"]
 add_field => ["received_from", "%{host}"]
 }
 date {
 match => ["syslog_timestamp", "MMM d HH:mm:ss", "MMM dd
HH:mm:ss"]
 }
 }
}

output {
 elasticsearch { hosts => ["localhost:9200"] }
 stdout { codec => rubydebug }
}
HERE

This configuration sets an input method for data, in this case tcp
and udp ports 5000. It then sets a filter up for syslog content, and
finally sets up an output to Elasticsearch (the backend, if you will).

Now we can start Logstash:

$ sudo systemctl enable --now logstash

What you should see are various ports listening on your box (this may take some
time, as the various components start up):

$ ss -tunal '(src :5601 or src :9200 or src :5000)'
Netid State Recv-Q Send-Q
Local Address:Port

Monitoring and Logging Chapter 7

[469]

Peer Address:Port
udp UNCONN 0 0
*:5000
:
tcp LISTEN 0 128
127.0.0.1:5601
:
tcp LISTEN 0 128
:::5000
:::*
tcp LISTEN 0 128
::ffff:127.0.0.1:9200
:::*
tcp LISTEN 0 128
::1:9200
:::*

Now, we can configure our other machines to point to Logstash on centos1.

centos2
Use the following rsyslog change to start forwarding centos2 logs to Logstash of
the centos1 instance:

$ sudo sed -i 's/#*.* @@remote-host:514/*.* @192.168.33.10:5000/g'
/etc/rsyslog.conf
$ sudo systemctl restart rsyslog

I recommended rebuilding the VMs earlier, but if you haven't, the
preceding command may need tweaking if you followed the earlier
sections about remote syslog configuration. Open the file and
confirm the line looks as you expect.

You can test your configuration by using the following on centos2:

$ logger -p syslog.err "Digimon was better than Pokemon."

debian1 and debian2
For the Debian configuration, use the following lines:

$ echo "*.* @192.168.33.10:5000" | sudo tee -a /etc/rsyslog.conf
$ sudo systemctl restart rsyslog
$ logger -p syslog.err "Digimon was better than Pokemon."

Monitoring and Logging Chapter 7

[470]

Kibana
We have data in Logstash, but unless you've jumped the gun a bit, you won't be able
to see it yet.

If you've forwarded your connection to centos1, as indicated at the start of this
section, you should be able to navigate to http://localhost:5601 in the browser
of your choosing, and be greeted by the Kibana start page (assuming your
installations have gone okay):

Monitoring and Logging Chapter 7

[471]

If you've used Kibana before, you might expect to click Discover and see your logs,
but instead you get kicked over to Management:

Enter * as the wildcard entry for the index pattern, and then click Next step on the
right:

Monitoring and Logging Chapter 7

[472]

In the next section, choose @timestamp from the drop-down list provided and then
click Create index pattern on the right:

Once the index has been created, click Discover on the left-hand side again; this time,
you should be given a proper view:

Obviously, we want to filter down, just to make sure we've got everything.

Monitoring and Logging Chapter 7

[473]

Put the following filter query in the search box at the top:

(host:192.168.33.13 OR host:192.168.33.12 OR host:192.168.33.11) AND
message:"Pokemon*"

You should see something like this:

Kibana Discover Page

If there's no data visible in Kibana, it's possible that Logstash wasn't
fully started before you sent logs from the other hosts. Try sending
your logs again using the logger commands above.

How it works…
What we're effectively doing is setting up three things:

Elasticsearch: To act as the storage point for all the data we want to pipe
into our box

Monitoring and Logging Chapter 7

[474]

Kibana: To act as the frontend and dashboard to our data, meaning we can
query and peruse it at our leisure
Logstash: To create a listener that acts just like the syslog receiver we set
up earlier on in this chapter

When all three of these components are enabled, they create a way to centralize any
logs (or other data) that we might wish to throw at our solution.

It's basically a pretty way of making a syslog receiver, which also happens to be
capable of a lot more besides.

One thing we didn't do here was forward our logs from centos1 to its own
Logstash listener; this can be done, but does require a bit of tweaking to ensure you
don't accidentally create a storm of logs that grow exponentially as its own log
messages are fed back into itself. I may or may not have done this once.

There's more…
The Elastic Stack isn't just Elasticsearch, Kibana, and Logstash there are also more
tools and features that are completely modular and can be integrated into your
installation as you wish.

They include, but aren't limited to, the following:

Heartbeat – for uptime monitoring
Filebeat – for sending logs from remote machines
Machine learning capabilities

We also set up a very noddy solution here, and one I certainly wouldn't use in
production. It lacks security on the transported data, streaming plain logs to our
receiver, and there's also no login prompt to secure the Kibana dashboard, or TLS for
security in the browser.

X-Pack is one way to solve these problems, available as a trial in the default
installation, or through a license, which is going to cost you. It allows you to set up
security in your installation, both node communication and login security (with
things such as the Kibana user login).

The Elastic Stack is also quite a resource hungry suite of software, and you might
want to architect your solution properly before diving right in and installing it on the
medium-sized box in the cupboard.

Monitoring and Logging Chapter 7

[475]

Roundup – Monitoring and Logging
While it's no one's favorite subject (outside some very strange individuals I know, one
of whom is a technical editor for this book), logging and monitoring is a crucial part
of any installation, big or small.

You want to know when your boxes have died or, better yet, when they're about to
die, and you also want to be able to retroactively work out why they conked out in
the first place.

Monitoring and logging can be as complex or simple as you want it to be. Some
companies hire specific individuals to deal with these components in a silo, but, in
smaller organizations, it could very well be you who ends up managing and
configuring everything. If this is the case, then I currently recommend setting up
Icinga2 and some sort of Elastic Stack implementation, but your needs and budget
may vary.

One elephant in the room that we need to talk about is on-call, and the fact that you're
probably going to do it at some point in your career (unless you've got to the blessed
point where you can say "I've done my time" and leave it for lesser mortals to
undertake).

In general, monitoring is your friend when doing on-call, and while, in an ideal
world, you'd never get called out because of a problem, you can at least set up things
such as automated phone calls to wake you up, before something becomes a wider
issue that someone else notices outside of your company. You don't want to be in the
situation where your company website is down all weekend, and you lose thousands
of pounds of sales.

Over time, logs and long-term monitoring data can also help to highlight issues that
you didn't realize were recurring, because the time between events is weeks or even
months; this is a good reason for setting up historic alerts and pattern matching on
dashboards in Kibana.

If someone is having to clear logs on a box every 5 weeks, and it's a different person
in the team each time, you might not realize that there's a bigger underlying issue that
needs addressing, or you might just find you've lost hundreds of hours over an issue
that could be fixed with a simple systemd timer.

Monitoring and Logging Chapter 7

[476]

On the whole, I hate monitoring, and I'm loath to trawl through logs, but they're
necessary in our line of work, and there's a lot of clever people making very swish
tools that you can use to make your life easier.

It also doesn't hurt when you have to show off a dashboard to the CEO, and they're
distracted by the pretty widgets and whistles.

8
Permissions, SELinux, and

AppArmor
In this chapter, we're going to cover the following topics:

Linux file permissions
Modifying file permissions
Users and groups
AppArmor and modification
SELinux and modification
Checking SELinux is running, and the importance of keeping it running
Resetting SELinux permissions

Introduction
In the early days, way back in the mists of the 90s, Linux didn't have a great deal in
terms of access control…then came permissions and attributes. Permissions and
attributes are the elements of a file that dictate what access the system and users have
to that file (or folder), and what it's capable of doing to the file in terms of interaction.
At a basic level, you use ls to view information on permissions (more on this later),
but for now, see the following example:

$ ls -l .
total 0
-rw-rw-r--. 1 vagrant vagrant 0 Oct 28 10:42 examplefile

In this chapter, we will learn about permissions from the basic Linux offerings, to
SELinux and AppArmor. We'll also look at troubleshooting issues that might be
caused by SELinux or AppArmor. We will also learn the importance of not disabling
extended permission controls.

Permissions, SELinux, and AppArmor Chapter 8

[478]

In terms of security, locking down your system is obviously important, and at its
extreme, you could create a system where every program is ignorant of every other
program (effectively having each program siloed).

While security is never a bad thing, a balance is crucial. You don't want to start
stressing over the permissions of every file in an Ubuntu install, there's literally
thousands and you'd go mad before you finished... unless it's literally your sole job to
do this, or you want an especially dull hobby, in which case go nuts!

Technical requirements
Throughout this chapter, we're going to use the following Vagrantfile; note that we
only use two machines: CentOS to highlight SELinux features and abilities, and an
Ubuntu installation for AppArmor:

-*- mode: ruby -*-
vi: set ft=ruby :

$provisionScript = <<-SCRIPT
sed -i 's/console=tty0 console=ttyS0,115200n8//g' /boot/grub2/grub.cfg
systemctl restart sshd
SCRIPT

Vagrant.configure("2") do |config|

 config.vm.define "centos7" do |centos7|
 centos7.vm.box = "centos/7"
 centos7.vm.box_version = "1804.02"
 centos7.vm.provision "shell",
 inline: $provisionScript
 end

 config.vm.define "ubuntu1804" do |ubuntu1804|
 ubuntu1804.vm.box = "ubuntu/bionic64"
 ubuntu1804.vm.box_version = "20180927.0.0"
 end

end

At the time of writing, the provisionScript used here is to fix a
slight problem with one of the sections in this chapter. If you
experience issues surrounding this script, feel free to remove it from
your configuration (there is a note later on about this, in the relevant
section, where we talk about .autorelabel).

Permissions, SELinux, and AppArmor Chapter 8

[479]

Linux file permissions
To begin, we're going to go right back to basics by taking a look at the default Linux
file permissions.

In this section, we're going to use a file and a directory on our CentOS box, to
highlight some important and basic knowledge that we can use going forward.

File permissions on Unix and Unix-like systems are different from
those found on Windows and other OS installations. If you connect
a hard drive formatted with a Unix file-system (such as XFS) to a
Windows box, it is unlikely it will be able to read the permissions on
the files accurately (unless you've got software to do it for you).
These lines have been blurred a bit in recent years, thanks to things
like the Windows Subsystem for Linux included in Windows 10, but
the principle is basically true.

Getting ready
Jump onto your CentOS box. For the sake of this section, everything we discuss is
universal across Linux distributions:

$ vagrant ssh centos7

Create a file, a directory, and a file in that directory as follows:

$ touch examplefile
$ mkdir exampledir
$ touch exampledir/examplefile-in-exampledir

How to do it…
With your files from the Getting ready section in place, run an ls -l on what we've
created:

$ ls -l
total 0
drwxrwxr-x. 2 vagrant vagrant 39 Oct 28 11:01 exampledir
-rw-rw-r--. 1 vagrant vagrant 0 Oct 28 11:00 examplefile

Permissions, SELinux, and AppArmor Chapter 8

[480]

-l, used here, means using a long-listing format, and is used not just
to print the files and folders found, but to give us a more complete
picture.

How it works…
We'll need to break this down, because at first glance, it can appear quite confusing:

exampledir
Starting with exampledir, let's look at the permissions and ownership of this
directory.

drwxrwxr-x. 2 vagrant vagrant

We have an array of letters, a number 2, and then two names, vagrant and vagrant.

drwxrwxr-x.

The d at the beginning is an easy one; it indicates that the listed item is actually a
directory.

drwxrwxr-x.

Then, we have three elements that appear similar, and the first of these are the user
permissions. Here, the permissions are read, write, and execute.

This means that the user will be able to touch (create) files in the directory, mv
(rename) them, ls (list) them, cat/less (read) them, and even rm (delete) them
should they wish.

drwxrwxr-x.

Next, we have the group permissions, here again as read, write, and execute.

drwxrwxr-x.

Thirdly, we have the permissions of everyone, and in this case anyone can read, or
change into the directory.

They won't be able to create, rename, or delete existing files, because they don't have
the write (w) permission.

Permissions, SELinux, and AppArmor Chapter 8

[481]

This is something that even experienced sysadmins forget. If you're
in a group that can access the contents of a file within a directory,
but the directory's own permissions don't allow this, you're not
going to be able to complete the action. I've heard some quite
notable groans of realization related to this little tidbit.

We also have the . at the end of the block. Right now, we don't have to worry about
this too much, but it indicates that the directory has a security context applied to it:

drwxrwxr-x. 2

The digit, in this case 2, refers to the number of locations pointing to the inode (the
place on the disk where the data is actually stored). The reason why it's 2 in this case
is because two entries are created every time a directory is made, viewable with ls -
la:

$ ls -la exampledir/
total 0
drwxrwxr-x. 2 vagrant vagrant 39 Oct 28 11:18 .
drwx------. 4 vagrant vagrant 132 Oct 28 11:01 ..
-rw-rw-r--. 1 vagrant vagrant 0 Oct 28 11:18 examplefile-in-exampledir

Here, we can see two special entries, . and .., which refer to this directory, and the
parent directory, respectively.

There are therefore two links to this directory; the first is from the parent
(/home/vagrant/exampledir) and the second is from within the directory itself
(/home/vagrant/exampledir/.). Confused yet?

Now for a much easier bit, the vagrant vagrant entries:

vagrant vagrant

These are simply the user, then the group, whose permissions are reflected in the
drwxrwxr-x. block. There is no entry for everyone as that would be pointless.

examplefile
Moving on to examplefile, we have the following:.

-rw-rw-r--. 1 vagrant vagrant 0 Oct 28 11:00 examplefile

Here, we can see much the same as exampledir, with a few changes.

Permissions, SELinux, and AppArmor Chapter 8

[482]

The d has been replaced by a—character, meaning we're dealing with an actual file.

-rw-rw-r--.

The permissions for the user and group are read only and write, meaning the file can
be read and modified, but it can't yet be executed by the user and group.

-rw-rw-r--.

The permissions for everyone else are only read, meaning the file can have cat/less
applied, but it can't be modified or executed.

-rw-rw-r--. 1

And finally, we can see a 1 for the number of links, which makes sense as the
underlying inode isn't referenced from elsewhere.

There's more…
There are a few more things to mention that are useful to know, even if we don't
touch on them here.

Root access to directories and files
The god/super/almighty user (root) has pretty much carte blanche access to
everything on the system, meaning that a common shortcut you might see people
enacting is the following, should they get frustrated at their inability to read a file:

$ sudo cat examplefile

This would work, because root has that power, but it's a bad habit to get into using
sudo for everything. Be selective with it, and think about what you're doing before
you arbitrarily stick sudo in front of things because you're frustrated. (Mostly, this is
a message to myself, because I'm just as guilty of this as anyone.)

Other execute characters
Instead of the humble x in the execute column, it's possible to also see other
characters, the most common of which are s and t.

Permissions, SELinux, and AppArmor Chapter 8

[483]

Take a look at these permissions for the wall program:

$ ls -l /usr/bin/wall
-r-xr-sr-x. 1 root tty 15344 Jun 9 2014 /usr/bin/wall

Note how the group has s set in place of an x.

This is known as the setuid and setgid bit, depending on if it's in the user or group
triad, and effectively it changes the executing user's permissions to those of the owner
or group, again depending on the triad. In this case, those users executing the wall
command get the permissions of the tty group (allowing wall to output to all ttys).

Here, I'm using wall as the vagrant user:

$ wall There is no Hitchhikers Movie!
$
Broadcast message from vagrant@localhost.localdomain (pts/0) (Sun Oct
28 11:52:12 2018):

There is no Hitchhikers Movie!

The t entry, or sticky bit, is again quite rare, but it is set most commonly on the /tmp
directory:

$ ls -la /tmp
total 0
drwxrwxrwt. 8 root root 172 Oct 28 11:54 .
<SNIP>

Remember that the . character refers to this directory.

It sets it so that only the owner of a file in /tmp can rename or remove that file,
meaning if I create a file in /tmp as the vagrant user, another person can't come
along and remove my file (except root). Visually, it looks like the following:

$ rm /tmp/test2
rm: remove write-protected regular empty file '/tmp/test2'? y
rm: cannot remove '/tmp/test2': Operation not permitted

There's more than these two other execute characters, but these are
the most common.

Permissions, SELinux, and AppArmor Chapter 8

[484]

Modifying file permissions
Creating files is all well and good, but eventually we'll come across a use case where
the default permissions just aren't acceptable.

A good example of this is SSH, which will downright refuse to function unless some
particularly rigid file permissions are in place on your public and private keys.

So, here come "The Three Musketeers", in the form of chown, chmod, and chattr.

If you want to be really annoying, and lose friends easily, insist on calling these by
their full titles: change ownership, change mode, and change attributes.

Getting ready
In this section, we are going to again use our CentOS VM from our Vagrantfile, as
everything we're doing is universally applicable.

SSH to your CentOS VM:

$ vagrant ssh centos7

Move into the /home directory (up one level) and create a file, a directory, and a file
in that directory:

$ cd /home
$ sudo touch permissionfile
$ sudo mkdir permissiondir
$ sudo touch permissiondir/permissionfile-in-permissiondir

We're also going to create another dummy user that we can use to explain what we're
doing in this section:

$ sudo adduser packt -s /bin/bash -p
'$1$2QzaOp2Q$Ke2yWZ1N2h4rk8r8P95Sv/'

Note the password we've set here is 'correcthorsebatterystaple'.

How to do it…
We'll run through the three commands (chown, chmod, and chattr) in order.

Permissions, SELinux, and AppArmor Chapter 8

[485]

chown
Starting at the easiest bit, we're going to look at the ownership of the files in question.

Begin by listing what we have already:

$ ls -lha
total 0
drwxr-xr-x. 4 root root 64 Oct 28 12:37 .
dr-xr-xr-x. 18 root root 239 Oct 28 12:35 ..
drwxr-xr-x. 2 root root 45 Oct 28 12:37 permissiondir
-rw-r--r--. 1 root root 0 Oct 28 12:37 permissionfile
drwx------. 3 vagrant vagrant 74 May 12 18:54 vagrant

Say we wanted to make it so our vagrant user could write to the permissionfile,
instead of its current ability to only read it. Note the following for this:

$ echo "RFCs are great if boring." > permissionfile
-bash: permissionfile: Permission denied

We would use chown to make this change, by passing the user and group we want to
change the file to:

$ sudo chown vagrant:root permissionfile

Now, check the permissions:

$ ls -l permissionfile
-rw-r--r--. 1 vagrant root 0 Oct 28 12:37 permissionfile

This means that we, as the vagrant user, can now write to the file:

$ echo "RFCs are great if boring." > permissionfile
$ cat permissionfile
RFCs are great if boring.

But, other users (that aren't root) can't write to the file:

$ su - packt -c "echo IMPOSSIBLE > /home/permissionfile"
Password:
-bash: /home/permissionfile: Permission denied

Here, we're using su to execute a command as the Packt user, and
we're showing that though we tried to echo IMPOSSIBLE to the file,
it failed. We used the full path for permissionfile to make sure
we didn't create the file in the Packt user's home directory.

Permissions, SELinux, and AppArmor Chapter 8

[486]

chmod
We're being a bit unfair on the old Packt user here, so let's give everyone the ability to
write to the file, rather than just vagrant:

$ sudo chmod 646 permissionfile
$ ls -l permissionfile
-rw-r--rw-. 1 vagrant root 26 Oct 28 12:48 permissionfile

Now, we should be able to write to the file as any user, instead of just vagrant:

$ su - packt -c "echo POSSIBLE > /home/permissionfile"
Password:
$ cat permissionfile
POSSIBLE

chattr
I'm starting to think we've been much too lenient here, so let's completely lock down
the file so no one (even almighty root) can mess with it:

$ sudo chattr +i permissionfile

We've made the file immutable!

$ echo "RFCs are great if boring." > permissionfile
-bash: permissionfile: Permission denied

We can see this using the lsattr command:

$ lsattr permissionfile
----i----------- permissionfile

And, not even root is able to modify the file:

$ sudo echo "RFCs are great if boring." > permissionfile
-bash: permissionfile: Permission denied

There are various attributes that can be applied to a file with
chattr, but I'd put money on the immutable option being the most
commonly used.

To remove the attribute, use chattr again:

$ sudo chattr -i permissionfile

Permissions, SELinux, and AppArmor Chapter 8

[487]

How it works…
Running through each of the commands again, let's take a brief look at what we did.

chown
First, we changed the ownership of our file:

$ sudo chown vagrant:root permissionfile

Here, we're using chown in its most basic way, dictating which user and group the
file should belong to. The values are colon-separated, though if you're backward like
me, you occasionally use the deprecated and incorrect full stop (.)instead.

You can just specify a user if you want to leave the group alone:

$ sudo chown vagrant permissionfile

chmod
Next, we changed our file so that anyone could write to it:

$ sudo chmod 646 permissionfile

Here, we passed certain octal values to the permissionfile in order to change the
rights for the user, group, and everyone else in turn.

I won't go into great detail on this, but effectively, the first digit indicates what values
the user's triad should be, then the group's triad, then everyone else.

Our user gets the value of 6 that translates to read/write; our group can only read 4
and everyone else can read/write 6.

This is because each of the values has a numeric equivalent, as follows:

x = 1
w = 2
r = 4

So, the 6 value is 4+2, or r/w, and the 4 value is only r.

Permissions, SELinux, and AppArmor Chapter 8

[488]

You could set 777, which would mean r/w/x for everything and
everyone, and it's frequently done by people who don't understand
file permissions properly. It's not a good practice, and should be
dissuaded outside of troubleshooting. If I find a box where someone
has run chmod 777 on a file in production, that person is getting
their access revoked and a quick primer on permissions plonked
into their calendar.

chattr
Lastly, we changed one of the file's attributes, specifically making the file immutable
to even root, before we removed the flag again.

There are many more flags than just immutable; all of them listed in the chattr main
page, and some of them can be useful in niche situations:

a: A file can only be appended to (useful for logs)
c: To compress and uncompress transparently
s: Results in the file's blocks are zeroed and written back to disk on file
deletion

Not all attributes are honored by all file systems; check if your
filesystem supports them too (hint: ext4 doesn't support quite a
few).

There's more…
There are one or two more things to note, before we wrap this section.

Avoiding octal notation (if you hate it) in chmod
You don't absolutely have to use the octal format in the chmod world; it does give you
other options that are easier to read:

$ sudo chmod uo=rw,g=r permissionfile

Permissions, SELinux, and AppArmor Chapter 8

[489]

The preceding command would give the user and others the read/write rights, and
the group the read rights.

Or, you might add a value to the permissions:

$ sudo chmod g+x permissionfile

This would grant the group the additional ability to execute the file:

$ ls -l permissionfile
-rw-r-xrw-. 1 vagrant root 26 Oct 28 13:03 permissionfile

Hierarchical permissions
We created a directory, and a file in that directory, so let's take a quick look at
understanding directory permissions.

To start, our permissiondir looks like this:

$ ls -la permissiondir
total 0
drwxr-xr-x. 2 root root 45 Oct 28 12:37 .
drwxr-xr-x. 5 root root 77 Oct 28 12:37 ..
-rw-r--r--. 1 root root 0 Oct 28 12:37 permissionfile-in-permissiondir

We can't currently rename this file, despite us wanting to, as it's too long:

$ mv permissiondir/permissionfile-in-permissiondir
permissiondir/permissionfile2
mv: cannot move 'permissiondir/permissionfile-in-permissiondir' to
'permissiondir/permissionfile2': Permission denied

So, let's set the write permission on this file for everyone:

$ sudo chmod 646 permissiondir/permissionfile-in-permissiondir

And now, let's try again:

$ mv permissiondir/permissionfile-in-permissiondir
permissiondir/permissionfile2
mv: cannot move 'permissiondir/permissionfile-in-permissiondir' to
'permissiondir/permissionfile2': Permission denied

Huh.

Permissions, SELinux, and AppArmor Chapter 8

[490]

Okay, so the reason for this is because it's actually the directory permissions stopping
us from moving the file, not the file permissions. We have to modify the directory
that the file is contained in, as the permissions won't let us rename (mv) a file as they
are:

$ sudo chmod 667 permissiondir/

And we should be able to move the file, because our permissions are now extremely
liberal:

$ mv permissiondir/permissionfile-in-permissiondir
permissiondir/permissionfile2

Success!

See also
One thing we didn't cover in this section were access control lists (ACLs) that can be
used to further extend a file's permissions.

Start by putting a small command in our permissionfile to make it execute
something:

$ echo "printf 'Fire indeed hot'" > permissionfile

Say we want to view our entire access control list for a file; we would use getfacl:

$ getfacl permissionfile
file: permissionfile
owner: vagrant
group: root
user::rw-
group::r-x
other::rw-

Here, we can see the owner is vagrant, and the user has rw.

But, what if we wanted Packt to be able to execute the file, without impacting the
other permissions? At the moment, Packt can't because it's not in the root group.

One potential solution is setfacl:

$ setfacl -m u:packt:rwx permissionfile

Permissions, SELinux, and AppArmor Chapter 8

[491]

We can now see a little + sign with ls, showing us that the file has extended access
controls:

$ ls -l permissionfile
-rw-r-xrw-+ 1 vagrant root 26 Oct 28 13:03 permissionfile

And, we can see those using getfacl again:

$ getfacl permissionfile
file: permissionfile
owner: vagrant
group: root
user::rw-
user:packt:rwx
group::r-x
mask::rwx
other::rw-

This means that our vagrant user can't execute the file:

$./permissionfile
-bash: ./permissionfile: Permission denied

But, our Packt user can:

$ su - packt -c "/home/permissionfile"
Password:
Fire indeed hot

Technical requirements
For this section, we're going to jump onto both our CentOS and Ubuntu VMs, to
highlight some important differences in approach to users and groups.

Users and groups
We've covered users and groups in terms of file permissions, but it's a good idea to
run over what we know about users and groups in brief.

In this section, we're going to delve into a short primer on users and groups,
determining which user a process is running as, how it changes to that user, and
finding which users exist on your system by using /etc/passwd and similar
commands.

Permissions, SELinux, and AppArmor Chapter 8

[492]

Getting ready
Use Vagrant to connect to your Ubuntu and CentOS VMs, in different windows or
one after the other:

$ vagrant ssh centos7
$ vagrant ssh ubuntu1804

How to do it…
Over a few short sections, we're going to look at different elements of users and
groups.

whoami
If you ever need to know who you are, ask yourself through deep reflection and inner
contemplation.

If you need to know what users are logged into a server as (or running a command
as), it's a lot easier:

$ whoami
vagrant
$ sudo whoami
root

Users on a system
To show what users are in place on a system, check out /etc/passwd.

On CentOS, it'll look something like this:

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin

Permissions, SELinux, and AppArmor Chapter 8

[493]

games:x:12:100:games:/usr/games:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
systemd-network:x:192:192:systemd Network Management:/:/sbin/nologin
dbus:x:81:81:System message bus:/:/sbin/nologin
polkitd:x:999:998:User for polkitd:/:/sbin/nologin
rpc:x:32:32:Rpcbind Daemon:/var/lib/rpcbind:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
postfix:x:89:89::/var/spool/postfix:/sbin/nologin
chrony:x:998:996::/var/lib/chrony:/sbin/nologin
vagrant:x:1000:1000:vagrant:/home/vagrant:/bin/bash
packt:x:1001:1001::/home/packt:/bin/bash

And, on Ubuntu, it'll look something like this:

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System
(admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
systemd-network:x:100:102:systemd Network
Management,,,:/run/systemd/netif:/usr/sbin/nologin
systemd-resolve:x:101:103:systemd
Resolver,,,:/run/systemd/resolve:/usr/sbin/nologin
syslog:x:102:106::/home/syslog:/usr/sbin/nologin
messagebus:x:103:107::/nonexistent:/usr/sbin/nologin
_apt:x:104:65534::/nonexistent:/usr/sbin/nologin
lxd:x:105:65534::/var/lib/lxd/:/bin/false
uuidd:x:106:110::/run/uuidd:/usr/sbin/nologin
dnsmasq:x:107:65534:dnsmasq,,,:/var/lib/misc:/usr/sbin/nologin
landscape:x:108:112::/var/lib/landscape:/usr/sbin/nologin

Permissions, SELinux, and AppArmor Chapter 8

[494]

sshd:x:109:65534::/run/sshd:/usr/sbin/nologin
pollinate:x:110:1::/var/cache/pollinate:/bin/false
vagrant:x:1000:1000:,,,:/home/vagrant:/bin/bash
ubuntu:x:1001:1001:Ubuntu:/home/ubuntu:/bin/bash

Most of these users you will not have created yourself; they are system users for the
most part, or bundled with software you've installed.

Groups on a system
Groups are discovered in a similar fashion to users, and again, you won't have
created most of them.

For CentOS, note the following:

$ cat /etc/group
root:x:0:
bin:x:1:
daemon:x:2:
sys:x:3:
adm:x:4:
tty:x:5:
disk:x:6:
lp:x:7:
mem:x:8:
kmem:x:9:
wheel:x:10:
<SNIP>
postfix:x:89:
chrony:x:996:
screen:x:84:
vagrant:x:1000:vagrant
packt:x:1001:

And for Ubuntu, note the following:

$ cat /etc/group
root:x:0:
daemon:x:1:
bin:x:2:
sys:x:3:
adm:x:4:syslog,ubuntu
tty:x:5:
<SNIP>
landscape:x:112:
admin:x:113:
netdev:x:114:ubuntu

Permissions, SELinux, and AppArmor Chapter 8

[495]

vboxsf:x:115:
vagrant:x:1000:
ubuntu:x:1001:

I've emboldened the first big difference between this Ubuntu and
CentOS system, namely the wheel and admin groups. wheel
doesn't exist on our Ubuntu system, because it's been replaced by
the admin group; this means that the visudo file on Ubuntu
references the members of the admin group instead of wheel.
Something to remember.

Daemons using users
On our Ubuntu system, the syslogd daemon is run using the syslog user.

We can confirm this by locating our rsyslogd process and checking the user in the
leftmost column:

$ pidof rsyslogd
917
$ ps -up 917
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
syslog 917 0.0 0.4 263036 4416 ? Ssl 10:41 0:00 /usr/sbin/rsyslogd -n

And we can see why this user is found by checking out the /etc/rsyslog.conf
configuration file:

$ grep PrivDrop /etc/rsyslog.conf
$PrivDropToUser syslog
$PrivDropToGroup syslog

If you wanted to quickly exclude processes running as root, you might use a quick
one-liner such as the following (though it's not perfect by any means).

This is on our CentOS VM:

$ ps aux | grep -v root
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
dbus 558 0.0 0.5 66428 2568 ? Ssl 12:34 0:00 /usr/bin/dbus-daemon --
system --address=systemd: --nofork --nopidfile --systemd-activation
rpc 559 0.0 0.2 69220 1060 ? Ss 12:34 0:00 /sbin/rpcbind -w
polkitd 568 0.0 1.6 538436 8020 ? Ssl 12:34 0:00
/usr/lib/polkit-1/polkitd --no-debug
chrony 581 0.0 0.3 117752 1828 ? S 12:34 0:00 /usr/sbin/chronyd
postfix 1088 0.0 0.8 89792 4080 ? S 12:35 0:00 qmgr -l -t unix -u

Permissions, SELinux, and AppArmor Chapter 8

[496]

vagrant 3369 0.0 0.5 154904 2688 ? S 14:11 0:00 sshd: vagrant@pts/0
vagrant 3370 0.0 0.5 15776 2660 pts/0 Ss 14:11 0:00 -bash
postfix 3399 0.0 0.8 89724 4052 ? S 14:15 0:00 pickup -l -t unix -u
vagrant 3404 0.0 0.3 55140 1872 pts/0 R+ 14:32 0:00 ps aux

How it works…
Generally, different users and groups will have specific uses, deliberately segregated
so that they're not too powerful in their own right. If you've got a multi-tenanted
system (which is very rare these days) with more than one person logging on to do
their day-to-day work, you want to make sure that person can't make life harder for
everyone else, by doing something silly like overwriting the logs on the box.

You might solve this issue by putting all human users in one group, and while
allowing them their own users with limited access, you could then give the group
access to things such as shared directories and applications they might need to use.

Processes have the option to drop their privilege, though not all will do so out of the
box, and if you want to go this extra mile, it's usually a lot of work to set up. Here, we
saw syslog starting up (as root) then immediately lowering its own privilege level
to that of the syslog user and group.

The reason rsyslogd has to start as root is because it binds to a port lower than
1024, which are the restricted ports only accessible to root programs.

Some distributions and operating systems take this approach a lot more strictly than
others, but as with everything security-related, it's like another layer to the onion of
being secure.

There's more…
Take a look at this user, on your Ubuntu VM:

$ grep apt /etc/passwd
_apt:x:104:65534::/nonexistent:/usr/sbin/nologin

It's got an underscore, the only one to have one in the entirety of the /etc/passwd
file; why might that be?

One potential reason is that it's a system account and the application maintainer or
developer decided to denote this with an underscore character, as is the case with
other operating systems.

Permissions, SELinux, and AppArmor Chapter 8

[497]

AppArmor and modification
In this section, we're going to use AppArmor on Ubuntu and determine what effect it
has on our system.

AppArmor is installed by default on Ubuntu. It was originally developed by SUSE,
but Canonical seem to have stuck their flag firmly in the AppArmor planet,
introducing it in Ubuntu 7.04 and turning it on by default in 7.10 (2007).

Like SELinux, AppArmor is a way of introducing mandatory access controls (MAC)
into Linux; it has been included in the kernel since 2.6.36.

Getting ready
In this section, we're going to be using our Ubuntu VM.

SSH to your Ubuntu VM:

$ vagrant ssh ubuntu1804

How to do it…
First thing's first, let's make sure that apparmor is running, using our old pal,
systemctl:

$ systemctl status apparmor
● apparmor.service - AppArmor initialization
 Loaded: loaded (/lib/systemd/system/apparmor.service; enabled;
vendor preset: enabled)
 Active: active (exited) since Sun 2018-10-28 10:41:23 UTC; 4h 21min
ago
 Docs: man:apparmor(7)
 http://wiki.apparmor.net/
 Process: 426 ExecStart=/etc/init.d/apparmor start (code=exited,
status=0/SUCCESS)
 Main PID: 426 (code=exited, status=0/SUCCESS)

Warning: Journal has been rotated since unit was started. Log output
is incomplete or unavailable.

Permissions, SELinux, and AppArmor Chapter 8

[498]

To see what profiles are loaded, and what mode they're running in, use
apparmor_status:

$ sudo apparmor_status
apparmor module is loaded.
15 profiles are loaded.
15 profiles are in enforce mode.
 /sbin/dhclient
 /usr/bin/lxc-start
 /usr/bin/man
 /usr/lib/NetworkManager/nm-dhcp-client.action
 /usr/lib/NetworkManager/nm-dhcp-helper
 /usr/lib/connman/scripts/dhclient-script
 /usr/lib/snapd/snap-confine
 /usr/lib/snapd/snap-confine//mount-namespace-capture-helper
 /usr/sbin/tcpdump
 lxc-container-default
 lxc-container-default-cgns
 lxc-container-default-with-mounting
 lxc-container-default-with-nesting
 man_filter
 man_groff
0 profiles are in complain mode.
0 processes have profiles defined.
0 processes are in enforce mode.
0 processes are in complain mode.
0 processes are unconfined but have a profile defined.

To understand how AppArmor can limit applications, let's make a modification to the
tcpdump profile and restart AppArmor:

$ sudo sed -i 's/capability net_raw,/#capability net_raw,/g'
/etc/apparmor.d/usr.sbin.tcpdump
$ sudo systemctl restart apparmor

What we did here was remove the ability of tcpdump to capture, making it pretty
useless:

$ sudo tcpdump -i enp0s3
tcpdump: enp0s3: You don't have permission to capture on that device
(socket: Operation not permitted)

If we look at the kernel log, we can see the denial from us trying to run tcpdump:

$ sudo journalctl -k --since 15:34 --no-pager
-- Logs begin at Sun 2018-10-28 10:41:21 UTC, end at Sun 2018-10-28
15:39:29 UTC. --
Oct 28 15:34:34 ubuntu-bionic kernel: kauditd_printk_skb: 6 callbacks

Permissions, SELinux, and AppArmor Chapter 8

[499]

suppressed
Oct 28 15:34:34 ubuntu-bionic kernel: audit: type=1400
audit(1540740874.554:97): apparmor="DENIED" operation="capable"
profile="/usr/sbin/tcpdump" pid=3365 comm="tcpdump" capability=13
capname="net_raw"

Note the capibility name, net_raw, that we removed with sed earlier.

How it works…
Profiles for AppArmor are written and loaded into the kernel using the
apparmor_parser program. Mostly, these will be profiles located in
/etc/apparmor.d/; though if a program doesn't have a profile, AppArmor doesn't
stop it from running.

When the actual systemd unit is started, an init.d script is run (located at
/etc/init.d/apparmor), which does the actual calling of apparmor_parser.

When profiles are run in enforcement mode, as the preceding fifteen are, they must
adhere to the policy definition, or they will not be able to act outside the policy's
requirements, and violations are logged. If profiles are in complain mode, the policy
is not enforced, but violations are logged for later perusal.

Profiles are generally named by replacing the executable's slash location with dots:

/sbin/dhclient -> sbin.dhclient
/usr/sbin/tcpdump -> usr.sbin.tcpdump

If we take a look at the top few lines of the tcpdump profile, we can start to see how
profiles are built up:

$ cat /etc/apparmor.d/usr.sbin.tcpdump
vim:syntax=apparmor
#include <tunables/global>

/usr/sbin/tcpdump {
 #include <abstractions/base>
 #include <abstractions/nameservice>
 #include <abstractions/user-tmp>

 #capability net_raw,
 capability setuid,
 capability setgid,
 capability dac_override,
 network raw,

Permissions, SELinux, and AppArmor Chapter 8

[500]

 network packet,

 # for -D
 @{PROC}/bus/usb/ r,
 @{PROC}/bus/usb/** r,
<SNIP>

We can see first that the name of the binary is specified, then a select amount of
includes (which are rules that could be used across other programs too).

Next, we have capability, including the one we commented out. There are a list of
capabilities, viewable in the man (7) capabilities page where they're listed with
names like CAP_NET_RAW and CAP_SETGID, but here they're lowercase.

When we removed this capability, tcpdump lost the capability to use RAW and
PACKET sockets, as well as to bind to any address for transparent proxying.

Further down, we can see how the author of the file has used comments, and flags for
tcpdump, to describe what they're allowing with what permission. In the following
example, they're allowing the use of gzip and bzip2 specifically, so that the -z
option works:

 # for -z
 /{usr/,}bin/gzip ixr,
 /{usr/,}bin/bzip2 ixr,

The syntax can be compared and understood using the surprisingly
detailed apparmor.d man page.

There's more…
While AppArmor is nice and it definitely does what it advertises, there are some
caveats:

It relies on developers to write and supply profiles (or others who
contribute the time)
Profiles have to be bulletproof before they can be included in the default
installation, which could be the reason there are so few even after a decade
It's fairly unknown and most people don't even bother with it outside of
the defaults

Permissions, SELinux, and AppArmor Chapter 8

[501]

It also goes off path, rather than inode, meaning you can do things such as create a
hardlink to bypass restrictions:

$ sudo ln /usr/sbin/tcpdump /usr/sbin/tcpdump-clone

Admittedly, if you're on a box and have sudo, it's pretty much game over at that
point anyway:

$ sudo tcpdump -i enp0s3
tcpdump: enp0s3: You don't have permission to capture on that device
(socket: Operation not permitted)
$ sudo tcpdump-clone -i enp0s3
tcpdump-clone: verbose output suppressed, use -v or -vv for full
protocol decode
listening on enp0s3, link-type EN10MB (Ethernet), capture size 262144
bytes
15:52:52.803301 IP ubuntu-bionic.ssh > _gateway.37936: Flags [P.], seq
410213354:410213518, ack 1991801602, win 36720, length 164
<SNIP>

You might ask why you need something like this on your system if it's so easy to
tweak and bypass, but the answer is relatively simple.

If you have a web server on the public internet, there's a good chance it might get
attacked at some point, and when that happens, you might be completely up to date
and get hit by a zero-day exploit (however unlikely). Your web server could then be
compromised, and the individual attacking you might then use it to try and set up a
different process, running on a different port, or even use it to start reading files that
it shouldn't.

Mandatory access controls go a long way to ensuring this doesn't happen, and life
gets just that bit more frustrating for the person on the other end of the attack. They
might have your web server, but that's all they've got.

SELinux and modification
Like AppArmor, Security-Enhanced Linux (SELinux) is a way to introduce
mandatory access controls into Linux, only it has a couple of key differences:

It's more widely used and loathed than AppArmor
It's primarily used on Red Hat-based distributions

If you're in the enterprise world, or thinking of going there, SELinux is a great tool to
add to your tool belt.

Permissions, SELinux, and AppArmor Chapter 8

[502]

You might recall that we've already touched on SELinux previously, making a couple
of small changes to allow things like SSH to run on different ports; here, we're
exploring it further.

Getting ready
For this section, we're going to use our CentOS VM.

SSH to your CentOS VM, forwarding 8080 as you do:

$ vagrant ssh centos7 -- -L 127.0.0.1:5858:127.0.0.1:5858

Make sure NGINX and some utilities are installed, and that NGINX is started for this
example:

$ sudo yum install epel-release -y
$ sudo yum install policycoreutils-python setroubleshoot -y
$ sudo yum install nginx -y
$ sudo systemctl enable --now nginx

How to do it…
We're going to change the port on which NGINX listens by default, to show how
much of a pain SELinux can be.

First, check that NGINX is running on port 80 (the default) by using curl and
printing the return code:

$ curl -I localhost:80
HTTP/1.1 200 OK
Server: nginx/1.12.2
Date: Mon, 29 Oct 2018 17:36:35 GMT
Content-Type: text/html
Content-Length: 3700
Last-Modified: Tue, 06 Mar 2018 09:26:21 GMT
Connection: keep-alive
ETag: "5a9e5ebd-e74"
Accept-Ranges: bytes

Using -I here means that we don't pull in a screen full of code, and
instead we just get the pertinent information, like the return code
(200 being OK).

Permissions, SELinux, and AppArmor Chapter 8

[503]

Cool, so that's all working normally, and SELinux isn't getting in the way.

What if we want NGINX to listen on a different port? Say the one we forwarded?
Let's try it:

$ sudo sed -i 's/80 default_server;/5858 default_server;/g'
/etc/nginx/nginx.conf
$ sudo systemctl restart nginx
Job for nginx.service failed because the control process exited with
error code. See "systemctl status nginx.service" and "journalctl -xe"
for details.

Running our curl command again with the new port should report an error
(obviously, as the service failed to start):

$ curl -I localhost:5858
curl: (7) Failed connect to localhost:5858; Connection refused

Odd…but not really.

This is because NGINX is only allowed to run on certain ports, 80 being one, 8080
being another, and so on. 5858 is obscure and weird; why would a web server want
to run on it?

Because of this, we have to update SELinux to allow NGINX to run on the new port:

$ sudo semanage port --add --type http_port_t --proto tcp 5858
ValueError: Port tcp/5858 already defined

Oh damn, it looks like 5858 is already defined for something else (in this case Node.js
– curse you Node.js!).

Thankfully, this isn't the end of the world, we just have to modify the port rather than
add one:

$ sudo semanage port --modify --type http_port_t --proto tcp 5858

Now, we can restart NGINX, and it should work fine:

$ sudo systemctl restart nginx
$ curl -I localhost:5858
HTTP/1.1 200 OK
Server: nginx/1.12.2
Date: Mon, 29 Oct 2018 18:17:37 GMT
Content-Type: text/html
Content-Length: 3700
Last-Modified: Tue, 06 Mar 2018 09:26:21 GMT

Permissions, SELinux, and AppArmor Chapter 8

[504]

Connection: keep-alive
ETag: "5a9e5ebd-e74"
Accept-Ranges: bytes

You can also visit it in your browser:

Yep, it says Fedora, and yes, it's wrong.

So, that's the first step, but now we've decided that instead of the default NGINX
welcome page, we want it to show our file in /srv/webserver/arbitrary-
location/.

First, let's create this directory structure and put a simple file in there to serve:

$ sudo mkdir -p /srv/webserver/arbitrary-location/
$ echo "HELLO WORLD" | sudo tee /srv/webserver/arbitrary-
location/index.html
HELLO WORLD

Next, let's check the permissions we have on the existing page location, and make
sure they're the same:

$ ls -lha /usr/share/nginx/html/
total 20K
drwxr-xr-x. 2 root root 99 Oct 29 17:36 .
drwxr-xr-x. 4 root root 33 Oct 29 17:36 ..
-rw-r--r--. 1 root root 3.6K Mar 6 2018 404.html
-rw-r--r--. 1 root root 3.7K Mar 6 2018 50x.html
-rw-r--r--. 1 root root 3.7K Mar 6 2018 index.html
-rw-r--r--. 1 root root 368 Mar 6 2018 nginx-logo.png
-rw-r--r--. 1 root root 2.8K Mar 6 2018 poweredby.png

Permissions, SELinux, and AppArmor Chapter 8

[505]

We'll make sure ours are the same:

$ ls -lha /srv/webserver/arbitrary-location/
total 4.0K
drwxr-xr-x. 2 root root 24 Oct 29 18:43 .
drwxr-xr-x. 4 root root 62 Oct 29 18:40 ..
-rw-r--r--. 1 root root 12 Oct 29 18:43 index.html

Next, we'll update our NGINX config to log to this new location:

$ sudo sed -i
's/\/usr\/share\/nginx\/html/\/srv\/webserver\/arbitrary-location/g'
/etc/nginx/nginx.conf

And now, we restart our service:

$ sudo systemctl restart nginx

Let's give our curl a go, omitting the -I this time so we get our page back:

$ curl localhost:5858
<html>
<head><title>403 Forbidden</title></head>
<body bgcolor="white">
<center><h1>403 Forbidden</h1></center>
<hr><center>nginx/1.12.2</center>
</body>
</html>

Oops…that doesn't look right.

Unsurprisingly, SELinux is to blame, but the fix is a fairly simple set of commands
that we can use to correct the fcontext of the file in question:

$ sudo semanage fcontext --add --type httpd_sys_content_t
/srv/webserver/arbitrary-location/index.html
$ sudo restorecon /srv/webserver/arbitrary-location/index.html

Trying our curl now should give us our message:

$ curl localhost:5858
HELLO WORLD

Permissions, SELinux, and AppArmor Chapter 8

[506]

And we can view it in our browser like so:

If this isn't worthy of Tate Modern, I don't know what is.

How it works…
When we changed the port and restarted the service, we got some errors:

$ sudo journalctl -e -u nginx --no-pager | tail -n 8
Oct 29 17:43:17 localhost.localdomain systemd[1]: Starting The nginx
HTTP and reverse proxy server...
Oct 29 17:43:17 localhost.localdomain nginx[4334]: nginx: the
configuration file /etc/nginx/nginx.conf syntax is ok
Oct 29 17:43:17 localhost.localdomain nginx[4334]: nginx: [emerg]
bind() to 0.0.0.0:5858 failed (13: Permission denied)
Oct 29 17:43:17 localhost.localdomain nginx[4334]: nginx:
configuration file /etc/nginx/nginx.conf test failed
Oct 29 17:43:17 localhost.localdomain systemd[1]: nginx.service:
control process exited, code=exited status=1
Oct 29 17:43:17 localhost.localdomain systemd[1]: Failed to start The
nginx HTTP and reverse proxy server.
Oct 29 17:43:17 localhost.localdomain systemd[1]: Unit nginx.service
entered failed state.
Oct 29 17:43:17 localhost.localdomain systemd[1]: nginx.service
failed.

Note the specific Permission denied entry on the 5858 port.

Permissions, SELinux, and AppArmor Chapter 8

[507]

You can query SELinux port types and their number, using the semanage command
we installed as part of the utilities installation earlier:

$ sudo semanage port -l | grep http
http_cache_port_t tcp 8080, 8118, 8123, 10001-10010
http_cache_port_t udp 3130
http_port_t tcp 80, 81, 443, 488, 8008, 8009, 8443, 9000
pegasus_http_port_t tcp 5988
pegasus_https_port_t tcp 5989

Here, we can see that while 80 and other ports are permitted as HTTP ports, 5858
wasn't there initially.

After we added the additional port just shown, this command looked different:

$ sudo semanage port -l | grep http
http_cache_port_t tcp 8080, 8118, 8123, 10001-10010
http_cache_port_t udp 3130
http_port_t tcp 5858, 80, 81, 443, 488, 8008, 8009, 8443, 9000
pegasus_http_port_t tcp 5988
pegasus_https_port_t tcp 5989

So, SELinux now allows this port to be used.

In terms of the file, we can check what fcontext NGINX needs files to have, using
the ls -Z option.

Seen here, we run it against the default files:

$ ls -lhaZ /usr/share/nginx/html/
drwxr-xr-x. root root system_u:object_r:httpd_sys_content_t:s0 .
drwxr-xr-x. root root system_u:object_r:usr_t:s0 ..
-rw-r--r--. root root system_u:object_r:httpd_sys_content_t:s0
404.html
-rw-r--r--. root root system_u:object_r:httpd_sys_content_t:s0
50x.html
-rw-r--r--. root root system_u:object_r:httpd_sys_content_t:s0
index.html
-rw-r--r--. root root system_u:object_r:httpd_sys_content_t:s0 nginx-
logo.png
-rw-r--r--. root root system_u:object_r:httpd_sys_content_t:s0
poweredby.png

This is a good way to determine what context you need to give the new files you
create.

Permissions, SELinux, and AppArmor Chapter 8

[508]

When we applied our new policy rule and restored the policy values to the system,
our file was suddenly capable of being used by NGINX.

There's more…
SELinux isn't really as bad as everyone thinks, and it's come a long way since the days
when things used to silently fail for no obvious reason. Generally, there's a plethora
of tools and debugging programs available to you these days when it comes to
finding the correct configuration for your system and programs, though they can (and
do) fill books by themselves.

If you take anything away from this section, understand that disabling SELinux isn't
the answer (that is, setting it to permissive mode), and that outside of a development
environment, all you're doing is making life less secure for yourself in the future.

semanage also isn't the only way to manage SELinux policies, but it's very easy to use
and quite a neat way to introduce yourself to the wonderful world of policy files.

See also
Generally, desktop systems don't use SELinux, with the exception of Fedora, so if you
really want to start messing around with it, fire up a VM with Fedora installed and
take a look at tools such as audit2allow and chcon.

Checking SELinux is running, and the
importance of keeping it running
In this section, we're going to look at how we check that SELinux is enabled and
running on our system, and we're going to use the logs that SELinux writes to during
its operation. At the same time, we're going to use setroubleshoot to help us in
determining what might be the issue with what we're trying to do.

To again stress, there was a period when SELinux started to become a thing, and
people dismissed it immediately. Most online guides would begin with the immortal
words "be sure to check SELinux is disabled". Thankfully, that mentality has mostly
died out now, and people have come to accept SELinux as their one-true-god.

Permissions, SELinux, and AppArmor Chapter 8

[509]

It's extremely tempting, when you come across an issue caused by SELinux, to simply
disable it. This is doubly true if the issue is on a production server, and you're under
pressure to fix it. Abstain from the easy solution of disabling SELinux, as doing so
will only going to come around and bit you in the future.

That said, I will now touch on how to disable SELinux (to aid with troubleshooting!).

Getting ready
For this section, we're going to use our CentOS VM.

SSH to your CentOS VM:

$ vagrant ssh centos7

If not installed from the previous section, make sure NGINX and our various tools are
installed:

$ sudo yum install epel-release -y
$ sudo yum install policycoreutils-python setroubleshoot -y
$ sudo yum install nginx -y
$ sudo systemctl enable --now nginx

How to do it…
Firstly, and easily, you can check the current status of SELinux with sestatus:

$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 31

Here, we see that it's enabled, and the mode that it's operating in is enforcing,
meaning that violations of the policy are denied.

To disable SElinux on the fly (temporarily,) there's a relatively easy command:

$ sudo setenforce Permissive

Permissions, SELinux, and AppArmor Chapter 8

[510]

But this will change again at boot-time.

For now, let's leave it enabled:

$ sudo setenforce Enforcing

Next, we're going to change the port that we want NGINX to use (again), restart
NGINX, watch it fail, and see how we'd go about determining the problem.

Changing the port can be done like so:

$ sudo sed -i 's/5858 default_server;/5757 default_server;/g'
/etc/nginx/nginx.conf

If you didn't change the port in the previous section (you're starting
fresh), then you'll want to substitute the 5858 shown here for 80.

Restarting NGINX is easiest with systemctl:

$ sudo systemctl restart nginx
Job for nginx.service failed because the control process exited with
error code. See "systemctl status nginx.service" and "journalctl -xe"
for details.

What we can do now is determine why it failed:

$ sudo sealert -a /var/log/audit/audit.log

This might give you a lot of results, especially if you've been running the box for
some time, but near to the end should be a report that looks similar to the following:

--

SELinux is preventing /usr/sbin/nginx from name_bind access on the
tcp_socket port 5757.

***** Plugin bind_ports (92.2 confidence) suggests

If you want to allow /usr/sbin/nginx to bind to network port 5757
Then you need to modify the port type.
Do
semanage port -a -t PORT_TYPE -p tcp 5757
 where PORT_TYPE is one of the following: http_cache_port_t,
http_port_t, jboss_management_port_t, jboss_messaging_port_t,

Permissions, SELinux, and AppArmor Chapter 8

[511]

ntop_port_t, puppet_port_t.

***** Plugin catchall_boolean (7.83 confidence) suggests

If you want to allow nis to enabled
Then you must tell SELinux about this by enabling the 'nis_enabled'
boolean.

Do
setsebool -P nis_enabled 1

***** Plugin catchall (1.41 confidence) suggests

If you believe that nginx should be allowed name_bind access on the
port 5757 tcp_socket by default.
Then you should report this as a bug.
You can generate a local policy module to allow this access.
Do
allow this access for now by executing:
ausearch -c 'nginx' --raw | audit2allow -M my-nginx
semodule -i my-nginx.pp

Additional Information:
Source Context system_u:system_r:httpd_t:s0
Target Context system_u:object_r:unreserved_port_t:s0
Target Objects port 5757 [tcp_socket]
Source nginx
Source Path /usr/sbin/nginx
Port 5757
Host <Unknown>
Source RPM Packages nginx-1.12.2-2.el7.x86_64
Target RPM Packages
Policy RPM selinux-policy-3.13.1-192.el7_5.3.noarch
Selinux Enabled True
Policy Type targeted
Enforcing Mode Enforcing
Host Name localhost.localdomain
Platform Linux localhost.localdomain
 3.10.0-862.2.3.el7.x86_64 #1 SMP Wed May
9
 18:05:47 UTC 2018 x86_64 x86_64
Alert Count 1
First Seen 2018-10-30 17:27:06 UTC
Last Seen 2018-10-30 17:27:06 UTC
Local ID 65a65b11-892c-4795-8a1f-163822aa3a0f

Permissions, SELinux, and AppArmor Chapter 8

[512]

Raw Audit Messages
type=AVC msg=audit(1540920426.452:335): avc: denied { name_bind } for
pid=4551 comm="nginx" src=5757 scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:unreserved_port_t:s0 tclass=tcp_socket

type=SYSCALL msg=audit(1540920426.452:335): arch=x86_64 syscall=bind
success=no exit=EACCES a0=6 a1=5580c9397668 a2=10 a3=7fff97b00870
items=0 ppid=1 pid=4551 auid=4294967295 uid=0 gid=0 euid=0 suid=0
fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295 comm=nginx
exe=/usr/sbin/nginx subj=system_u:system_r:httpd_t:s0 key=(null)

Hash: nginx,httpd_t,unreserved_port_t,tcp_socket,name_bind

Emboldened at the top is the one-line summary of what sealert thinks the issue is;
in this case, it's right.

It then gives you a semanage command, similar to what we used earlier, to modify
the policy.

It also gives you two commands, ausearch and semodule, that you can use to
generate a local policy, which is effectively used alongside the base policy, but which
can be included with things like Ansible installation scripts.

For example, you have an Ansible role that installs NGINX on a custom port, but it's
okay because you can bundle the text-based policy alongside the configuration, and
load it in the Ansible configuration run.

Let's run these:

$ sudo ausearch -c 'nginx' --raw | audit2allow -M my-nginx
******************** IMPORTANT ***********************
To make this policy package active, execute:

semodule -i my-nginx.pp
$ sudo semodule -i my-nginx.pp

Now, try restarting NGINX, and curl our new port:

$ sudo systemctl restart nginx
$ curl -I localhost:5757
HTTP/1.1 200 OK
Server: nginx/1.12.2
Date: Tue, 30 Oct 2018 17:41:42 GMT
Content-Type: text/html
Content-Length: 12
Last-Modified: Mon, 29 Oct 2018 18:43:12 GMT

Permissions, SELinux, and AppArmor Chapter 8

[513]

Connection: keep-alive
ETag: "5bd754c0-c"
Accept-Ranges: bytes

Woop!

How it works…
SELinux's configuration (in terms of if it's running and in what mode) is set in the
/etc/selinux/config file:

$ cat /etc/selinux/config

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of three two values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy. Only selected processes
are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

If you want to disable SELinux permanently, this is the file that you would change,
flipping enforcing to permissive or even disabled.

When it comes to the custom policy we loaded, we're looking at something a bit more
complex.

This command made two files:

$ sudo ausearch -c 'nginx' --raw | audit2allow -M my-nginx
$ ls
my-nginx.pp my-nginx.te

The .pp file is a compiled policy, ready to be loaded, and the .te file is a human-
readable file for your confirmation.

When we loaded the policy using the semodule -i command, we activated it.

Permissions, SELinux, and AppArmor Chapter 8

[514]

You can see your active policies with semodule again:

$ sudo semodule -l | grep my-nginx
my-nginx 1.0

There's more…
audit2allow does its best, but it doesn't always get policy files quite right (or it
creates them with too much power, effectively making SELinux useless). Always get
someone to sanity-check your configuration prior to loading it, unless you're really,
really confident.

See also
I said at the start that it's important to ensure SELinux is running and to make sure
you keep it running.

The problems that arise from disabling it and leaving it disabled should be obvious,
but just to paint you a picture, note the following.

It's the end of the day on a Friday, just before the Christmas break, and most of the
staff have already left after making some final checks to make sure your e-commerce
site stays up during the Christmas and Boxing Day rush of people returning
unwanted presents.

You're about to clock off when you notice an issue with the site, leading customers to
believe they can get three hundred points off the latest Nintendo console, and you
can't be having any of that nonsense.

You go in and make a manual change, adding an extra config file to correctly load the
prices, and you restart the service.

The service doesn't come back up.

Panic sets in.

Your stomach drops out.

Someone in the distance lets out a bellow.

Permissions, SELinux, and AppArmor Chapter 8

[515]

With speed and dexterity, you disable SELinux, restarting the service and bringing
everything back online. The site is up, and the console now shows the right price.

Phew—you go home and eat several mince pies to celebrate.

Then, no one notices SELinux is disabled all year, until it comes time to push another
version of the software next Christmas, using your CI/CD infrastructure that also
makes sure SELinux is enabled. When that happens, the site goes down.

Everyone panics and no one is sure what happened, but you don't care because you
long since quit the company for making you work stupid hours, and you've decided
to move to Japan to start a fruit-growing business.

Everything catches fire.

See what you did?

Leave SELinux enabled!

Resetting SELinux permissions
In this section, we're going to talk about resetting SELinux permissions, and touch
upon how you might reset a root password on a box you've forgotten the password
for, while accounting for SELinux, which will hinder you otherwise.

Getting ready
Connect to your CentOS VM:

$ vagrant ssh centos7

How to do it…
First off, it's important to understand that with SELinux, we effectively have a
running-ish configuration and a saved configuration. When you're running your
system, it's important that any changes you make to SELinux are saved, to be loaded
in the event of an SELinux relabel.

To see this in action, let's copy some contexts around.

Permissions, SELinux, and AppArmor Chapter 8

[516]

Start by taking a look at the context our .bashrc file has (because it's immediately
available):

$ ls -lhaZ .bashrc
-rw-r--r--. vagrant vagrant unconfined_u:object_r:user_home_t:s0
.bashrc

There are four parts to this: we have a user (unconfined_u), a role
(object_r), a type (user_home_t), and the sensitivity of the
resource (s0.) The type is what's important to us here.

Say we want to change the type; we can do it on the fly by copying the type from
another file (in this case, the authorized_keys file, which looks like this):

$ ls -lhaZ .ssh/authorized_keys
-rw-------. vagrant vagrant unconfined_u:object_r:ssh_home_t:s0
.ssh/authorized_keys
$ chcon --reference=.ssh/authorized_keys .bashrc

Note now that when we look at our .bashrc file, the SELinux context has changed:

$ ls -lhaZ .bashrc
-rw-r--r--. vagrant vagrant unconfined_u:object_r:ssh_home_t:s0
.bashrc

But chcon isn't permanent, and what we've effectively done is change the running
configuration of SELinux, meaning we can reset it with a simple command:

$ restorecon .bashrc
$ ls -lhaZ .bashrc
-rw-r--r--. vagrant vagrant unconfined_u:object_r:user_home_t:s0
.bashrc

You may recall that earlier, we did this the other way around, using semanage to add
a new context to a file, then using restorecon to apply that context.

Another way to go about fixing temporary context changes is to relabel your
filesystem.

Let's make our change again, copying the authorized_keys context once more:

$ chcon --reference=.ssh/authorized_keys .bashrc

Permissions, SELinux, and AppArmor Chapter 8

[517]

Now, let's put a very specific file in a very specific location, and reboot:

$ sudo touch /.autorelabel
$ sudo reboot

Once your machine comes back up, take a look at the file's context again:

$ ls -lhaZ .bashrc
-rw-r--r--. vagrant vagrant unconfined_u:object_r:user_home_t:s0
.bashrc

And, you'll also discover the .autorelabel file we added has been automatically
deleted.

The Vagrantfile for this chapter very specifically removes some
console options as part of the bootstrap process for the CentOS VM.
This is because if you don't, the .autorelabel function won't
work. If you experience problems with this fix, try it on a physical
machine or a vanilla VM (in a development environment!).

How it works…
What restorecon does is check a file's context against what it expects to be true, and
if it finds anything amiss, it will correct it with the static configuration it knows
about.

When we ran the .autorelabel function, we effectively ran the fixfiles relabel
command across our system at boot-time, prior to our touched file being deleted.
What you'll notice is that this boot may take longer as it has more of a job to do when
coming up.

There's more…
By default, restorecon will only restore the type context and leave the others as it
found them. This can be overridden with the -F flag.

We also mentioned resetting the root user's password, which is made oh-so-
annoying by SELinux.

Permissions, SELinux, and AppArmor Chapter 8

[518]

Let's say you've forgotten the root password to your box; the way to go about fixing
this is to boot into single-user mode, change the password, and reboot…or at least,
that used to be the way.

Now, the steps involved look like this:

Reboot the system.1.
Edit the GRUB entry for your installation before it times out.2.
Make sure the linux16 line is rw instead of ro, and change the init to3.
something like /bin/bash.
Continue the boot process.4.
Make sure your / directory is mounted as rw, and you can edit files.5.
Run passwd to update the root password.6.
Run touch .autorelabel in the / directory, and reboot.7.
Check you can log in.8.

If you skip the touch .autorelabel step, it won't work, and you'll have to start
again.

In the grand scheme of things, it's not much, but it can be infuriating in the moment.

Roundup – permissions, SELinux, and
AppArmor
At what point is it too late?

When have you exhausted every possible avenue for resolving your problem?

Do you have decent backups that you've checked and confirmed work?

Are you tearing your hair out?

Has it been three days, and have you not seen daylight since Tuesday?

Permissions can be tricky and awkward, and sometimes it's just better to say, "Screw
it, this system is too far gone, I'm starting again." My general rule of thumb for this
sort of thing is how many meals I have skipped trying to fix something, and if it's
more than one, that's too many meals skipped.

Permissions, SELinux, and AppArmor Chapter 8

[519]

Before now, I've done stupid things, as I think I've made painfully clear throughout
this book so far. I've chmod'd entire systems to 777 recursively (which breaks a lot),
I've deleted directories in an effort to free up space, only to discover that directory
was actually rather important to the system's good health (I won't share which one,
but it had files and non-files inside it). I've even stopped an accidental rm of much
more than I intended to rm and stressed myself blue trying to work out how much of
the filesystem I'd actually hosed.

In short, I've broken systems to the point where they're technically fixable, but where
the time it would take outweighs the heartache of doing a recovery.

SELinux, AppArmor, and simple blanket Linux permissions can leave you scouring
the internet for obscure error messages, in the hope someone else has come across the
exact same problem as you, and that they've decided to share their solution (as long
as it isn't "It's fine, I fixed it, closing this thread").

But all that said, the macOS systems, and even POSIX standard file permissions, are
important. It can be time-consuming and annoying, but using tools such as
audit2allow can greatly reduce your blood pressure, while adding to your
awesomeness, and learning the correct chmod incantations can speed up your
troubleshooting tenfold.

For the most part, the software you install from the official repositories is going to be
set up sensibly, and as long as the third party is worth their salt, you might even find
that other repositories you add later include appropriate SELinux permissions on
their software. The situation is so much better than it was when SELinux first started
to be a thing.

I remember when people recommended disabling SELinux as step one on their
guides, and I'm glad we're beyond those days, but sometimes it can be tempting.

Those moments when you're at your wit's end, and you just want your application to
work, can be the most tempting moments to disable SELinux. Hold firm, be steadfast,
and tell yourself you're not going to be beaten by a computer.

It's not like you're up against HAL 9000.

9
Containers and Virtualization

In this chapter, we're going to be covering the following topics:

What is a container?
Installing Docker
Running your first Docker container
Debugging a container
Searching for containers (and security)
What is virtualization?
Starting a QEMU machine with our VM
Using virsh and virt-install
Comparing the benefits of local installs, containers, and VMs
Brief comparison of virtualization options (VMware, proxmox, and more)

Introduction
I'm going to be honest: containers and virtualization is one of my favorite things to
talk about in relation to computers and servers. The very concept of being able to
install an entirely different computer, within your computer, is a concept that just
sings brilliance to me.

It's not a new idea; this principle has been around for quite some time, with even my
first OS9 computer being capable of virtualization to some degree. Going back
further, the root of the term is from the 1960s, though it had a slightly different
meaning than it does in modern-day vernacular.

Containers and Virtualization Chapter 9

[521]

You've probably used a virtual machine (VM) already, though you might not even
know you have. VMs are quick these days, with a negligible performance hit
compared to running on the underlying tin, thanks to advantages in virtualization
that mean that you're no longer emulating everything to do with the VM, and instead
you're passing VM instructions straight through to the host computer's CPU.

VMs are undeniably a powerhouse of hosting and development, with the ability to
quickly spin up and tear down machines, being a godsend when you're constantly
breaking things or looking into a secure and cheap way to segment a massive
workhorse of a server.

These days, containers have somewhat taken the mantle away from VMs, though
they each have their advantages, and they exist in harmony rather than in constant
war with each other.

Containers, unlike virtual machines, are more like a slice of a system, if you will, with
a shared core.

When you're using a container on a Linux system, you're sharing the kernel of the
host machine, rather than installing your own, and you've usually not bothered with
the emulation of extra hardware, like disk controllers.

Again, containers and containerization aren't new concepts, with the idea having
been around since the days of jails on FreeBSD, and latterly Zones on Solaris (both of
which still exist in one shape or another, and which we'll look at later). They have
exploded recently though (within the last few years) with the introduction of Docker,
which made the whole idea of containers a lot easier for people to swallow (and their
marketing was stellar).

In this chapter, we're going to look at containers and virtual machines, discuss the
pros and cons of each, and talk about management of a virtual environment.

Containers and Virtualization Chapter 9

[522]

Technical requirements
In this section, and for this chapter, we're going to use our Ubuntu machine primarily.

Mostly, this is because Ubuntu comes with a lot of the more up-to-date elements we
require out of the box, whereas CentOS has had a lot of things patched backward
(back-ported) thanks to its long shelf life.

Feel free to use the following Vagrantfile:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.define "ubuntu1804" do |ubuntu1804|
 ubuntu1804.vm.box = "ubuntu/bionic64"
 ubuntu1804.vm.box_version = "20180927.0.0"
 end

 config.vm.define "centos7" do |centos7|
 centos7.vm.box = "centos/7"
 centos7.vm.box_version = "1804.02"
 end

end

What is a container?
In this section, we're going to look at what containers actually are at a bit of a deeper
level than we covered in the introduction.

We won't go into a huge amount of depth (because we'd get lost and have to call
James Cameron to get us out), but we will touch on the core of what makes a
container a container, and how it differs from running a full-fledged virtual machine.

Containers and Virtualization Chapter 9

[523]

Getting ready
SSH to your Ubuntu VM:

$ vagrant ssh ubuntu1804

How to do it…
We're going to create a container without using the most popular tool on the market.

Containers utilize certain kernel features (namespaces and cgroups), which means
that they're not strictly portable to the Windows and Macs of the world.

First, we're going to create a storage pool for our containers to use:

$ sudo lxc storage create example-pool dir

Directory storage pools are discouraged for production use. You're
better off using a tailored solution that uses LVM or ZFS, but for
testing and examples, it's fine.

Next, we're going to start a container with this pool:

$ sudo lxc launch ubuntu:18.04 example-container -s example-pool
Creating example
Retrieving image: rootfs: 31% (1.63MB/s)

The preceding retrieval can take some time, and will depend on
your network connection speed.

At the end of this process, our container should be created. We can list it by using the
following:

$ sudo lxc list
+-------------------+---------+------+------+------------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+-------------------+---------+------+------+------------+-----------+
| example-container | RUNNING | | | PERSISTENT | 0 |
+-------------------+---------+------+------+------------+-----------+

Containers and Virtualization Chapter 9

[524]

Then, we can execute the commands inside it:

$ sudo lxc exec example-container hostname
example-container

Here, we're running a command that, when run on our host VM,
would tell us ubuntu-bionic. Therefore, by checking it alongside
our lxc command, we can prove it's running in the container.

If we wanted to enter the container, we could simply start a shell:

$ sudo lxc exec example-container bash
root@example-container:~# hostname
example-container

There you have it – a very quick slice of an operating system, inside your operating
system!

Once you're done, simply type exit or hit Ctrl + D to log out of the container:

root@example-container:~# exit

Then, we can destroy it with the following commands:

$ sudo lxc stop example-container
$ sudo lxc delete example-container

One thing people frequently forget, both in the LXC world and the
Docker world, is that you've got more than just the container to
contend with. We've deleted the container, but if you really want to
clean up shop, you will have to delete the image you downloaded
and the storage pool, too.

Containers and Virtualization Chapter 9

[525]

How it works…
To elaborate somewhat on the cgroups and namespaces comment, what containers
are in reality are functions of the kernel and user space tools to make things look nice.
LXC is a tool that abstracts complexity away, simplifying the setup of our semi-
segregated machines into a few easy-to-use commands.

cgroups (Linux control groups)
Here's an excerpt from the Linux Programmer's Manual:

"Control groups, usually referred to as cgroups, are a Linux kernel feature that
allows processes to be organized into hierarchical groups whose usage of various
types of resources can then be limited and monitored. The kernel's cgroup interface
is provided through a pseudo-filesystem called cgroupfs. Grouping is implemented
in the core cgroup kernel code, while resource tracking and limits are implemented
in a set of per-resource-type subsystems (memory, CPU, and so on)."

In practice, this means that the kernel has the ability to group processes together into
a stack and that it can then control and monitor the resource usage of it.

namespaces
Without starting a trend, here's the Linux Programmer's Manual again:

"A namespace wraps a global system resource in an abstraction that makes it appear
to the processes within the namespace that they have their own isolated instance of
the global resource. Changes to the global resource are visible to other processes that
are members of the namespace, but are invisible to other processes. One use of
namespaces is to implement containers."

In practice, this means that your singular network interface can have multiple
namespaces attached to it, which the utilizing processes will believe is the sole
instance of that device.

Network interfaces aren't the only example, but they're one of the more obvious
candidates as every VM needs a NIC.

Containers and Virtualization Chapter 9

[526]

The breakdown of our creation
When we created the storage pool at the beginning of this section, what we were
really doing was informing our system (the lxd daemon) that it needed to use a
specific directory for container storage, namely the one
below /var/lib/lxd/storage-pools/:

$ sudo ls /var/lib/lxd/storage-pools/example-pool
containers

When we started our container, what we first did was download a prepackaged
image from a default internet location that served as the base for the container we
created.

Here, it's seen as an alphanumeric string, but it's really Ubuntu 18.04 in cut-down-
container form:

$ sudo ls -lhA /var/lib/lxd/images/
total 175M
-rw-r--r-- 1 root root 788 Nov 4 15:44
30b9f587eb6fb50566f4183240933496d7b787f719aafb4b58e6a341495a38ad
-rw-r--r-- 1 root root 175M Nov 4 15:47
30b9f587eb6fb50566f4183240933496d7b787f719aafb4b58e6a341495a38ad.rootf
s

Note the size of this container, 175 M, which is one of the primary advantages that
people highlight regarding containers (they're tiny, and this is actually one of the
bigger examples!).

When our container is running, we can see it from the host as a collection of
processes:

$ ps uf -p 3908 --ppid 3908 --ppid 3919

The output should look something like the following screenshot:

Containers and Virtualization Chapter 9

[527]

This container therefore has most of an OS inside it, which it has inherited from the
image we pulled down, though it notably doesn't contain a kernel that is shared with
the host VM.

Imagine a container like an orange (I also quite like oranges) where each segment can
exist as its own little parcel of juicy goodness, but without the outer rind of the orange
giving it structure and passing it nutrients, it's useless. This is in contrast to a virtual
machine, which is more like an eternally young baby spider (hear me out) where each
exist independently as living, breathing creatures, but they still ride around on their
mother's back, ready to deliver a dose of eldritch horror to anyone who comes into
contact with a brood.

There's more…
At the moment, you should have a container created by LXC, inside a virtual machine
managed by Vagrant (and utilizing VirtualBox) atop your own laptop, desktop, or
server.

This can get a bit tricky to visualize, but a lot of clever people put a lot of hours into
making sure this sort of setup works without problems.

The LXD daemon
As ever, we can use systemctl to visualize our service:

$ systemctl status lxd
● lxd.service - LXD - main daemon
 Loaded: loaded (/lib/systemd/system/lxd.service; indirect; vendor
preset: enabled)
 Active: active (running) since Sun 2018-11-04 15:41:14 UTC; 33min
ago
 Docs: man:lxd(1)
 Process: 2058 ExecStartPost=/usr/bin/lxd waitready --timeout=600
(code=exited, status=0/SUCCESS)
 Process: 2036 ExecStartPre=/usr/lib/x86_64-linux-gnu/lxc/lxc-
apparmor-load (code=exited, status=0/SUCCESS)
 Main PID: 2057 (lxd)
 Tasks: 16
 CGroup: /system.slice/lxd.service
 └─2057 /usr/lib/lxd/lxd --group lxd --
logfile=/var/log/lxd/lxd.log

Containers and Virtualization Chapter 9

[528]

See also
At the top of this section, we ran hostname inside our container, but that doesn't give
you a clue as to what the container is doing. One thing that I find particularly handy
is the ability to check the processes running in my container, without having to dig
out process IDs for my ps command first.

Here, I'm using the following command:

$ sudo lxc exec example-container top

This gives me the following output:

Note that it's significantly quieter than the host machine, and very few daemons are
actually running in the container.

Installing Docker
By far the most popular solution to running containers on Linux (at least at the time
of writing) is Docker.

Starting out as a way for Docker Inc. (then dotCloud) to better utilize containers in
their PaaS (Platform-as-a-Service) company, Docker quickly gained traction in the
open source world and was soon seen as the future of computing in a lot of circles
(the cynical sysadmins generally came after the developers got wind of it).

Containers and Virtualization Chapter 9

[529]

Because it's effectively a simple way to use already-present kernel features, and
includes the Docker Hub for people to both upload and download pre-built images, it
made containers easy.

Soon, people were containerizing everything, from Firefox, to Nginx, to entire
distributions, just because.

I firmly believe that the ease with which Docker made it possible to
upload and download their images contributed to its success. As
I've already mentioned, the concepts of containers go back to the
nineties, but there was no "jail prison" or "zones zone" for people to
download pre-built collections of software from. Docker Hub
provided this on an already popular platform.

Getting ready
Most distributions come with Docker in some form or another in the traditional
repositories. However, this is frequently out of step with upstream or just plain old,
so it's a good idea to utilize the upstream Docker repositories in your environment.

SSH to your Ubuntu VM:

$ vagrant ssh ubuntu1804

How to do it…
Docker keeps a page up to date on how to install Docker on your distribution of
choice (see https:/ /docs. docker. com/ install). The following are the condensed
instructions for Ubuntu.

Run an update to make sure you're ready to install Docker:

$ sudo apt update

Install the GPG key and then add the repository itself:

$ wget https://download.docker.com/linux/ubuntu/gpg
$ sudo apt-key add gpg
$ sudo apt-add-repository 'deb [arch=amd64]
https://download.docker.com/linux/ubuntu bionic stable'

https://docs.docker.com/install
https://docs.docker.com/install
https://docs.docker.com/install
https://docs.docker.com/install
https://docs.docker.com/install
https://docs.docker.com/install
https://docs.docker.com/install
https://docs.docker.com/install
https://docs.docker.com/install
https://docs.docker.com/install
https://docs.docker.com/install

Containers and Virtualization Chapter 9

[530]

As ever, check the GPG fingerprint against an official source.

Now, we can finally install Docker itself (this may take some time):

$ sudo apt install docker-ce -y

We can also check the status of our Docker daemon by using systemctl:

$ systemctl status docker
● docker.service - Docker Application Container Engine
 Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor
preset: enabled)
 Active: active (running) since Sun 2018-11-04 16:56:26 UTC; 52s ago
 Docs: https://docs.docker.com
 Main PID: 11257 (dockerd)
 Tasks: 23
 CGroup: /system.slice/docker.service
 ├─11257 /usr/bin/dockerd -H fd://
 └─11275 docker-containerd --config
/var/run/docker/containerd/containerd.toml

You may have noticed we haven't started and enabled this service.
This is mostly because Debian-derived systems like to start services
for you... there are a variety of reasons I don't like this approach
personally, but it is what it is.

How it works…
Before we start, you may have noticed that we constantly worked with a package
called docker-ce, and this is for a very good reason.

There are two base versions of Docker, Community Edition (CE) and Enterprise
Edition (EE). Mostly, you will only ever see CE in the wild, and it's perfectly
functional for all of your needs.

Containers and Virtualization Chapter 9

[531]

All we did here was go to the writers of the software directly and add their own GPG
key and repository information, alongside our Ubuntu defaults. Docker is a very
dynamic program, meaning it has frequent and sizable releases. At the time of
writing, we installed 18.06.1-ce, but that might change before you know it. Docker
works on a YEAR-MONTH release format:

$ docker --version
Docker version 18.06.1-ce, build e68fc7a

We also installed two primary components (alongside a lot of tools and extras), which
were the Docker command-line tool and the Docker daemon.

Docker works in the same way as other user space tools, making use of the kernel
functionality. What sets it apart is how user-friendly it can be.

You mostly work with Docker through the command-line tool docker, which, in
turn, communicated with the Docker daemon. This daemon is the component that's
responsible for managing the containers it's instructed to create, and maintaining the
images that it pulls in from Docker Hub or other registries.

A Docker registry is a repository of images. The most popular is
Docker Hub, but there's nothing stopping you from creating your
own, or using an off-the-shelf solution to manage one, like
Artifactory.

The last component to be aware of for now is the runtime that Docker is using, which
is runC (the universal container runtime) out of the box.

The runtime is actually just the name given to the collection of unified systems that
Docker will use to run containers (think of cgroups and namespaces bundled into one
word, though there's other features, too). What this means is that while runC is
Linux-specific, if Windows has a container runtime (Host Compute Service), then
Docker can utilize this instead.

This does not make the containers universal between operating
systems – you can't create a container for Linux and spin it up in the
Windows-specific runtime, but it does make the Docker tooling
universal.

Containers and Virtualization Chapter 9

[532]

There's more…
The easiest way to get all the information you could want to know about your Docker
installation is to use the docker info command:

$ sudo docker info
Containers: 0
 Running: 0
 Paused: 0
 Stopped: 0
Images: 1
Server Version: 18.06.1-ce
Storage Driver: overlay2
 Backing Filesystem: extfs
 Supports d_type: true
 Native Overlay Diff: true
Logging Driver: json-file
Cgroup Driver: cgroupfs
Plugins:
 Volume: local
 Network: bridge host macvlan null overlay
 Log: awslogs fluentd gcplogs gelf journald json-file logentries
splunk syslog
Swarm: inactive
Runtimes: runc
Default Runtime: runc
Init Binary: docker-init
containerd version: 468a545b9edcd5932818eb9de8e72413e616e86e
runc version: 69663f0bd4b60df09991c08812a60108003fa340
init version: fec3683
Security Options:
 apparmor
 seccomp
 Profile: default
Kernel Version: 4.15.0-34-generic
Operating System: Ubuntu 18.04.1 LTS
OSType: linux
Architecture: x86_64
CPUs: 2
Total Memory: 985.3MiB
Name: ubuntu-bionic
ID: T35X:R7ZX:MYMH:3PLU:DGXP:PSBE:KQ7O:YN4O:NBTN:4BHM:XFEN:YE5W
Docker Root Dir: /var/lib/docker
Debug Mode (client): false
Debug Mode (server): false
Registry: https://index.docker.io/v1/
Labels:

Containers and Virtualization Chapter 9

[533]

Experimental: false
Insecure Registries:
 127.0.0.0/8
Live Restore Enabled: false

WARNING: No swap limit support

Slightly more
One thing I haven't touched on is containerd and the likes of CRI-O. If you already
know these terms, then there's a good chance you understand why I haven't
mentioned them, because they're far too far out of scope for what this book is trying
to accomplish.

I would encourage anyone who is interested to pick up dedicated literature on
Docker and its various components as you'll not be out of work for the next few years
if you understand the most popular containerization tool of the day, inside and out.

See also
Did you spot pigz in the list of extras downloaded with Docker? This is a particularly
interesting bit of software, as it's basically a parallelized version of gzip. When
you're decompressing a file and you've got eighteen cores, it's nice to use as many of
them as you can, instead of overloading one.

Running your first Docker container
We've already used a container, way back in the LXC section, but now we're going to
use the more popular system for running containers.

This section will cover some basic commands, without going into a great deal of
depth.

Getting ready
In this section, we're going to use our Ubuntu VM, but make sure that Docker from
the previous section is set up first.

Containers and Virtualization Chapter 9

[534]

SSH to your VM, and be sure to use the previous section to set up the upstream
Docker repository before installing Docker:

$ vagrant ssh ubuntu1804

How to do it…
As with the LXC section, we're going to start an Ubuntu container, and we're then
going to interact with it.

Begin with the following command:

$ sudo docker run -itd --rm alpine /bin/ash
Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
4fe2ade4980c: Pull complete
Digest:
sha256:621c2f39f8133acb8e64023a94dbdf0d5ca81896102b9e57c0dc184cadaf552
8
Status: Downloaded newer image for alpine:latest
5396b707087a161338b6f74862ef949d3081b83bbdcbc3693a35504e5cfbccd4

Now that the container is up and running, you can view it with docker ps:

$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
5396b707087a alpine "/bin/ash" 45 seconds ago Up 44 seconds
ecstatic_lalande

You can also enter it, should you wish, with docker exec:

$ sudo docker exec -it ecstatic_lalande /bin/ash
/ #

You could also use docker attach, which would accomplish the
same thing on the face of it (giving you access to a shell in the
container). The only problem with this method is that you would be
attaching to the active process, meaning that when you closed your
session, the container would stop too.

Leaving the container again (exit) will bring you back to your VM's prompt.

From here, you can stop your container:

$ sudo docker stop ecstatic_lalande
ecstatic_lalande

Containers and Virtualization Chapter 9

[535]

This may take a few seconds.

The container is now deleted, and we can confirm this with another docker ps:

$ sudo docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

How it works…
Let's break down our commands.

Creating a container
Starting with the creation of our new container, this was the command we used:

$ sudo docker run -itd --rm alpine /bin/ash

Here, we're telling Docker we want to run a command in a new container:

docker run

We're then informing it that we want it to be interactive, to have a pseudo-TTY, and
to start detached (knocking us back to the VM shell):

-itd

Next, we're telling Docker that when the container stops, we want it to automatically
remove itself:

--rm

This is a relatively new feature, only introduced because people
didn't realize containers linger after they stop, and people would
end up with lists of hundreds of stopped containers.

Lastly, we're saying what image (from Docker Hub) we want to use, and what
command to run (here, it's Alpine Linux's default shell, ash):

alpine /bin/ash

Containers and Virtualization Chapter 9

[536]

Listing our container
Secondly, we used the following command to list our new container:

$ sudo docker ps

This showed the CONTAINER ID, IMAGE, COMMAND, CREATED, STATUS, PORTS, and
NAMES of all our containers (or, in this case, just one).

The CONTAINER ID portion is a random string allocation, and the NAMES section
features the randomly generated friendly names of your containers (though this can
also be defined at creation time).

When we latterly added -a to our listing command, it was to show that the container
wasn't omitted from the initial list simply because it was stopped, as the -a flag will
show all containers, not just running ones.

Executing commands in our container
Next, we jumped inside our container, starting another (atop the one we've already
started at creation time) shell session:

$ sudo docker exec -it ecstatic_lalande /bin/ash

Here, we executed a command by using an interactive session and another pseudo-
TTY within our container (denoted here by its friendly name from docker ps).

This dropped us inside the container. If we then run top, we will see both instances
of the /bin/ash command we've started:

Did you spot that one of the /bin/ash instances is PID 1?

Containers and Virtualization Chapter 9

[537]

Stopping our container
Once we'd jumped out again, we then stopped our running container:

$ sudo docker stop ecstatic_lalande

This takes a few seconds, but, once completed, the container will vanish (as we saw),
though the image it used (alpine) will remain.

Because our image is still kicking around, the next time you want to use it for
something, you won't have to download it!

Debugging a container
In this section, we're going to start up our container again, make a few changes, and
check to see whether our changes have had any affect.

This serves to highlight the transient nature of containers, and what you can do with
a running instance.

Getting ready
For this section, we're going to continue using our Ubuntu VM.

SSH to your VM, if not already connected, and start up a container:

$ vagrant ssh ubuntu1804
$ sudo docker run -itd --rm -p8080:8080 alpine /bin/ash

How to do it…
You should now have a running docker container, listed here with docker ps:

$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
0f649283dcaf alpine "/bin/ash" 41 seconds ago Up 39 seconds
0.0.0.0:8080->8080/tcp compassionate_boyd

Note that we also have a port forwarded in this example, namely port 8080.

Containers and Virtualization Chapter 9

[538]

Port forwarding in this instance is the same as any other—we're forwarding a port
from the host to a port in the container.

Try to curl the port:

$ curl localhost:8080
curl: (56) Recv failure: Connection reset by peer

Now, jump into the VM and let's start a web server on the specified port:

$ sudo docker exec -it compassionate_boyd /bin/ash

First, we need to install some additional busybox things:

apk add busybox-extras

Now, we can start a small web server on port 8080 before exiting the container:

touch index.html
echo "I hated reading Shakespeare in school." > index.html
httpd -p8080
exit

Now, from your VM, you'll be able to curl your container's new web server:

$ curl localhost:8080
I hated reading Shakespeare in school.

Stop the container, and start a new one:

$ sudo docker stop compassionate_boyd
compassionate_boyd
$ sudo docker run -itd --rm -p8080:8080 alpine /bin/ash
592eceb397e7ea059c27a46e4559c3ce7ee0976ed90297f52bcbdb369e214921

Note that when you now curl your port again, it won't work, because all your
previous changes to the running container have been lost, and a new one has a risen
in its place:

$ curl localhost:8080
curl: (56) Recv failure: Connection reset by peer

Containers and Virtualization Chapter 9

[539]

How it works…
All we've done here is highlight that containers are ephemeral by nature, and while
you can stop and start the same container (minus the --rm to the docker run
command), you're running in a transient state until you tag your container and
upload it to a registry somewhere.

It's generally not good practice to build a container by starting one and then installing
a bunch of software inside it, before leaving it and saving it for later. The better
method is to use a Dockerfile or some other automated and reproducible way of
building containers.

What we've also done is point out that while docker containers should be a self-
contained little entity, that doesn't mean you can't hop inside them to see what's
going on, and even install extra software to help with your debugging, should you so
wish.

There's more…
If you are interested in using a Dockerfile to do what we did here, it's a fairly trivial
one, though it's technically outside the scope of this book.

The following would be enough to get you started:

FROM alpine

MAINTAINER Your Deity of Choice

RUN apk add busybox-extras
RUN touch index.html
RUN echo "I really hated reading Shakespeare in school." > index.html

EXPOSE 8080/tcp

CMD ["/usr/sbin/httpd", "-p8080", "-f"]

You could then build this with something like the following:

$ sudo docker build .
<SNIP>
Successfully built d097226c4e7c

Containers and Virtualization Chapter 9

[540]

Then, you could start your resulting container (detached, and forwarding the port):

$ sudo docker run -itd -p8080:8080 d097226c4e7c

We added the -f in the Dockerfile to ensure that the process remains in the
foreground (and the container doesn't stop immediately):

$ curl localhost:8080
I really hated reading Shakespeare in school.

Searching for containers (and security)
In this section, you're mostly going to need access to a browser of some sort, though
in a pinch, you might get away with calling up a friend and asking them to do an
internet search for you (if you're a really good friend and they have literally nothing
better to do).

We're also going to use our VM a bit to practice what we discover.

We're going to search for containers on Docker Hub, and we're going to touch upon
the security implications of downloading and using public images.

This section is not designed to scare you, in the same way you're not supposed to be
scared to run any piece of free (as in open source) software that you find – it's about
doing due diligence.

Getting ready
Jump onto your Ubuntu VM (and install docker from the previous section, if you
haven't already done so):

$ vagrant ssh ubuntu1804

How to do it…
From your browser of choice, which is Firefox for me, head over to https:/ / hub.
docker.com.

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com

Containers and Virtualization Chapter 9

[541]

You'll be greeted by a page that looks like the following:

There's something of an implication here, which is the section entitled New to
Docker?. There's no need to create a Docker ID to get started, despite what the first
sentence there might suggest. You may find it handy to do so, and you may even
have good reason to create an ID, but there's absolutely no need to do so initially (at
least not at the time of writing…).

Containers and Virtualization Chapter 9

[542]

Instead, use the search bar at the top of the screen, and type redis:

Wow! That's a lot of repositories!

Herein is the first thing it's good to know about Docker. Because it's just so easy to
create images and upload them to Docker Hub (I have a few myself), there's a good
chance that there's going to be multiple versions of what you want.

Here, we can see that the top result is simply titled redis instead of being
<username>/redis-foo like the rest.

Containers and Virtualization Chapter 9

[543]

When an image is official, it gets the privileged honor of only having the explicit
name of its software, in this case, redis.

Click it:

Containers and Virtualization Chapter 9

[544]

There's a few things to note here.

Helpfully, we get a command to get started, that is, docker pull redis
on the right.
We get repository information, which is the default view that provides us
with a short and full description. In practice, this can be as short or as long
as the maintainer feels like making it.
Finally, for this moment, we get a Tags section at the top. Click this now:

Tags, as with Git, are a way of denoting a specific version of the container you want
to download.

The default tag is the latest and it's the image you would download if you were to run
the following command (as you can see in the line immediately following our
command):

$ sudo docker run -d redis
Unable to find image 'redis:latest' locally
latest: Pulling from library/redis
f17d81b4b692: Pull complete
b32474098757: Pull complete
<SNIP>

Containers and Virtualization Chapter 9

[545]

If we wanted to specifically pull in the Alpine version of Redis (as in Redis installed
atop Alpine Linux), we would instead run the following:

$ sudo docker run -d redis:alpine
Unable to find image 'redis:alpine' locally
alpine: Pulling from library/redis
4fe2ade4980c: Already exists
fb758dc2e038: Pull complete
989f7b0c858b: Pull complete
<SNIP>

Note that we pulled every later except the base one, which already
existed in our setup.

Et voilà! You used Docker Hub to seek out a version of everyone's favorite in-memory
database!

How it works…
All we're doing here is pulling in a functional image from the global Docker Registry;
this is the default, the omega, the biggest, the original, and the best (according to
some people.)

Docker Hub is a repository of smaller repositories, with everyone able to put their
own spin on containers they've built (or forked) and thus adding to the software soup
of the world.

This obviously has disadvantages, as I alluded to in the previous sardonic line. This
means that because it's so easy to punt your image onto Docker Hub, it can become
increasingly frustrating to find that one image you want.

People can also be malicious, uploading containers that may very well do what they
say on the tin, while at the same time using an entire core of your computer to mine
bitcoin (though this sort of thing is generally found out pretty quickly when it does
happen). It is up to you, as a systems administrator, DevOps person, jack-of-all-trades
for your company, to work out what a container is doing, and if it's what you need.

Containers and Virtualization Chapter 9

[546]

I follow some basic principles here:

Check whether the Dockerfile and source are freely available:
Usually, repositories on Docker Hub are triggered builds
from GitLab or other source code hosting sites, meaning that
you can check the code behind the container

Check the number of downloads of the container:
While not an indicator of quality, since frequently the first
image of a piece of software is the most popular, it's
generally a good example of the thousand-eyes principle. If
thousands of people are using it, there's a higher likelihood
that nothing malicious is hidden in the container (though
there's still a chance).

Check to see whether it's an official project's Docker container:
Projects such as Redis, Kibana, and Swift all have official
Docker containers, so generally I'd go with their offering
above others.
There may also be containers from the project that aren't
tagged as official and still bear the creator's moniker. Those
sit firmly above Jane Bloggs containers in my books.
That's not to say that unofficial ones are bad, or that they
don't cover a slightly different need, but, nine times out of
ten, I've found this not to be the case.

Can you just build it yourself?
Assuming that the Dockerfile is licensed freely, you could
just lift it off GitLab and stick it into your build server to
create an image of your own. At least that way, you know
that what you see is what you get at the end of the process
(assuming you're not downloading software as part of the
build, from some dodgy third-party repository you've never
heard of).

All that said – and it sounds like I'm being very down on homespun containers –
Docker has won the war of container supremacy because of its market mind share
and its ease-of-use (if it's building containers or the simplicity of finding them).

Docker Hub means that even if I have no local repositories configures, but I do have
Docker installed, I can soon be running a web server on an Alpine container, that
plugs into a MariaDB container, atop Gentoo.

Containers and Virtualization Chapter 9

[547]

This container could then feed logs into a containerized Elasticsearch instance,
running on Slackware, on the exact same host, in about ten minutes.

There's more…
You can also search from the command line, if you feel so inclined:

I'll be honest, I never do this, and it's mostly because everyone
carries a browser around in their pocket these days. However, I
know that some people out there are purists.

What is virtualization?
If you've opened this book randomly on this page, then you might now know what
virtualization actually is. If you've done the normal thing, and started at the
beginning, then there's an equally good chance you already understand that you've
been using virtualization for almost all of this book.

Virtualization is the act of virtualizing (I know right?) one machine inside another
machine. Unlike a container, though, we visualize everything from the USB
controllers to the floppy drive (seriously).

This concept is not new, but the technology marches on.

Containers and Virtualization Chapter 9

[548]

For our examples, you've probably done the same thing I did and resorted to Vagrant
with VirtualBox. I chose to go this route because VirtualBox is everywhere, with
versions available for macOS, Linux, and Windows (along with others!). This has
great advantages, but also disadvantages.

Virtualization, by its very nature, is closely tied to the software and hardware of the
box it's run on. With this in mind, you might understand why enterprises generally
choose to not use VirtualBox everywhere (despite having Windows and Linux
machines), but instead use HyperV and KVM respectively… they're more native.

In Linux land, the virtualization software of choice is KVM (Kernel Virtual
Machine).

Siderant: KVM is a terrible name for a product or piece of software.
It already had a meaning before Kernel Virtual Machine was
decided upon, and data center engineers the world over have been
cursing this particular three letter acronym since its inception.
Keyboard Video Mouse was a standard, and, in my head, I still
picture a DC crash-cart when I hear those letters.

Getting ready
In this section, we're going to be looking at some basic differences between containers
and virtualization.

We're going to use our Ubuntu VM, and our CentOS one, for the first time.

Log on to your CentOS and Ubuntu VMs:

$ vagrant ssh ubuntu1804
$ vagrant ssh centos7

How to do it…
In our container steps, we looked briefly at the fact that the kernel that was being run
was the same on the host VM as it was inside the container.

Containers and Virtualization Chapter 9

[549]

For this step, we're going to run the same command on both of our VMs and compare
the output:

$ uname -a
Linux ubuntu-bionic 4.15.0-36-generic #39-Ubuntu SMP Mon Sep 24
16:19:09 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
$ uname -a
Linux localhost.localdomain 3.10.0-862.2.3.el7.x86_64 #1 SMP Wed May 9
18:05:47 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux

Our Ubuntu box is running kernel 4.15.0, and our CentOS box, version 3.10.0.

Therein is the first advantage of containers, which are able to run completely different
versions of the Linux kernel.

The second advantage in this vein is the fact that virtual machines don't have to be
the same operating system as their host: you can emulate a Windows, FreeBSD, or
even macOS machine on a Linux box, and mostly any combination of the same.

macOS is a bit of a special case (isn't it always?) because there are
license problems and you have to do it in a very specific fashion, but
it can be done.

Let's look at something else that's a little bit cool.

On our CentOS VM, I've listed the disks:

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 40G 0 disk
├─sda1 8:1 0 1M 0 part
├─sda2 8:2 0 1G 0 part /boot
└─sda3 8:3 0 39G 0 part
 ├─VolGroup00-LogVol00 253:0 0 37.5G 0 lvm /
 └─VolGroup00-LogVol01 253:1 0 1.5G 0 lvm [SWAP]

These aren't physical drives, they're virtual, and, as a result, you can screw up their
configuration as many times as you like without damaging your host's booting
potential.

Containers and Virtualization Chapter 9

[550]

This is one thing I hark on about all the time, mostly since I
completely hosed the installation I had on my laptop by running a
bunch of Ansible in a container. This Ansible, though I didn't know
it at the time, messed around with disk partitions and layout quite
forcefully, and, in the case of containers, the devices listed in /dev/
are the devices on your machine, meaning that I'd most excellently
destroyed my local install. Thankfully, I worked out what had
happened before I rebooted, and was able to save the work I needed
before reinstalling, but I didn't do that again. I also changed the tests
to use Vagrant and Virtual Machines instead…

Now, obviously, there are disadvantages too—you're basically running an entire
machine, meaning that they have to boot (though you can get this down to a few
seconds) and will be inherently slower than most containers to start up.

You might also only need one program to be installed (such as Steam on a Windows
VM), but you get the other guff along for the ride, meaning that if you want it or not,
you'll get Edge browser, Paint, and those annoying folders in the Documents section
that are titled Music, Videos, and Pictures even, inexplicably, on server
installations.

How it works…
It works on modern computers by taking advantage of CPU features, for the most
part.

When you emulate your hardware, using either VirtualBox or KVM, what you're
really doing is creating a whole separate set of instructions for the CPU to process. If
we emulate VMs on top of CPUs that aren't aware of them natively, and can't deal
with their instructions at near-native speeds, you have to emulate even the CPU,
which can be costly and slow (more on this later).

Generally, CPUs from the last decade will have either AMD-V (in the case of AMD)
or VT-x (in the case of Intel), which means that your VMs will be nearly
indistinguishable from your host machine in terms of raw processing speed.

Containers and Virtualization Chapter 9

[551]

There's also full virtualization and paravirtualization, the former of which means
emulating everything (like, say, emulating an aarch64 processor atop an x86_64
processor) and the latter of which means that, while the execution of processes is
segregated, the actual processor being used is the same one as the host (what we
talked about before in terms of CPUs being virtualization-aware).

There's more…
There's even more cool things you can do with VMs that just aren't possible with
containers.

Say you're a gamer, and you really don't like using Windows, but begrudgingly
admit that you really want to play Civilization with your friends, all of whom are
avid Windows fanatics. You can do it (sort of) from within Linux.

Okay okay, so it's a bit disingenuous to suggest you're doing it from within Linux, but
there's a method here.

You start a VM, install Windows (legally), and then connect your graphics card to
your VM…

What?

Yes!

With PCI-passthrough, it's perfectly possible to give a graphics card to a virtual
machine, plug a monitor in the back, and then do all your gaming on a separate
screen (using the same mouse and keyboard).

Progress!

Starting a QEMU machine with our VM
In this section, we're going to start a VM inside our VM and attempt to connect to it.

Be forewarned. You will probably think that the elements of this section are slow.
This is not the fault of your machine, or your own configuration—this is the fault of
physics and the fact that we don't have consumer-grade quantum computing yet.

Containers and Virtualization Chapter 9

[552]

Getting ready
SSH to your Ubuntu VM:

$ vagrant ssh ubuntu1804

Install the appropriate components for running virtual machines on Ubuntu:

$ sudo apt install qemu -y

How to do it…
We're going to download an Alpine ISO and attempt an installation inside a virtual
machine (inside our virtual machine):

$ wget
http://dl-cdn.alpinelinux.org/alpine/v3.8/releases/x86_64/alpine-virt-
3.8.1-x86_64.iso

I chose Alpine for this because it's tiny, fitting into 32 MB.

Next, we need to create a virtual disk on which to install our OS:

$ qemu-img create example-disk 4G
Formatting 'example-disk', fmt=raw size=4294967296

Now, we can use QEMU to boot our ISO atop our virtual drive:

$ qemu-system-x86_64 -drive file=example-disk,format=raw -cdrom
alpine-virt-3.8.1-x86_64.iso -boot d -nographic

Containers and Virtualization Chapter 9

[553]

With any luck, you should see something like the following:

At the command-line prompt, you should be able to log in as the root user (there's no
password by default):

localhost login: root
Welcome to Alpine!

The Alpine Wiki contains a large amount of how-to guides and general
information about administrating Alpine systems.
See <http://wiki.alpinelinux.org>.

You can setup the system with the command: setup-alpine

You may change this message by editing /etc/motd.

localhost:~#

Alpine functions like something approaching a live CD, so we can now go ahead and
run through a quick installation to the local drive:

setup-alpine

Containers and Virtualization Chapter 9

[554]

You'll be asked some standard questions. Mostly, you can just answer with the
defaults, but for the sake of completeness, here's what I did:

Keyboard: gb
Keyboard variant: gb
Hostname: [default (localhost)]
Interface: [default (eth0)]
IP address: [default (dhcp)]
Manual network configuration: [default (no)]
Password: Random
Time zone: [default (UTC)]
Proxy: [default (none)]
Mirror: 3 (UK, you may find one closer to you)
SSH server: [default (openssh)]
Disk to use: sda
How to use: sys
Erase and continue: y

Once completed, you'll have an installed Alpine Linux VM inside your Ubuntu VM.

Power down the Alpine installation:

poweroff

You'll find yourself back inside your Ubuntu VM. Now, we're going to boot Alpine
again, but this time we're going to omit the ISO file and the -boot parameter:

$ qemu-system-x86_64 -drive file=example-disk,format=raw -nographic

As I said at the start, all of these steps can take a long time to
complete, depending on the age of your computer.

Containers and Virtualization Chapter 9

[555]

Once booted, you'll find yourself back in your Alpine installation, this time booted
from our virtual drive:

Welcome to Alpine Linux 3.8
Kernel 4.14.69-0-virt on an x86_64 (/dev/ttyS0)

localhost login: root
Password:
Welcome to Alpine!

The Alpine Wiki contains a large amount of how-to guides and general
information about administrating Alpine systems.
See <http://wiki.alpinelinux.org>.

You can setup the system with the command: setup-alpine

You may change this message by editing /etc/motd.

localhost:~#

To terminate your session, either power off the VM again or hit Ctrl + A, and then X.

How it works…
Breaking down what we're doing here step by step, we started out by downloading
an ISO image from the Alpine website. This is the easiest thing to explain, as we're
effectively using the ISO as a source of truth for our installation. You can also do
things such as pass /dev/cdrom through to your VM, should you wish to use the
physical drive in your machine (and you live in 2009).

Once we had our ISO image, we then created a file-based block device to install atop.
This is so that we can segment one installation from another, and even move the
installation from machine to machine should we wish. There are other solutions that
don't involve using files – you could partition an LVM setup, giving some of the
space to your VM, or you could attach a physical disk and give the entire thing to the
installation.

We used qemu-img to create the file, but there's no reason you couldn't have used
another tool such as fallocate to accomplish the same thing.

Containers and Virtualization Chapter 9

[556]

Next, we booted our VM using the following command:

$ qemu-system-x86_64 -drive file=example-disk,format=raw -cdrom
alpine-virt-3.8.1-x86_64.iso -boot d -nographic

 Breaking this down, we have the following:

qemu-system-x86_64

This is the QEMU architecture that we want to emulate. I stuck with x86_64 for this,
as it's the most common and it's the architecture that the ISO we downloaded expects
to find. We could have used qemu-system-aarch64 if we so desired, and provided
we had the appropriate disc image:

-drive file=example-disk,format=raw

Here, we're passing QEMU a drive to use, specifically the example-disk file that we
just created, and the format it was created in:

-cdrom alpine-virt-3.8.1-x86_64.iso

We specifically tell QEMU that we want to use the ISO we downloaded:

-boot d

We want to boot, specifically from the CD-ROM rather than the virtual drive:

-nographic

We're on a server here, connected over SSH, so we can't use a graphical output for our
VM. This option redirects serial input and output to the console.

There's more…
There's nothing stopping you from using your QEMU-driver VM as a full-fledged
machine, aside from the speed.

Containers and Virtualization Chapter 9

[557]

You can install packages, and even run things such as htop:

apk add htop

See also
You might have noticed a lot of options that we didn't use here, and QEMU's system
tools are capable of quite a lot. Typically, people don't build VMs using QEMU
directly – they rely on shinier and more user-friendly tools to do the job for them.

On servers, Virsh is a good choice (covered later in this chapter) and, on desktop
machines, Virtual Machine Manager (virt-manager) is a very commonly installed
package that also lets you connect to remote (headless) servers to set up VMs using
clicky buttons.

Containers and Virtualization Chapter 9

[558]

Using virsh and virt-install
virsh and virt-install are good tools for individuals who are getting started with
VMs on Linux. It sounds a bit old hat now, but if you can do something well on the
command line, you'll wonder why you ever needed a clicky-button GUI to do the job
for you.

When we talk about clients in this way, what we're referring to are frontends to the
libvirt library, which is a C toolkit that was designed to make interacting with the
kernel's virtualization functionality easier.

virsh and virt-install talk to libvirt, which, in turn, talks to the kernel.

Getting ready
SSH to your Ubuntu VM, and then install the virtinst, libvirt-clients,
libvirt-bin, and libvirt-daemon packages:

$ vagrant ssh ubuntu1804
$ sudo apt update
$ sudo apt install virtinst libvirt-clients libvirt-bin libvirt-daemon
-y

How to do it…
First, we're going to use the virt-install tool that we've installed to create our VM,
and then we're going to probe it with virsh.

Creating the VM is the simple step; it's the heartache that comes with maintaining
machines that's the real drag.

virt-install
To begin, let's use the Alpine ISO we downloaded previously to spin up and install a
virtual machine.

Containers and Virtualization Chapter 9

[559]

If you haven't got the ISO from the previous section, here's the command to
download it again:

$ wget
http://dl-cdn.alpinelinux.org/alpine/v3.8/releases/x86_64/alpine-virt-
3.8.1-x86_64.iso

Let's use fallocate this time to create a block device:

$ fallocate -l 2G ex-alpine-2-disk

Now, let's use a single line to provision our domain (domain being the collective term
used here for the machine and other bits):

$ sudo virt-install --name ex-alpine-2 --memory 512 --disk ex-
alpine-2-disk --cdrom alpine-virt-3.8.1-x86_64.iso --graphics none --
os-variant virtio26

We're using virtio26 as the OS variant here because there isn't an
explicit alpine option. Instead, this tells virt-install that the OS
we're installing is using a kernel later than 2.6, and it supports
VirtIO devices (for disks, networking, and so on). This results in us
having a functioning VM, which is nice.

Assuming this goes to plan, you should again see the Alpine boot sequence.

Use the root user and blank password to log in, and then run through the install
process, as we did in the previous section (installing to the vda device).

Disconnect from the console once the install has finished with Ctrl +].

virsh
It's perfectly possible to use Virsh as a series of commands on the command line, in
the traditional Unix style of <command> <flag> <argument> that we've seen
previously.

However, it's also perfectly acceptable to use Virsh interactively, in its own mode.

Start the Virsh Terminal by using the following:

$ sudo virsh
Welcome to virsh, the virtualization interactive terminal.

Type: 'help' for help with commands

Containers and Virtualization Chapter 9

[560]

 'quit' to quit

virsh #

Now, we're going to interact with the machine we created a moment before. Start by
listing it on the command line:

virsh # list
 Id Name State
--
 3 ex-alpine-2 running

By default, this command will show you running domains.

If we connect to our VM and hit Enter a couple of times, we can interact with our
install:

virsh # console ex-alpine-2
Connected to domain ex-alpine-2
Escape character is ^]

localhost:~#
localhost:~#
localhost:~#

Hop out of the VM again with Ctrl +].

Let's build on the bare-bones domain that we have, starting by taking a look at what
virt-install has given us with dominfo:

virsh # dominfo ex-alpine-2
Id: 5
Name: ex-alpine-2
UUID: 80361635-25a3-403b-9d15-e292df27908b
OS Type: hvm
State: running
CPU(s): 1
CPU time: 81.7s
Max memory: 524288 KiB
Used memory: 524288 KiB
Persistent: yes
Autostart: disable
Managed save: no
Security model: apparmor
Security DOI: 0
Security label: libvirt-80361635-25a3-403b-9d15-e292df27908b
(enforcing)

Containers and Virtualization Chapter 9

[561]

Now here's the fun bit – we haven't actually rebooted our VM yet, following the
install, so let's issue that using virsh:

virsh # destroy ex-alpine-2
Domain ex-alpine-2 destroyed
virsh # start ex-alpine-2
Domain ex-alpine-2 started

Yes, destroy is a confusing word here, but it's because the actual
state of the VM is ephemeral. The data is safe on the drive. The
actual configuration is part of the domain so that when we issue the
destroy and start commands, we're not really deleting anything.
I dislike the terminology, but it's just something you learn to live
with.

Now, we can console connect to our VM, again from virsh (this bit, again, can take
some time):

virsh # console ex-alpine-2
Connected to domain ex-alpine-2
Escape character is ^]

Welcome to Alpine Linux 3.8
Kernel 4.14.69-0-virt on an x86_64 (/dev/ttyS0)

localhost login:

And, at any time, we can disconnect using Ctrl +].

Virsh is full of tricks, my favorite of which is the easy way to edit the configuration
XML of your domain.

Issue an edit command as follows:

virsh # edit ex-alpine-2

Select an editor. To change later, run 'select-editor'.
 1. /bin/nano <---- easiest
 2. /usr/bin/vim.basic
 3. /usr/bin/vim.tiny
 4. /bin/ed

Choose 1-4 [1]: 2

Containers and Virtualization Chapter 9

[562]

You should be dropped into the editor you selected and presented with the
configuration file for your VM:

This is sort of the additional way of doing things. If you're comfortable editing files
directly, this might be your jam more than using the command line (and, in my
experience, there are a couple of options that are just not possible to do without
delving into this file).

There are also a couple more things before we leave the world of virsh, the first of
which is the version command:

virsh # version
Compiled against library: libvirt 4.0.0

Containers and Virtualization Chapter 9

[563]

Using library: libvirt 4.0.0
Using API: QEMU 4.0.0
Running hypervisor: QEMU 2.11.1

It's a great way to work out the version of the hypervisor you're connected to, the
libvirt library version, and the API.

You can also check the vCPU count:

virsh # vcpucount ex-alpine-2
maximum config 1
maximum live 1
current config 1
current live 1

Then, you can adjust the numbers:

virsh # setvcpus ex-alpine-2 2 --maximum --config --hotpluggable

We also know from dominfo that we gave our VM 512 MiB of memory, so let's lower
that to make space for other VMs:

virsh # setmem ex-alpine-2 --size 400MiB

We could up it too, but not beyond the max memory setting that the
VM already has (in this state, at least).

How it works…
As hinted at previously, when you create a VM using virt-install, what you're
actually doing is writing an initial XML file that contains the recipe for how the VM
looks and acts.

This file actually exists at /etc/libvirt/qemu/ex-alpine-2.xml and can be read
in the same way as any other file on the system (virsh just makes it easier, like
systemctl cat).

When we use tools such as virt-install, virt-viewer, or any of the virt-*
suite, we're taking a lot of typing and copying of files out of the equation. You can
write a runbook that recreates an environment with just a few one-line commands.
Virsh then exists to query your setup and get some basic information about the
solutions you've spun up.

Containers and Virtualization Chapter 9

[564]

We can use something like virsh autostart to start a VM on boot, as follows:

virsh # autostart ex-alpine-2
Domain ex-alpine-2 marked as autostarted

By doing this, we're enabling the script located at /usr/lib/libvirt/libvirt-
guests.sh to start the VM during boot.

This script, in turn, is triggered by a systemd unit:

$ systemctl cat libvirt-guests
/lib/systemd/system/libvirt-guests.service
[Unit]
Description=Suspend/Resume Running libvirt Guests
Wants=libvirtd.service
Requires=virt-guest-shutdown.target
After=network.target
After=time-sync.target
After=libvirtd.service
After=virt-guest-shutdown.target
Documentation=man:libvirtd(8)
Documentation=https://libvirt.org

[Service]
EnvironmentFile=-/etc/default/libvirt-guests
Hack just call traditional service until we factor
out the code
ExecStart=/usr/lib/libvirt/libvirt-guests.sh start
ExecStop=/usr/lib/libvirt/libvirt-guests.sh stop
Type=oneshot
RemainAfterExit=yes
StandardOutput=journal+console
TimeoutStopSec=0

[Install]
WantedBy=multi-user.target

There's more…
Take a look at the rest of the virt suite:

$ virt-
virt-admin virt-convert virt-install virt-pki-validate virt-viewer
virt-xml-validate
virt-clone virt-host-validate virt-login-shell virt-sanlock-cleanup
virt-xml

Containers and Virtualization Chapter 9

[565]

There's a tool for everything, and everything's got a tool.

When you get a few minutes, take a look at virt-clone and virt-viewer – they're
my favorites.

Comparing the benefits of local installs,
containers, and VMs
We're going to take a look at some obvious advantages and disadvantages to local
installations, containers, and VMs, as well as deciding when it might be ideal to use
one or the other.

Getting ready
If you want to follow along in this section, ensure that you've got Docker installed
and set up, as well as having QEMU tools enabled (both from the previous sections).

SSH to your Ubuntu VM:

$ vagrant ssh ubuntu1804

Now, you might want to install Vagrant inside our Vagrant VM (for the VM examples
that follow):

$ sudo apt install vagrant -y

Once you've added yourself to the appropriate groups, log out of your VirtualBox
VM and back in, prior to moving into this section.

How to do it…
From your command line, let's start an Nginx instance.

You could go about this in one of three ways.

Use apt to install Nginx from the default repositories1.
Use Docker to pull the official Nginx image from Docker Hub2.
Set up a VM and install Nginx inside it, using port forwarding from the3.
host

Containers and Virtualization Chapter 9

[566]

These could be done in the following fashion:

$ sudo apt install nginx -y
$ sudo docker run -p80 -d --rm nginx
$ cat << HERE > Vagrantfile
-*- mode: ruby -*-
vi: set ft=ruby :

\$provisionScript = <<-SCRIPT
apt install nginx -y
SCRIPT

Vagrant.configure("2") do |config|

 config.vm.define "debian8" do |debian8|
 debian8.vm.box = "debian/jessie64"
 debian8.vm.network "forwarded_port", guest: 80, host: 8080
 debian8.vm.provision "shell",
 inline: \$provisionScript

 debian8.vm.provider "libvirt" do |lv|
 lv.driver = "qemu"
 lv.memory = 256
 lv.cpus = 1

 end

 end

end
HERE
$ sudo vagrant up

I used a Vagrantfile here because it's what we've used throughout
this book, but there are other ways we could go about spinning up a
VM. This also might not work if there are already other VMs
running inside your VM (from the previous section) and could just
be far too slow to work at all.

What are the advantages and disadvantages to these different methods?

Local Nginx install
First, the local install. This is the simplest method, as we're simply installing software
that is readily available from the default Ubuntu repository.

Containers and Virtualization Chapter 9

[567]

Pros:

It comes configured in an Ubuntu fashion (that is, some Ubuntu defaults,
such as start scripts) and it is pretty much guaranteed to work with your
setup
It installs extremely quickly
It will also be kept up to date as long as the repository is kept up to date,
and other software installed from the same location should interact with it
in a native fashion, avoiding things like manual pointing of dependencies
It'll obviously be fast, and thus able to utilize whatever your box grants it
You can generally expect reasonable help with issues too, be it on the
official forums, or if you have a specific support contract with Ubuntu (they
may start by assuming you've installed things from their default
repositories)

Cons:

You can't install multiple versions of Nginx easily; though it's certainly
possible, it's more work
You can't easily delete all of your configuration and files without
something potentially getting left behind (making a reinstall a faff)
Nginx isn't as segregated as it could be from the rest of the system

Docker Nginx install
Moving on, we next set up an Nginx Docker container, forwarding a port as we did.

The positives here are as follows:

It's quick to start up your instance
Multiple instances can be started with no worry of cross contamination
The processes are reasonably segregated from the host machine (though
exploits can and do happen)
Containers can be torn down and redeployed in a heartbeat, with no worry
that lingering files might cause you problems

Some negatives are as follows:

You have to download the container first
Mapping ports (when not defined explicitly) results in a randomly NAT'd
port, rather than port 80 by default

Containers and Virtualization Chapter 9

[568]

You might end up with an OS in the container that isn't the same as the
host OS (there can be internal security compliance issues with this)
You've now effectively got two sources of truth for software running on
your system
Configuration within the container isn't consistent – you have to explicitly
save a container's state if you modify it
Debugging becomes slightly more awkward
No init system (usually) if you do need one for things such as service file
testing

VM Nginx install
There's a small consideration to take into account here, and that's the fact we're
running a VM inside a VM, but it highlights a few problems.

Some positives are:

It has pretty much complete OS segregation (except for some
vulnerabilities like Meltdown)
Good control over resource allocation for the VM
Ability to tear down and spin up on a whim
If you need to specifically make hardware changes to account for software
requirements, VMs are the only way to do this easily

Some negatives are:

VMs can be slower than containers, and there's a lot of factors you have to
account for (such as if your server is already a VM)
You're running an entirely separate OS and kernel, for the sake of one
program (in this example)
VMs usually take up more space, owing to the disk space needed for the
rest of the OS
You have to manage the updates for another machine, besides the host
You need to keep an eye on resource segregation, which can mean extra
monitoring (this is especially true if you do things such as specific CPU
pinning)

Containers and Virtualization Chapter 9

[569]

How it works…
This isn't an attempt to dissuade you from choosing any particular method of
installing your software, and there's plenty of reasons for choosing one method over
the other.

I've worked in environments where I had to primarily use a VM, and not wanting the
headache of using a VM inside a VM, I've tested software by using containers instead.

Likewise, as mentioned previously, I've screwed up host installations by making
hardware configuration changes inside a Docker container, resulting in a host system
that would never boot again.

Speaking from experience, you'll quickly get tired of managing different methods of
installation, and having used systems where some things were installed from default
repositories, some from Snaps, some from Flatpak, and some utilizing Docker
containers, it gets really old, really fast.

In the example we looked at here, I would be hard pressed to not choose Docker on a
web server, specifically because of the management capabilities it offers. I could easily
install multiple instances of Nginx and be relatively confident they'd never know that
another instance existed, without having to segregate configuration files in a weird
and wonderful fashion.

It's never simple.

Also, it's worth remembering that because we used Vagrant in our VM and libvirt
underneath, we can see our VM with Virsh:

virsh # list
 Id Name State
--
 22 vagrant_debian8 running

virsh #

We can also see our container with docker:

$ sudo docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
4f610d2a6bef nginx "nginx -g 'daemon of…" 3
hours ago Up 3 hours 0.0.0.0:32768->80/tcp
gallant_curie

Containers and Virtualization Chapter 9

[570]

Brief comparison of virtualization options
(VMware, proxmox, and more)
When it comes to virtualization, everyone has their favorite solution.

You should know about two options by now, those being VirtualBox (which we've
been using throughout this book) and QEMU/KVM. However, these aren't the only
options available to you, should you want to run virtual machines on your server, just
as containers aren't limited to Docker.

Here, we're going to run through a few other options, most of which you'll probably
come across in your career at some point:

VMware ESXi
Proxmox
OpenStack

Getting ready
Open your web browser of choice.

How to do it…
We're going to look at some of the options available to us, in a section dedicated to
each.

VMware ESXi
One of the various offerings from VMware (now a subsidiary of Dell) ESXi isn't
Linux; it's a dedicated "OS" that sits atop your hardware, and virtual machines can be
configured atop ESXi.

It is a licensed product, and it isn't open source, but it fits in well with the VMware
management offerings that they have alongside the hypervisor itself (for example,
you can easily have several hypervisors in a pool, which are managed by a
centralized box).

Containers and Virtualization Chapter 9

[571]

In terms of pros, VMware ESXi offers you the following:

A dedicated hypervisor, designed to do one job, and do it well
Easy setup – a few clicks and you've got a box installed
A wide range of hardware support, including a range of servers
Easy-to-use software and understandable menus (in this author's opinion)

In terms of cons, you might consider the following:

VMware ESXi isn't open source; this may or may not impact your decision
As a dedicated virtual machine server, ESXi can't do anything else of note
It can get expensive as an offering, and while support can be bought and
agreements signed, you might go for a free offering based entirely on
budget

VMware is available from https:/ /www.vmware. com/ products/ esxi- and- esx. html:

https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html

Containers and Virtualization Chapter 9

[572]

On a personal note, I admit to having used VMware products many times, for various
jobs, and it does exactly what it says on the tin, with very little flourish on top. It
handles things such as VM failover gracefully, in the right circumstances, and it's
simple enough that anyone can be put in front of the console and navigate around
easily (though I wasn't a massive fan of their first attempts at a web-based GUI).

Proxmox Virtual Environment
Another dedicated hypervisor install, Proxmox (VE), is a Linux-based (Debian,
specifically) operating system that, again, has a wide range of hardware support and
a friendly GUI to get you started.

This open source solution is ideal for a home-lab environment, and scales up to large
installations well, meaning that you can deploy the same solution for your developers
and your production rollout.

In terms of pros, you might think about the following:

The fact it's open source, which again, may influence your decision
The fact it's free (as in beer), with the option of paid support and training
The knowledge that it's based on known and well-supported technologies,
such as KVM and QEMU
The fact it supports containers, as well as virtual machines

In terms of negatives, you could consider the following:

The install base, and the fact it's not as well-known as VMware ESXi and
others (though this might influence you as a positive, too)
As a dedicated virtualization install, your Proxmox server won't do much
of anything else (like ESXi)

Containers and Virtualization Chapter 9

[573]

Proxmox Virtual Environment is available at https:/ /www. proxmox. com/en/
downloads:

Proxmox Virtualization Homepage

Again, speaking from personal experience, I've set up three node Proxmox clusters
with automatic failover with relative ease, and everyone I've spoken to that uses
Proxmox seems to appreciate what a nice solution it is in a pinch, while knowing it
can extend further when needed.

OpenStack
The new kid on the block, OpenStack, is a collection of technologies that, when added
together, make a solution that rivals any of the bigger virtualization environment
providers.

https://www.proxmox.com/en/downloads
https://www.proxmox.com/en/downloads
https://www.proxmox.com/en/downloads
https://www.proxmox.com/en/downloads
https://www.proxmox.com/en/downloads
https://www.proxmox.com/en/downloads
https://www.proxmox.com/en/downloads
https://www.proxmox.com/en/downloads
https://www.proxmox.com/en/downloads
https://www.proxmox.com/en/downloads
https://www.proxmox.com/en/downloads
https://www.proxmox.com/en/downloads

Containers and Virtualization Chapter 9

[574]

It can be a virtual machine host, container host, file storage provider, block storage
provider, and it has a rapid development cycle that keeps new features constantly
coming in.

Unlike the other two solutions on this list, OpenStack is the name given to a few
different software components.

For the pros, give some thought to the following:

OpenStack has an enthusiastic and dedicated community behind it
The components are open source and worked on by people all over the
globe
Many companies offer OpenStack solutions and offer different levels of
support
If you know OpenStack well, you won't be out of work for the next fifty
years (conjecture)

In terms of cons, I might get some hate mail for this:

OpenStack has a rapid development cycle, meaning that you generally get
left behind if you don't stay on top of updates
OpenStack sits atop whatever distribution of Linux you want it to, meaning
that you have to manage the underlying OS as well in a lot of cases
Certainly in places where I've seen OpenStack being used, it almost takes a
dedicated OpenStack team to keep on top of management
It's not easy to set up in a usable fashion, in a pinch (though development
environments do exist)
There are multiple schools of thought on what makes a good OpenStack
deployment
It's a right pain when you come to an OpenStack solution that's been
neglected

If you want to give OpenStack a go (and I would encourage you to do so), the Getting
Started guide can be found here: https:/ /wiki. openstack. org/ wiki/ Getting_
Started.

https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started
https://wiki.openstack.org/wiki/Getting_Started

Containers and Virtualization Chapter 9

[575]

There's also a start page, including links to the devstack dev environment:

Personal thought – I know some incredibly intelligent people that love OpenStack
and swear by it, but it's an area that requires a lot of love and attention, along with
dedication.

How it works…
There are different ways to do the same thing. This is true for most experiences, and
it's especially true in the Unix and Unix-like (Linux) world.

Here, we have three good examples of software and solutions that allow you to
control virtual machine deployment in a mostly user-friendly fashion, even though
you might think that all of these solutions are much more complex than you require.

I mention them here because it's good to know these options are out there, and even if
you start your journey by installing VMs locally on an Ubuntu installation (using
VirtualBox or KVM and Libvirt), you might wish to expand to something grander in
the future.

Containers and Virtualization Chapter 9

[576]

Another option to consider is public cloud offerings, and while I'll talk about these in
greater detail later, it's worth noting that there are several providers out there who'll
take away the headache of managing the underlying software and let you simply
install and break VMs.

If you don't have the hardware or the resources, or even the budget, you can use
public cloud providers for pennies by the hour.

Take a look at Scaleway, Digital Ocean, and AWS (specifically, their Lightsail
offering).

Roundup – containers and virtualization
A short few years ago, there was a movement in the Linux community. Containers
were suddenly everywhere, and making fantastical promises about what was
possible in an ephemeral and ever-changing world. Containers were going to solve
every problem you'd ever face with software, they were going to fix every security
problem you'd ever fought, and they were going to tuck you in at night while feeding
your pets.

We know now that while containers are great, and they are indeed an excellent
solution in a lot of circumstances, they aren't the be-all and end-all. There will still be
situations where software atop a bare-metal machine will be best, or instances where
a VM just makes more sense than a container, and you know what? That's okay.

If you want to, don't let me dissuade you from trying to get your own pet project
working in a container – it's definitely a good learning experience, and you may find
that it actually is the best way to lift and shift your installation, but don't get carried
away.

VMs will always have their place too, and while a lot of testing, deployments, and
dev environments have gone the way of serverless container deployments, a good
local VM can still offer a nice way to work, especially if you want to understand how
certain software interacts with the OS as a whole (be it a monolithic application, or
lots of little applications that make up one program).

At the end of the day, it's like most things in our world. Just because you can do
something in one way, doesn't necessarily mean it's the best way to do it; in the same
vein, that doesn't make your proposed solution bad, and it could be perfectly
functional for what you need—it's just handy to be aware of all the options.

Containers and Virtualization Chapter 9

[577]

I sincerely wish I could fit more exploration in this book, and look deeper into the
different ways and means of managing and maintaining both VMs and containers,
but this is not a book about either of those things – it's supposed to be a general peek
into the world of Linux administration.

Remember holy wars? I've also met people who are against the very
idea of containers, deeming them variously "difficult" and
"pointless" solutions. If you take up this mantle and fight this corner,
be prepared to lose, because the army of container proponents is
bigger than the opponents at this point by a wide margin.

10
Git, Configuration

Management, and
Infrastructure as Code

In this chapter, we will examine the following topics:

What is Git?
Setting up a Git server
Committing to our Git repository
Branching our Git repository and committing changes
Installing Ansible
Using Ansible to install Java from a role
Storing our Ansible configuration in Git
Exploring options for IaC

Introduction
There was a time when a system administrator knew their server intimately. They
could tell you every fan noise, the meaning of every beep, and what it sounded like
when the metal expanded as the server got hot.

As with the hardware, the software was almost supernaturally indexed in the system
administrator's head, and they could tell you at the drop of a pin what version of
OpenSSL, Apache, or Midnight Commander they were running.

There's an obvious problem with this: the hit by a bus effect.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[579]

If a sysadmin were to be unfortunately mowed down one morning, his Walkman
being thrown to the road alongside the shattered remains of his Game Boy Color, all
the knowledge of the server would be lost in a singular moment. The knowledge of
the strange way in which the server was set to boot, meaning it has to have the
keyboard unplugged at just the right moment, will be gone forever.

You don't want one person to be intimately aware of everything to do with a
server—you want multiple people, and to take it one step further, you want it written
down in a format that's not only easily reproduced and modified, but also preferably
so simple that even a computer could understand it.

In this chapter, we're going to look at three things that are relatively close together in
the software world—a version control system, called Git; the concept of configuration
management, mostly in the form of Ansible; and Infrastructure as Code, featuring
everyone's favorites, Terraform and Packer.

We've actually already done a lot of this by using Vagrant as we have been doing.
Vagrant is effectively a method of having infrastructure as code, though on a very
small scale. The small scripts that we've put into a couple of our Vagrantfiles could
easily be considered configuration management, though at a base level.

These tools are some of the best you'll come across on your journey, and Git
especially is used pretty much universally, so it's good to understand.

Technical requirements
In this chapter, we're going to need a couple of virtual machines (VMs).

Feel free to use the Vagrantfile that follows. We're mostly going to work across the
private network, between the VMs:

-*- mode: ruby -*-
vi: set ft=ruby :

$provisionScript = <<-SCRIPT
sed -i 's#PasswordAuthentication no#PasswordAuthentication yes#g'
/etc/ssh/sshd_config
systemctl restart sshd
SCRIPT

Vagrant.configure("2") do |config|

Git, Configuration Management, and Infrastructure as Code Chapter 10

[580]

 config.vm.provision "shell",
 inline: $provisionScript

 config.vm.define "centos1" do |centos1|
 centos1.vm.box = "centos/7"
 centos1.vm.network "private_network", ip: "192.168.33.10"
 centos1.vm.hostname = "centos1"
 centos1.vm.box_version = "1804.02"
 end

 config.vm.define "centos2" do |centos2|
 centos2.vm.box = "centos/7"
 centos2.vm.network "private_network", ip: "192.168.33.11"
 centos2.vm.hostname = "centos2"
 centos2.vm.box_version = "1804.02"
 end

end

What is Git?
In this section, we're going to look at the supreme overlord when it comes to version
control systems (VCSs). There have been others, and there will be more to come, but
right now, there's Git, and it's by far the most widely used and most popular (though
not without its fair share of criticism).

Git was initially developed by Linus Torvalds—yes, that same Linus Torvalds who
kick-started Linux kernel development, though these days it's primarily developed by
Junio C Hamano, and many other talented hackers. It's found in software
development primarily, but is increasingly used to store configuration for things like
Ansible, Terraform, and any other infrastructure as code tool, enabling a historic and
versioned picture of your infrastructure.

Getting ready
To understand Git, we're going to install it and start your VMs and jump onto your
first CentOS box:

$ vagrant up
$ vagrant ssh centos1

Git, Configuration Management, and Infrastructure as Code Chapter 10

[581]

How to do it…
Installing Git is simple, as it's in most default repositories (in fact, I've yet to come
across a Linux distribution where it wasn't in the default repositories):

$ sudo yum install git -y

Warning: You will most likely get Perl, and while this is not
inherently a bad thing, the very mention of the word perl can make
developers and sysadmins alike cringe.

We should now have Git, so let's run through some basics.

Cloning
Fundamentally, Git is a version control system that's primarily used for source code
versioning (though it has other uses, too).

To demonstrate how it works, let's clone a smallish repository (in this case, Ansible):

$ git clone https://github.com/ansible/ansible.git
Cloning into 'ansible'...

This may take a couple of minutes based on your connection, but, once finished,
you'll be left with an ansible folder:

$ ls -l
total 4
drwxrwxr-x. 14 vagrant vagrant 4096 Nov 19 18:10 ansible

Exploring and making changes
We now have a like-for-like copy of the devel Ansible code branch. It's devel
because that's what the repository owners want the default branch to be, though
frequently it will be master or develop.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[582]

Taking a look inside the folder, we'll see a lot of files with a lot of code inside:

$ cd ansible/
$ ls -l
total 100
drwxrwxr-x. 2 vagrant vagrant 243 Nov 19 18:10 bin
drwxrwxr-x. 3 vagrant vagrant 141 Nov 19 18:10 changelogs
-rw-rw-r--. 1 vagrant vagrant 645 Nov 19 18:10 CODING_GUIDELINES.md
drwxrwxr-x. 4 vagrant vagrant 53 Nov 19 18:10 contrib
-rw-rw-r--. 1 vagrant vagrant 35148 Nov 19 18:10 COPYING
drwxrwxr-x. 6 vagrant vagrant 60 Nov 19 18:10 docs
drwxrwxr-x. 4 vagrant vagrant 192 Nov 19 18:10 examples
drwxrwxr-x. 5 vagrant vagrant 4096 Nov 19 18:10 hacking
drwxrwxr-x. 3 vagrant vagrant 21 Nov 19 18:10 lib
drwxrwxr-x. 2 vagrant vagrant 78 Nov 19 18:10 licenses
-rw-rw-r--. 1 vagrant vagrant 13512 Nov 19 18:10 Makefile
-rw-rw-r--. 1 vagrant vagrant 852 Nov 19 18:10 MANIFEST.in
-rw-rw-r--. 1 vagrant vagrant 286 Nov 19 18:10 MODULE_GUIDELINES.md
drwxrwxr-x. 11 vagrant vagrant 133 Nov 19 18:10 packaging
-rw-rw-r--. 1 vagrant vagrant 5370 Nov 19 18:10 README.rst
-rw-rw-r--. 1 vagrant vagrant 360 Nov 19 18:10 requirements.txt
-rw-rw-r--. 1 vagrant vagrant 11028 Nov 19 18:10 setup.py
-rw-rw-r--. 1 vagrant vagrant 3389 Nov 19 18:10 shippable.yml
drwxrwxr-x. 10 vagrant vagrant 121 Nov 19 18:10 test
-rw-rw-r--. 1 vagrant vagrant 1129 Nov 19 18:10 tox.ini

As with any good source code, there should be a README file, which is generally a
good place to start, but we're not here for Ansible right now—we're here for Git.

Run a git status:

$ git status
On branch devel
nothing to commit, working directory clean

This tells us that we've made no changes and, as a result, our working directory is
clean, given that we've done nothing yet.

Make the following change to the README file:

$ sed -i 's/^/The big brain am winning again. /g' README.rst

Git, Configuration Management, and Infrastructure as Code Chapter 10

[583]

Now, if we apply git status again, we'll see our change:

$ git status
On branch devel
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working
directory)
#
modified: README.rst
#
no changes added to commit (use "git add" and/or "git commit -a")

As the message suggests, we could add and commit our changes, and then attempt to
get them merged upstream (don't), but for now, we're going to simply revert the
change we've just done that mangled the README file.

First, let's take a look at what we did:

$ cat README.rst
The big brain am winning again. |PyPI version| |Docs badge| |Chat
badge| |Build Status| |Code Of Conduct| |Mailing Lists| |License|
The big brain am winning again.
The big brain am winning again. *******
The big brain am winning again. Ansible
The big brain am winning again. *******
The big brain am winning again.
The big brain am winning again. Ansible is a radically simple IT
automation system. It handles
<SNIP>

Oh dear—let's fix that:

$ git checkout README.rst
$ git status
On branch devel
nothing to commit, working directory clean

Note how, when we checked out the README file, we basically reset the file to its
default state, meaning that git doesn't think we have anything to commit, and the file
is back to normal.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[584]

Checking out is the act of overwriting our uncommitted local
changes with the Git repository's version.

We can see the fact that these changes have been reverted by once again catting the
file:

$ head -5 README.rst
|PyPI version| |Docs badge| |Chat badge| |Build Status| |Code Of
Conduct| |Mailing Lists| |License|

Ansible

Neat, eh?

It's worth remembering, though, that any changes you made prior to overwriting the
file will be lost (because they weren't staged, and the repository wasn't made aware of
them).

How it works…
Fundamentally, Git is a version control system, meaning that it controls the versions
of the files under its care.

Most folders can theoretically be made into a Git repository, though it's usually code
or configuration that gets this privilege.

When you check out a repository, you get a snapshot of where the code on the branch
is at the time you check it out. If you then make changes, those changes need to be
staged and either kept in a separate branch or merged into the branch you changed.

Don't worry too much about this yet—I was incredibly confused the
first time someone told me about Git.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[585]

In the real world, there are a few different ways that people tend to use Git, and some
relatively popular tools and practices that have been developed. The kernel method
of using Git, for example, is extremely different to the GitFlow method.

We'll be going over examples of changes in the rest of this chapter, but for now, you
just need to understand that if you commit and push something into a Git repository,
it will have a record of that change, meaning that you can go back to an earlier
version of your code at any point in the life cycle of the repository, and either copy
old fixes or back-port changes into stable branches.

Sadly, Git doesn't have the ability to import code you haven't
written yet from some weird future file, but I'm still holding out
hope for this feature.

Your configuration per repository is stored in the .git folder that's created upon a
repository being imported/created:

$ pwd
/home/vagrant/ansible
$ ls -hla .git
total 1.5M
drwxrwxr-x. 8 vagrant vagrant 163 Nov 19 18:17 .
drwxrwxr-x. 14 vagrant vagrant 4.0K Nov 19 18:17 ..
drwxrwxr-x. 2 vagrant vagrant 6 Nov 19 18:09 branches
-rw-rw-r--. 1 vagrant vagrant 261 Nov 19 18:10 config
-rw-rw-r--. 1 vagrant vagrant 73 Nov 19 18:09 description
-rw-rw-r--. 1 vagrant vagrant 22 Nov 19 18:10 HEAD
drwxrwxr-x. 2 vagrant vagrant 242 Nov 19 18:09 hooks
-rw-rw-r--. 1 vagrant vagrant 1.4M Nov 19 18:17 index
drwxrwxr-x. 2 vagrant vagrant 21 Nov 19 18:09 info
drwxrwxr-x. 3 vagrant vagrant 30 Nov 19 18:10 logs
drwxrwxr-x. 4 vagrant vagrant 30 Nov 19 18:09 objects
-rw-rw-r--. 1 vagrant vagrant 28K Nov 19 18:10 packed-refs
drwxrwxr-x. 5 vagrant vagrant 46 Nov 19 18:10 refs

This folder also contains the history (in a binary format) of your repository. It is the
place that's searched for when you're trying to look for changes and differences in
files that aren't in your checked-out branch. Therefore, it can also be quite large.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[586]

Looking into the configuration file, we can see the defaults drawn down when we
cloned the repository:

$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = https://github.com/ansible/ansible.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "devel"]
 remote = origin
 merge = refs/heads/devel

Note the remote sections, detailing where our origin resides.

There's also a global configuration file and a system file that can
be used to make changes that affect every repository your user
interacts with, along with every repository any user on the system
interacts with.

This should give you a good indication as to why Git is so great—it allows easy
collaboration because people can work on different branches or even the same
branch, and there are functions in place to stop you stamping over each other's work.
You can also make changes safe in the knowledge that the history of a file is there,
meaning that when you inevitably break something, you can fix it with a few
keystrokes.

There's more…
Git is extremely powerful, but it also has some functionality that is just plain nice.

log, for example, can be useful for reading commit messages:

$ git log --pretty=short

Git, Configuration Management, and Infrastructure as Code Chapter 10

[587]

The output should look like the following screenshot:

Git, Configuration Management, and Infrastructure as Code Chapter 10

[588]

tag can be useful for listing the tags people have added to different points-in-time of
the code:

$ git tag | head -n5
0.0.1
0.0.2
0.01
0.3
0.3.1

branch can be used to see all the different branches that Git is aware of:

$ git branch -a
* devel
 remotes/origin/HEAD -> origin/devel
 remotes/origin/acozine-patch-1
 remotes/origin/devel
 remotes/origin/mazer_role_loader
 remotes/origin/release1.5.0
 remotes/origin/release1.5.1
 remotes/origin/release1.5.2
<SNIP>

Here, we used -a, so remote branches are included, as well as your single local one
(devel).

Setting up a Git server
In this section, we're going to look at setting up a small Git server, literally using what
we got when we installed git from the CentOS repositories.

We'll create a basic repository on centos2 and work with it from centos1.

Getting ready
For this section, we're going to be using both of our machines, using centos2 as a
server, and centos1 as the client.

In this instance, ensure that git is installed on both your machines:

$ sudo yum install git -y

Git, Configuration Management, and Infrastructure as Code Chapter 10

[589]

How to do it…
On centos2, let's create our empty repository:

$ mkdir example.git
$ cd example.git/
$ git init --bare
Initialized empty Git repository in /home/vagrant/example.git/

Now, on our centos1 machine, we can clone the repository:

$ git clone 192.168.33.11:example.git
Cloning into 'example'...
The authenticity of host '192.168.33.11 (192.168.33.11)' can't be
established.
ECDSA key fingerprint is
SHA256:s5NfsrM/XRuH5rXaZSaNmaUxXe3MlN2wRoJ3Q43oviU.
ECDSA key fingerprint is
MD5:ea:24:ef:b3:cf:d9:03:3d:06:da:1f:2f:d2:6b:1d:67.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.33.11' (ECDSA) to the list of
known hosts.
vagrant@192.168.33.11's password:
warning: You appear to have cloned an empty repository.

You'll be prompted for the vagrant user password (vagrant by default), and then
you'll see a message informing you that you've cloned an empty repository.

This is fine, though, as you should now see a new example directory:

$ ls
example
$ cd example/
$ git status
On branch master
#
Initial commit
#
nothing to commit (create/copy files and use "git add" to track)

How it works…
When you initialize your repository on centos2, you're creating the first of a
repository that can exist on any number of devices, and that don't necessarily have to
be cloned from your central location (centos2).

Git, Configuration Management, and Infrastructure as Code Chapter 10

[590]

If, for some reason, you're in a situation where you can't clone from
the initial server (centos2), you could also clone the repository from
another machine that already had the repository checked out
(though you do run the risk of that repository not being up to date
with the first node).

When you clone the repository, you're actually communicating over SSH with the
centos2 box, and Git sends specific commands that are understood by the repository
on the other side and answered.

Again, if we check out the .git repository on centos1, within the cloned repository,
we can see the following:

$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = 192.168.33.11:example.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master

Note the URL printed as the remote origin. Also be aware that this isn't a bare
repository.

Let's take a look at the config file on the server (centos2):

$ cat config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = true

It's considerably smaller, with bare set to true here.

There's more…
This is the simplest of Git repositories, and there's a bit more you can do if you want
to make it a bit more interesting.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[591]

First, you might consider creating a dedicated git user on your system, and using
this as the user that manages and owns the Git repositories. This is generally a pretty
standard approach, and one shared by the off-the-shelf Git solutions, like GitLab and
GitHub.

Secondly, you could think about setting up a cgit server, which is a small server that
can be used to visualize a Git repository.

The most famous cgit instance is probably git.kernel.org:

Committing to our Git repository
In this section, we're going to put together a small file, add it to the files being tracked
by Git, commit our changes, and push them to the origin server.

Getting ready
If you haven't already, set up a Git server based on the previous section.

Ensure that you've checked out your repository on centos1.

https://git.kernel.org/

Git, Configuration Management, and Infrastructure as Code Chapter 10

[592]

How to do it…
Let's give our new repository a bit of information and push this to the server (proving
it works):

$ cd example/

Let's start by running a git status to see where we're at:

$ git status
On branch master
nothing to commit, working directory clean

Good—it's empty.

Now, let's echo out some text to a file, stage the file, and commit it with a message:

$ echo "Warcraft III was the best Warcraft game." > README
$ git add README
$ git commit -m "Adding README to repository."

*** Please tell me who you are.

Run

 git config --global user.email "you@example.com"
 git config --global user.name "Your Name"

to set your account's default identity.
Omit --global to set the identity only in this repository.

fatal: unable to auto-detect email address (got
'vagrant@centos1.(none)')

Ah! Now, because this is a new installation, Git prompts us to set some defaults:

$ git config --global user.email "you@example.com"
$ git config --global user.name "Your Name... good film."

Let's try that commit again:

$ git commit -m "Adding README to repository."
[master (root-commit) 65bf49a] Adding README to repository.
 1 file changed, 1 insertion(+)
 create mode 100644 README

Okay, we've committed our file, meaning that the local version of master is up to
date.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[593]

However, this means that we're now out of sync with our origin repository, so we
need to push our changes up to there, too:

$ git push
warning: push.default is unset; its implicit value is changing in
Git 2.0 from 'matching' to 'simple'. To squelch this message
and maintain the current behavior after the default changes, use:

 git config --global push.default matching

To squelch this message and adopt the new behavior now, use:

 git config --global push.default simple

See 'git help config' and search for 'push.default' for further
information.
(the 'simple' mode was introduced in Git 1.7.11. Use the similar mode
'current' instead of 'simple' if you sometimes use older versions of
Git)

Woo! Another prompt—we should set it. Personally, I chose the new behavior,
because while CentOS 7 ships with an old version of Git, the march of progress
continues:

$ git config --global push.default simple

Phew! Alright, let's try a push again:

$ git push
vagrant@192.168.33.11's password:
Counting objects: 3, done.
Writing objects: 100% (3/3), 268 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To 192.168.33.11:example.git
 * [new branch] master -> master

Here, you can see that we were prompted for our password, but once that's entered,
the changes are written to the origin server.

This means that when we clone the repository from the origin again, our changes will
come with it.

Try the following from your home directory to prove this:

$ cd ~
$ git clone 192.168.33.11:example.git example2
Cloning into 'example2'...
vagrant@192.168.33.11's password:

Git, Configuration Management, and Infrastructure as Code Chapter 10

[594]

remote: Counting objects: 3, done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (3/3), done.
$ ls example2
README

Excelsior!

How it works…
Here, we're doing a few things.

First, after we've created our foo file with some text in, we add that file:

$ git add README

In this small command, we're actually adding the README file to Git's index.

Anything we stage in this manner is added in the next commit:

$ git commit -m "Adding README to repository."

Here, we're committing (as the name suggests) our added changes to the repository.
We also include a message as part of the command (with -m) instead of letting git
commit drop us into whatever our default editor is set to (because every commit
should have a message, since it prompts you to write one).

Lastly, we pushed our change:

$ git push

In technical terms, we're informing the remote repository (on 192.168.33.11) that
some references have changed, and we tell it which ones. We also push any
associated objects with these referenced changes.

Matching versus simple
A quick word on this, as we set our default in this section.

Had we set our option as matching, we would push all of our branches at once when
running a git push command. This means that not only your current branch, but
also master, develop, and any others you might have will also get pushed.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[595]

Simple, on the other hand, will only push the branch that you're currently working
on. From a logic point of view, it's understandable that simple would be the default
behavior, as it assumes that most people will only work in one branch at any one
time.

Branching our Git repository and
committing changes
In this section, we're going to look at branching our cloned repository and pushing
those changes to our server.

Getting ready
Ensure that you've run through at least the setup section, but preferably the section
where you committed your first file, too.

All work will be done on centos1, in the example repository.

How to do it…
Change into the example repository:

$ cd ~/example

Now, check that you're on master to start:

$ git branch
* master

Your current branch is denoted with an asterisk.

Good! Now, we're going to branch off from master, and make some changes:

$ git branch develop

Git, Configuration Management, and Infrastructure as Code Chapter 10

[596]

Run git branch again:

$ git branch
 develop
* master

Note that now, we have two branches, but we're still on the master branch. We need
to run a different command to flip to our new branch:

$ git checkout develop
Switched to branch 'develop'

Now, list what's in this branch:

$ ls
README

We've effectively made a copy of the master branch, meaning that all of the files
committed to that branch are available in our new one.

Let's create a new file and give it some content:

$ echo "Keep your keys happy." > RULESFORRULERS

Running git status again informs us of our untracked changes:

$ git status
On branch develop
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
RULESFORRULERS
nothing added to commit but untracked files present (use "git add" to
track)

As it says, let's add and commit this file:

$ git add *
$ git commit -m "Adding an extremely important file\!"
[develop 7f91f4d] Adding an extremely important file\!
 1 file changed, 1 insertion(+)
 create mode 100644 RULESFORRULERS

We've now got a branch locally, with a committed file that doesn't exist on the origin
server at all.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[597]

Let's try to push our branch to 192.168.33.11:

$ git push
fatal: The current branch develop has no upstream branch.
To push the current branch and set the remote as upstream, use

 git push --set-upstream origin develop

Oh no!

Because our local develop branch has no upstream counterpart configured, the push
fails.

However, you already knew that because you're a diligent sysadmin and you actually
read the error message, along with the helpful command it gave us to rectify this
problem:

$ git push --set-upstream origin develop
vagrant@192.168.33.11's password:
Counting objects: 4, done.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 326 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To 192.168.33.11:example.git
 * [new branch] develop -> develop
Branch develop set up to track remote branch develop from origin.

Okay, so we've now got a develop and master branch locally, as well as a copy on
the upstream server.

Let's check out master to see what it looks like now:

$ git checkout master
Switched to branch 'master'
$ ls
README

What? Where's our file? It was in this directory!

Ah, but no, this is a different branch of the same directory, and, in this dark, dark
timeline, our work doesn't exist.

Let's just check the differences between our two branches:

$ git diff develop
diff --git a/RULESFORRULERS b/RULESFORRULERS
deleted file mode 100644

Git, Configuration Management, and Infrastructure as Code Chapter 10

[598]

index c895005..0000000
--- a/RULESFORRULERS
+++ /dev/null
@@ -1 +0,0 @@
-Keep your keys happy.

There's our work!

Okay, so what if we want to merge our changes in from develop?

Git does that:

$ git merge develop
Updating 65bf49a..7f91f4d
Fast-forward
 RULESFORRULERS | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 RULESFORRULERS
$ ls
README RULESFORRULERS

Boom! We're still on our master branch, but the file is back.

Confusingly, though, if we now run git status, we see a new message:

$ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)
#
nothing to commit, working directory clean

Thankfully, again, the message is nice and explanatory. Our local master branch is
fine, but upstream isn't yet aware of our changes.

We can prove this with another diff:

$ git diff origin/master
diff --git a/RULESFORRULERS b/RULESFORRULERS
new file mode 100644
index 0000000..c895005
--- /dev/null
+++ b/RULESFORRULERS
@@ -0,0 +1 @@
+Keep your keys happy.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[599]

Let's get our changes up there:

$ git push
vagrant@192.168.33.11's password:
Total 0 (delta 0), reused 0 (delta 0)
To 192.168.33.11:example.git
 65bf49a..7f91f4d master -> master

Magic.

How it works…
Okay, so it's not really magic, just the product of some extremely brilliant coding.

When we branched from master (or any branch, for that matter), we created a point-
in-time clone of that branch in our new one. We then made changes to the branch,
doing things like testing configuration changes, or purposefully breaking things,
without affecting the master branch (and our known good configuration).

That much is easy to understand (I think), but the problems begin when we want to
make sure that our changes are pushed to the server.

We ran git push, which complained. This was because we didn't have a section in
our .git/config file that told git where to push our local branch.

After we run the suggested command, our .git/config now looks like this:

$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = 192.168.33.11:example.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master
[branch "develop"]
 remote = origin
 merge = refs/heads/develop

Note the inclusion of a new branch definition.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[600]

So, the push is done, and remote looks good.

We then flipped back to master and performed our git diff command:

$ git diff develop
diff --git a/RULESFORRULERS b/RULESFORRULERS
deleted file mode 100644
index c895005..0000000
--- a/RULESFORRULERS
+++ /dev/null
@@ -1 +0,0 @@
-Keep your keys happy.

This should be reasonably self-explanatory, but we're performing a diff against the
branch we're on right now, as well as the designated branch.

You could achieve the same thing with the following syntax, which is a bit more
explicit:

$ git diff master..develop

Alternatively, you could even check the two branches you're not on:

$ git diff origin/master..origin/develop

In this way, we start to see how powerful Git can be as a development tool.

It also neatly segues me into talking about origin branches.

In this section, we compared our local master with origin/master, as follows:

$ git diff origin/master
diff --git a/RULESFORRULERS b/RULESFORRULERS
new file mode 100644
index 0000000..c895005
--- /dev/null
+++ b/RULESFORRULERS
@@ -0,0 +1 @@
+Keep your keys happy.

From our .git/config, we learned that origin is the name of the remote
repository, as far as Git is concerned:

[remote "origin"]
 url = 192.168.33.11:example.git
 fetch = +refs/heads/*:refs/remotes/origin/*

Ergo, origin/master is the master branch on the remote server.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[601]

Our pushing to the origin/master (in the form of git push) keeps our code up to
date.

There's more…
You might be wondering why you'd bother pushing to a remote branch if you're just
going to locally merge your branch into master anyway.

The answer is simple: in most environments, you end up working with a lot of other
people, and it's a good development tool to be able to show what you've changed and
what you're working on. It also allows for things such as in-branch collaboration prior
to merging, as anyone else is able to check out your branch for themselves.

It's also true that most people don't just use a Git server in their infrastructure, instead
looking for solutions such as Gogs and GitLab, which are Git servers with added
functionality (like user management).

You could also be thinking about the server, and appreciating that in this section, it
dragged along a bit, and wasn't really needed.

Let's have a quick look at the changes to our server by first creating and checking out
a new branch:

$ git checkout -b super-fixes
Switched to a new branch 'super-fixes'

I used the shorthand for creating and checking out a branch here,
adding -b to the git checkout command. There's hundreds of
little tricks with Git, and people tend to have their favorites.

In this branch, let's create a new file and push it upstream:

$ echo "Never look tired." > RULESFORRULERS
$ git commit -am "Another git trick, adding and committing in one
line."
[super-fixes a9b53e8] Another git trick, adding and committing in one
line.
 1 file changed, 1 insertion(+), 1 deletion(-)
$ git push --set-upstream origin super-fixes
vagrant@192.168.33.11's password:
Counting objects: 5, done.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 329 bytes | 0 bytes/s, done.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[602]

Total 3 (delta 0), reused 0 (delta 0)
To 192.168.33.11:example.git
 * [new branch] super-fixes -> super-fixes
Branch super-fixes set up to track remote branch super-fixes from
origin.

Next, flip on to centos2 and nip into the repository:

$ cd ~/example.git/

By running ls, you won't see your actual files:

$ ls
branches config description gitweb HEAD hooks info objects pid refs

Instead, your files are in the objects directory, unreadable in their current format:

$ ls objects/
1c 29 65 7f 84 a5 a9 b0 c8 info pack

We can see our branches by their ref:

$ ls refs/heads/
develop master super-fixes

You wouldn't work in the bare repository on the server—you'd clone and adjust your
repository on another machine—but it's neat to look into the inner working
occasionally.

See also
You might want to install GitLab, or Gogs, or any of the other GUI-Git
implementations so that you can play around with them. Personally, I find them to be
reasonably intuitive, and teams of people tend to work better when they have a GUI
to jointly despise than a series of console commands.

Installing Ansible
In this section, we're going to look at one of the most popular configuration
management tools in the form of Ansible. Like others (such as Chef, Puppet, and
Salt), Ansible is a way of codifying your server configuration, by which I mean that
any changes you want to make can be written into a file and applied to a server, or a
collection of servers, programatically.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[603]

The configuration files you put together can be saved to a central store, most
commonly Git, and you can build things such as automatic pipelines around your
configuration so that changes to that configuration are applied automatically.

In the default scenario, your Ansible is run from a designated box in your
infrastructure (usually a GitLab, Jenkins, or Ansible Tower install), or in smaller
environments. It's not unusual to see engineers making changes from their own
machines.

Ansible isn't just for servers with modules that cover a wide range of
scenarios, such as cloud provider configuration, switch
configuration, and even certificate management.

We're going to run through some small Ansible commands on centos1, applying
changes to centos2.

Getting ready
Open a connection to your centos1 machine, installing Ansible at the same time:

$ vagrant ssh centos1
$ sudo yum install ansible ansible-doc -y

How to do it…
First, we're going to just check the version of Ansible that we've got installed:

$ ansible --version
ansible 2.4.2.0
 config file = /etc/ansible/ansible.cfg
 configured module search path =
[u'/home/vagrant/.ansible/plugins/modules',
u'/usr/share/ansible/plugins/modules']
 ansible python module location = /usr/lib/python2.7/site-
packages/ansible
 executable location = /usr/bin/ansible
 python version = 2.7.5 (default, Apr 11 2018, 07:36:10) [GCC 4.8.5
20150623 (Red Hat 4.8.5-28)]

This is version 2.4.2.0.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[604]

As with a lot of packages from the standard repositories, they tend to be a stable
(older) version. If you wanted to, it's also possible to install pip (covered in Chapter
11, Web Servers, Databases, and Mail Servers) and use it to install a more recent
version of Ansible. For now, we're going to stick with 2.4.2.0.

To test whether our connectivity is there, we can use a default Ansible module called
ping (though this isn't ICMP). You will be prompted for an SSH password (vagrant):

$ ANSIBLE_HOST_KEY_CHECKING=false ansible -k -m ping -i 192.168.33.11,
192.168.33.11
SSH password:
192.168.33.11 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

We add the 'ANSIBLE_HOST_KEY_CHECKING=false' variable to
ensure the remote machine's SSH host key get's accepted when we
run our command. Subsequent commands shouldn't require this. In
a production scenario, you should always confirm you trust the
remote machine's key.

Awesome! Our centos2 box responded, and better still, our command tells us that
this didn't result in a change to the remote machine (more on this later).

Next, let's try installing something using a different module. We want to install a
package, but we don't know how.

For this, you could either go to the Ansible website (https:/ /docs. ansible. com/
ansible/latest/ modules/ list_ of_ all_modules. html) and search for package, or
you could use ansible-doc:

$ ansible-doc -l

https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html

Git, Configuration Management, and Infrastructure as Code Chapter 10

[605]

When run, you will be dropped into a pager, along with a list of all the Ansible
modules available. Run a search (typing the / character, followed by the search
string) for package and keep going until you find a module of that name:

There's no guarantee that a module exists for the functionality you
want, but there's also a good chance it does. Search for keywords
that relate to what you're trying to do, and, nine times out of ten,
you might be pleasantly surprised.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[606]

Assuming you've found out that the package module is called package, you can quit
out of this pager.

Now, let's see what the syntax is for package:

$ ansible-doc -s package
- name: Generic OS package manager
 package:
 name: # (required) Package name, or package specifier with
version, like `name-1.0'. Be aware that packages are not always named
the same and this module will not 'translate' them
 per distro.
 state: # (required) Whether to install (`present', or remove
(`absent') a package. Other states depend on the underlying package
module, i.e `latest'.
 use: # The required package manager module to use (yum, apt,
etc). The default 'auto' will use existing facts or try to autodetect
it. You should only use this field if the
 automatic selection is not working for
some reason.

This looks good, and what it tells us is that the requirements are just what we need in
order to name the package, and dictate what state it should be in.

Excellent! We can use this knowledge:

$ ansible -b -k -m package -a 'name=zip state=present' -i
192.168.33.11, 192.168.33.11
SSH password:
192.168.33.11 | SUCCESS => {
 "changed": true,
 "msg": "warning:
/var/cache/yum/x86_64/7/base/packages/zip-3.0-11.el7.x86_64.rpm:
Header V3 RSA/SHA256 Signature, key ID f4a80eb5: NOKEY\nImporting GPG
key 0xF4A80EB5:\n Userid : \"CentOS-7 Key (CentOS 7 Official Signing
Key) <security@centos.org>\"\n Fingerprint: 6341 ab27 53d7 8a78 a7c2
7bb1 24c6 a8a7 f4a8 0eb5\n Package : centos-
release-7-5.1804.el7.centos.x86_64 (@anaconda)\n From : /etc/pki/rpm-
gpg/RPM-GPG-KEY-CentOS-7\n",
 "rc": 0,
 "results": [
 "Loaded plugins: fastestmirror\nLoading mirror speeds from
cached hostfile\n * base: mirrors.vooservers.com\n * extras:
mirror.sov.uk.goscomb.net\n * updates:
mirror.sov.uk.goscomb.net\nResolving Dependencies\n--> Running
transaction check\n---> Package zip.x86_64 0:3.0-11.el7 will be
installed\n--> Finished Dependency Resolution\n\nDependencies
Resolved\n\n==

Git, Configuration Management, and Infrastructure as Code Chapter 10

[607]

======================\n Package Arch Version Repository
Size\n==
================\nInstalling:\n zip x86_64 3.0-11.el7 base 260
k\n\nTransaction
Summary\n===
===================\nInstall 1 Package\n\nTotal download size: 260
k\nInstalled size: 796 k\nDownloading packages:\nPublic key for
zip-3.0-11.el7.x86_64.rpm is not installed\nRetrieving key from
file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7\nRunning transaction
check\nRunning transaction test\nTransaction test succeeded\nRunning
transaction\n Installing : zip-3.0-11.el7.x86_64 1/1 \n Verifying :
zip-3.0-11.el7.x86_64 1/1 \n\nInstalled:\n zip.x86_64 0:3.0-11.el7
\n\nComplete!\n"
]
}

 We could have also included -K if the sudo action required a
password on the remote machine, ours didn't.

Cool! So we managed to use Ansible to install the zip package on our remote
machine (I'll leave it up to the reader to guess what this package does). Let's run that
command again—what's going to happen? Will it reinstall the package?

$ ansible -b -k -m package -a 'name=zip state=present' -i
192.168.33.11, 192.168.33.11
SSH password:
192.168.33.11 | SUCCESS => {
 "changed": false,
 "msg": "",
 "rc": 0,
 "results": [
 "zip-3.0-11.el7.x86_64 providing zip is already installed"
]
}

As it turns out, no, Ansible won't reinstall the package. This is one of the fundamental
ideals, if you will, of Ansible. Jobs run against a remote host should be idempotent,
that is, they shouldn't make any changes when they don't need to.

It is good practice, when writing Ansible, to ensure that the code you write is
idempotent, rather than having it making a change each time it's run. The code won't
be idempotent if changes are constantly made, and you can't ever guarantee the state
of your systems.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[608]

Sometimes, especially when executing straight commands on a
remote system, idempotence will have to be thought about carefully,
and occasionally manually constructed into the logic of your Ansible
runs, though this is a more advanced discipline. Even I occasionally
defer to far smarter friends on the subject.

For the sake of completeness, let's do one last thing:

$ ansible -b -k -m yum -a 'name=zip state=present' -i 192.168.33.11,
192.168.33.11
SSH password:
192.168.33.11 | SUCCESS => {
 "changed": false,
 "msg": "",
 "rc": 0,
 "results": [
 "zip-3.0-11.el7.x86_64 providing zip is already installed"
]
}

Can you spot the difference between this command and our last?

It's yum!

Specifically, what we've now done is used the Ansible yum module in place of
package, meaning that we've not made it so that our command will only work on
YUM-based systems. This highlights that there's more than one way to accomplish
the same goals, and we'll talk about why you might want to use either module soon.

How it works…
Now that we've had a quick look at how Ansible can be used to run jobs on remote
machines, let's break down what we did, starting with the ping module:

$ ANSIBLE_HOST_KEY_CHECKING=false ansible -k -m ping -i 192.168.33.11,
192.168.33.11

Let's go over those arguments in order:

-k

Here, -k means that Ansible will know to prompt us for a password, with which
we're going to connect to the remote machine (our Vagrant user's SSH password):

-m ping

Git, Configuration Management, and Infrastructure as Code Chapter 10

[609]

Here, we're telling Ansible that we want to use the ping module:

-i 192.168.33.11,

Here, we're building an inventory, though admittedly an inventory of one machine.

Ansible needs to know the list of hosts it can work with—its inventory—but here, we
only have one, so we're using that (being sure to end with a comma):

192.168.33.11

Finally, we end with the IP of the host we're trying to hit, which, somewhat counter-
intuitively, we have to repeat.

One thing we are missing here is the -u flag, which we would use if
we wanted to SSH to the remote host as a user that wasn't vagrant.

Since we're here, we're going to also take a look at our second ansible-doc
command:

$ ansible-doc -s package

Here, we wanted to see a snippet of the code that we could write for use with the
package module. This is extremely useful on a server in a pinch, or in an exam
situation where you may not have access to the wider internet.

Lastly, let's break down our final command (though the same principles can be
applied to the package example):

$ ansible -b -k -m yum -a 'name=zip state=present' -i 192.168.33.11,
192.168.33.11

Here, there are a couple of differences:

-b

We use -b here because we're making a change that requires us to "become" on the
remote machine. This means running a command with privilege escalation (becoming
root).

-m yum -a 'name=zip state=present'

Git, Configuration Management, and Infrastructure as Code Chapter 10

[610]

Here, we've added -a to our list of arguments, specifically because the yum module
requires arguments of its own, which we then place inside quotes.

These arguments can get quite long based on the module you're using, but here it's a
relatively small amount.

We used yum the second time, specifically to highlight that while the same goals were
achieved (the installation of the zip package), we have the option to tie our command
to particular distributions.

The reason for this is simple when you look at the list of arguments available to the
package module:

name

state

use

You can also look at those available to the yum module to help with this:

allow_downgrade

conf_file

disable_gpg_check

disablerepo

enablerepo

exclude

installroot

list

name

security

skip_broken

state

update_cache

validate_certs

Hopefully, you can see how the yum module could be used to craft much more
specific and detailed instructions for Ansible to follow.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[611]

In the real world, I have seen engineers write code that attempts to
satisfy all use cases with one role, that is, a role can be applied and
accomplish the same thing on a Debian, CentOS, or Alpine system.
This is perhaps a noble goal, but it usually results in immense
frustration on the part of the engineer, or the engineer who comes
next, due to inflexibility. Generally, I have found it easier to simply
use the distro-specific modules, and get Ansible to check what sort
of distro it's running on prior to choosing which commands to
execute or, better yet, just use one distribution in your infrastructure
instead of a mixture.

There's more…
There's a couple more small things to be aware of.

The raw module
In this case, centos2 already had Python installed (which Ansible needs in order to
run modules on remote machines). However, if it hadn't, you would have had to
install it on the machine first, or use Ansible's built-in raw module prior to any others.

When you use raw, you're actually running commands directly on the remote
machine. This is most commonly seen with a line similar to the following:

$ ansible -b -k -m raw -a 'whoami' -i 192.168.33.11, 192.168.33.11
SSH password:
192.168.33.11 | SUCCESS | rc=0 >>
root
Shared connection to 192.168.33.11 closed.

Note that the remote machine simply responded with SUCCESS and the resulting
command.

We would use this to install python:

$ ansible -b -k -m raw -a 'yum install python -y' -i 192.168.33.11,
192.168.33.11
SSH password:
192.168.33.11 | SUCCESS | rc=0 >>
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
<SNIP>
Updated:

Git, Configuration Management, and Infrastructure as Code Chapter 10

[612]

 python.x86_64 0:2.7.5-69.el7_5

Dependency Updated:
 python-libs.x86_64 0:2.7.5-69.el7_5

Complete!
Shared connection to 192.168.33.11 closed.

It's not nicely formatted, but as we now have python on the remote machine, we will
be able to use proper Ansible modules instead of relying on simple SSH executions.

The shell and command modules
Like raw, you can pass native commands to a remote machine using Ansible (in fact,
you could translate an entire bash script into an Ansible role remarkably easily),
though usually this type of functionality is reserved for instances where you
absolutely can't achieve what you're trying to do with dedicated Ansible modules.

These two do, however, require Python to be on the remote machine.

First, let's look at the shell module:

$ ansible -b -k -m shell -a 'whoami > BUTTER; cat BUTTER | rev' -i
192.168.33.11, 192.168.33.11
SSH password:
192.168.33.11 | SUCCESS | rc=0 >>
toor

Note that I'm basically running a small one-liner within my Ansible command.

Next, let's use the command module:

$ ansible -b -k -m command -a 'whoami > BUTTER; cat BUTTER | rev' -i
192.168.33.11, 192.168.33.11
SSH password:
192.168.33.11 | FAILED | rc=1 >>
whoami: extra operand '>'
Try 'whoami --help' for more information.non-zero return code

Git, Configuration Management, and Infrastructure as Code Chapter 10

[613]

Ah... this failed.

This is because command doesn't explicitly run a shell (such as Bash), so when we
tried to use a bashism in the form of >, it failed. The command module is only really
good for short commands:

$ ansible -b -k -m command -a 'whoami' -i 192.168.33.11, 192.168.33.11
SSH password:
192.168.33.11 | SUCCESS | rc=0 >>
root

See also
Here, we used an SSH passphrase to run remote commands on our box, but this is not
usually done (especially in automated environments). Generally, SSH keys are used,
with privileges being carefully controlled.

Using Ansible to install Java from a role
Ansible is great for doing what we just did, running easy-to-understand commands
by using modules on remote machines.

But that isn't its bread and butter. Instead, Ansible really shines when it comes to
running a whole slew of commands against a remote machine, and making vast
configuration changes in seconds.

In this section, we're going to write a small Ansible Playbook to import an Ansible
Role from a public repository, and apply that role to our centos2 machine.

Hang on to your hats!

Getting ready
For this section, we are again using our Vagrantfile and two CentOS VMs.

It would be a good idea to complete the previous section before working on this one.

SSH to your centos1 machine:

$ vagrant ssh centos1

Git, Configuration Management, and Infrastructure as Code Chapter 10

[614]

How to do it…
Let's start by creating a directory in which we're going to work and dropping into it:

$ mkdir ansible-example
$ cd ansible-example/

Now, we said we're going to use a public Ansible role for this job, so let's run a search
for one:

$ ansible-galaxy search "java for linux" --author geerlingguy

Found 7 roles matching your search:

 Name Description
 ---- -----------
 geerlingguy.ac-solr Apache Solr container for Docker.
 geerlingguy.elasticsearch Elasticsearch for Linux.
 geerlingguy.java Java for Linux
 geerlingguy.puppet Puppet for Linux.
 geerlingguy.solr Apache Solr for Linux.
 geerlingguy.sonar SonarQube for Linux
 geerlingguy.tomcat6 Tomcat 6 for RHEL/CentOS and Debian/Ubuntu.

You could also use the https:/ / galaxy. ansible. com/ website:

Searching for java on Ansible Galaxy

https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/

Git, Configuration Management, and Infrastructure as Code Chapter 10

[615]

I actually tend to use the website more than the command line,
simply because it gives you a good overview of role popularity at a
glance. I already knew that the one written by geerlingguy was
very popular, so I chose to explicitly include his name in the search.

Now that we know what role we want to use, let's download it:

$ sudo ansible-galaxy install geerlingguy.java
- downloading role 'java', owned by geerlingguy
- downloading role from
https://github.com/geerlingguy/ansible-role-java/archive/1.9.4.tar.gz
- extracting geerlingguy.java to /etc/ansible/roles/geerlingguy.java
- geerlingguy.java (1.9.4) was installed successfully

Awesome! We have our role.

Now how do we apply it?

With a Playbook, of course!

Run the following on your system:

$ cat <<HERE > playbook.yml

- hosts: all
 roles:
 - geerlingguy.java
HERE

Now, run our playbook against centos2:

$ ansible-playbook -k -b -i 192.168.33.11, playbook.yml

You should see a stream of information run across your screen, as the role we
downloaded earlier is applied to the remote machine:

Git, Configuration Management, and Infrastructure as Code Chapter 10

[616]

Note ok=6 and changed=1 at the bottom of the run. If you now run
the playbook a second time, you should get changed=0 since the
role is idempotent.

And there you have it! With only three commands (realistically), you've got a Java
installation on your remote machine.

How it works…
Running through what we did in this section, command by command, we'll break
down what happened.

$ ansible-galaxy search "java for linux" --author geerlingguy

Initially, we needed to know whether someone had already written an Ansible role to
install Java on a box. As it happens, we were able to search for Java for Linux while
passing in an author's name, resulting in seven roles being found.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[617]

I have a friend who likes to write his own Ansible for a job, but I've
always been of the opinion that if a solution already exists (and it's
suitable), there's no harm in adopting work that others have written,
providing that its license allows you to do so, and your company is
fine with it. The open source community is good, and if someone's
already invented the wheel, try putting down the hammer and
chisel.

$ sudo ansible-galaxy install geerlingguy.java

Once we knew of the role we wanted, we ran the install command. Specifically, we
had to use sudo for this, as the role in question is pulled onto your box and placed in
the shared /etc/ansible/roles/ directory, which our user doesn't have write
access to.

You can see this role (and copy or tweak it required) by looking in the directory.

$ ls /etc/ansible/roles/geerlingguy.java/
defaults LICENSE meta molecule README.md tasks templates vars

The actual role starts in tasks/main.yml, so it's a good idea to take a look in there,
too.

$ cat /etc/ansible/roles/geerlingguy.java/tasks/main.yml

- name: Include OS-specific variables for Fedora or FreeBSD.
 include_vars: "{{ ansible_distribution }}.yml"
 when: ansible_distribution == 'FreeBSD' or ansible_distribution ==
'Fedora'

- name: Include version-specific variables for CentOS/RHEL.
 include_vars: "RedHat-{{ ansible_distribution_version.split('.')[0]
}}.yml"
<SNIP>

Next, we created a small playbook.yml file to dictate which role we should install
where.

$ cat <<HERE > playbook.yml

- hosts: all
 roles:
 - geerlingguy.java
HERE

Git, Configuration Management, and Infrastructure as Code Chapter 10

[618]

Of note here is the fact that we listed the hosts as all rather than a specific
hostname or IP, and the roles are in the form of a YAML list.

You can make a playbook into quite a complex beast by adding different variables,
different rules on where to apply different roles, and a variety of other options.

$ ansible-playbook -k -b -i 192.168.33.11, playbook.yml

Finally, we used ansible-playbook to actually apply the contents of
playbook.yml to centos2. We used the common options -k, -b, and -i to build up
our command.

This now goes to centos2, and executes every line of the geerlingguy.java role.

There's more…
It might seem like overkill to put together a playbook for the sake of one role, but the
beauty of playbooks is that they're not bound to one role. You can include as many as
you want in the list within the playbook.yml file, and, as long as they don't conflict
with each other, you should have a very smooth Ansible experience.

Take a look at this playbook.yml file instead:

$ cat <<HERE > playbook.yml

- hosts: all
 roles:
 - geerlingguy.java
 - geerlingguy.docker
 - geerlingguy.apache
HERE

We also used galaxy in a very specific way, using ansible-galaxy to install the
role from the internet first. You could also include a requirements.yml file with
your code, which ansible-galaxy is able to read so that it might download any
listed roles it finds, prior to attempting to apply them to a remote box:

$ cat <<HERE > playbook-requirements.yml

- name: geerlingguy.java
- name: geerlingguy.docker
- name: geerlingguy.apache
HERE

Git, Configuration Management, and Infrastructure as Code Chapter 10

[619]

Then, prior to your playbook run, you would first run galaxy:

$ sudo ansible-galaxy install -r playbook-requirements.yml
 [WARNING]: - geerlingguy.java (1.9.4) is already installed - use --
force to change version to unspecified

- downloading role 'docker', owned by geerlingguy
- downloading role from
https://github.com/geerlingguy/ansible-role-docker/archive/2.5.2.tar.g
z
- extracting geerlingguy.docker to
/etc/ansible/roles/geerlingguy.docker
- geerlingguy.docker (2.5.2) was installed successfully
- downloading role 'apache', owned by geerlingguy
- downloading role from
https://github.com/geerlingguy/ansible-role-apache/archive/3.0.3.tar.g
z
- extracting geerlingguy.apache to
/etc/ansible/roles/geerlingguy.apache
- geerlingguy.apache (3.0.3) was installed successfully

This means that when you do run ansible-playbook, you've got your roles ready:

$ ansible-playbook -k -b -i 192.168.33.11, playbook.yml
SSH password:

PLAY [all]
**
**

TASK [Gathering Facts]
**
**

ok: [192.168.33.11]

<SNIP>

RUNNING HANDLER [geerlingguy.apache : restart apache]
**
**
changed: [192.168.33.11]

Git, Configuration Management, and Infrastructure as Code Chapter 10

[620]

PLAY RECAP
**
**

192.168.33.11 : ok=33 changed=14 unreachable=0 failed=0

See also
As I mentioned in the How to do it… section, I was already aware of
geerlingguy.java because the author (geerlingguy) is prolific in the Ansible he
writes. There's a good chance you'll see the name again, regardless of the institution
you end up working for.

Storing our Ansible configuration in Git
Let's combine what we've learned so far and store the Ansible configuration we wrote
in the last section on our Git server.

Getting ready
In this section, we're going to primarily use centos1, but we're going to upload our
configuration to centos2.

SSH to both of your virtual machines:

$ vagrant ssh centos1

$ vagrant ssh centos2

On centos2, create another bare Git repository from your home directory:

$ git init --bare ansible-example.git
Initialized empty Git repository in /home/vagrant/ansible-example.git/

Git, Configuration Management, and Infrastructure as Code Chapter 10

[621]

How to do it…
On centos1, switch to your ansible-example directory:

$ cd ansible-example/

Next, initialize the directory to be a Git repository:

$ git init

Add the files we had in the directory already, and commit them to the repository:

$ git add *
$ git commit -m "Adding my playbook files."

Once done, your local repository is good, but we still want to push them to a remote
destination.

Add your remote with the alias origin:

$ git remote add origin vagrant@192.168.33.11:ansible-example.git

Finally, we can push our changes to the remote repository:

$ git push --set-upstream origin master
vagrant@192.168.33.11's password:
Counting objects: 4, done.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 388 bytes | 0 bytes/s, done.
Total 4 (delta 0), reused 0 (delta 0)
To vagrant@192.168.33.11:ansible-example.git
 * [new branch] master -> master
Branch master set up to track remote branch master from origin.

How it works…
All we've done here is combine what we've done in the last few sections:

We created a Git repository on the centos2 machine
We took the Ansible configuration we'd written and initialized a repository
around it
We set our remote destination to be centos2
We pushed our configuration to the remote machine

Git, Configuration Management, and Infrastructure as Code Chapter 10

[622]

Now, even if centos1 were to go away, you'll have a copy of your configuration on
centos2, and others can clone that information down, make changes, and push back
up.

There's a reason you traditionally see a "build server" of some
description or other in the land of system administration. This is
because you can claim it as a focal point for distribution
configuration and managing your infrastructure. It's easy to see how
out of sync you could get were five people in a team to work on one
project at the same time, each in a different branch, with their own
changes.

Exploring options for IaC
In this section, we'll be downloading some binaries from Hashicorp's site, and also
using our centos1 VM.

Completely automating your infrastructure is beyond the scope of this book, but
there's no reason we can't talk about a couple of the most popular tools on the market
at the moment.

Both Terraform and Packer are made by Hashicorp, who have a reputation for
making life easier for system administrators, or never releasing a version 1.0.0 of their
products, depending on who you ask.

Hashicorp are also the people who maintain Vagrant, though they
did once try to replace it with a program called Otto—we don't talk
about Otto.

Terraform is a way of writing your infrastructure as declarative code, with a wide
range of providers to choose from, including AWS, Azure, Scaleway, Digital Ocean,
and more.

Packer, on the other hand, is a way of building your base image for your provider of
choice, baking all the software you think you're going to need globally into a default
image, that you can then expand on with programs such as Chef, Ansible, or Puppet.

If you've ever clicked your way through a provider's online portal for provisioning
VMs, object storage, or networking, you probably already appreciate why Terraform
and Packer sound amazing.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[623]

Neither of these tools were the first to do what they intended to do,
but they do them well, and, at the time of writing, they have a vast,
vast chunk of the collective mind-share.

Getting ready
SSH to centos1 and download both Terraform and Packer:

$ vagrant ssh centos1
$ curl -O
https://releases.hashicorp.com/terraform/0.11.10/terraform_0.11.10_lin
ux_amd64.zip
$ curl -O
https://releases.hashicorp.com/packer/1.3.2/packer_1.3.2_linux_amd64.z
ip

Now, we need to unzip these binaries, so first install the appropriate tool. Then, unzip
both of our applications and move them to /usr/local/bin/:

$ sudo yum install unzip -y
$ unzip packer_1.3.2_linux_amd64.zip
$ unzip terraform_0.11.10_linux_amd64.zip
$ sudo mv terraform /usr/local/bin/
$ sudo mv packer /usr/local/bin/

Terraform and Packer evolve so quickly that remarkably few
repositories will actually have them. The programs also complain if
you use a version that's out of date, displaying a large banner every
time you use them. The only repository I've come across that seems
to consistently package Terraform is the FreeBSD default repo (and
even that's out of date).

We're also going to be using docker for this, so if you haven't got it installed on your
virtual machine, run the following (this was covered in more detail earlier in this
book):

$ sudo yum install yum-utils -y
$ sudo yum-config-manager --add-repo
https://download.docker.com/linux/centos/docker-ce.repo
$ sudo yum install docker-ce -y
$ sudo systemctl enable --now docker

Git, Configuration Management, and Infrastructure as Code Chapter 10

[624]

How to do it…
We'll go over our two programs in turn.

Terraform
Starting at the top, we're going to use Terraform to create a small Docker deployment
locally. This is the easiest to show as we have all of the tools we need on our VM, and
it doesn't mean I have to tell you to go out and start a free trial on some cloud
provider.

Start by creating a directory for us to work in:

$ mkdir example-terraform
$ cd example-terraform

Next, shove the following configuration into a main.tf file:

$ cat <<HERE > main.tf
provider "docker" {
 host = "unix:///var/run/docker.sock"
}

resource "docker_image" "example-image" {
 name = "nginx"
}

resource "docker_container" "example-container" {
 name = "nginx-example"
 image = "\${docker_image.example-image.latest}"
}
HERE

Then, initialize Terraform:

$ sudo /usr/local/bin/terraform init

Initializing provider plugins...

The following providers do not have any version constraints in
configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain
breaking
changes, it is recommended to add version = "..." constraints to the

Git, Configuration Management, and Infrastructure as Code Chapter 10

[625]

corresponding provider blocks in configuration, with the constraint
strings
suggested below.

* provider.docker: version = "~> 1.1"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan"
to see
any changes that are required for your infrastructure. All Terraform
commands
should now work.

If you ever set or change modules or backend configuration for
Terraform,
rerun this command to reinitialize your working directory. If you
forget, other
commands will detect it and remind you to do so if necessary.

We're using sudo here because our user isn't in the group that can
control Docker and, as a result, Terraform won't be able to talk to
Docker either when invoked by us.

Once initialized, you should now be able to apply our configuration.

Look at docker ps first:

$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Then, run terraform apply:

$ sudo /usr/local/bin/terraform apply

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:

 + docker_container.example-container
 id: <computed>
 attach: "false"
 bridge: <computed>
 container_logs: <computed>
 exit_code: <computed>

Git, Configuration Management, and Infrastructure as Code Chapter 10

[626]

 gateway: <computed>
 image: "${docker_image.example-image.latest}"
 ip_address: <computed>
 ip_prefix_length: <computed>
 log_driver: "json-file"
 logs: "false"
 must_run: "true"
 name: "nginx-example"
 network_data.#: <computed>
 restart: "no"
 rm: "false"
 start: "true"

 + docker_image.example-image
 id: <computed>
 latest: <computed>
 name: "nginx"

Plan: 2 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value:

You should see a breakdown of the actions about to be taken, and a prompt to get you
to type yes. Do so and hit Enter:

 Enter a value: yes

docker_image.example-image: Creating...
 latest: "" => "<computed>"
 name: "" => "nginx"
docker_image.example-image: Still creating... (10s elapsed)
docker_image.example-image: Creation complete after 18s (ID:
sha256:568c4670fa800978e08e4a51132b995a54f8d5ae83ca133ef5546d092b864ac
fnginx)
docker_container.example-container: Creating...
 attach: "" => "false"
 bridge: "" => "<computed>"
 container_logs: "" => "<computed>"
 exit_code: "" => "<computed>"
 gateway: "" => "<computed>"
 image: "" =>
"sha256:568c4670fa800978e08e4a51132b995a54f8d5ae83ca133ef5546d092b864a
cf"

Git, Configuration Management, and Infrastructure as Code Chapter 10

[627]

 ip_address: "" => "<computed>"
 ip_prefix_length: "" => "<computed>"
 log_driver: "" => "json-file"
 logs: "" => "false"
 must_run: "" => "true"
 name: "" => "nginx-example"
 network_data.#: "" => "<computed>"
 restart: "" => "no"
 rm: "" => "false"
 start: "" => "true"
docker_container.example-container: Creation complete after 0s (ID:
4f462e164239c65605c9106378ffb260b8bb7f5d27dc1fe0e008589a1387650e)

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

Excellent!

Run docker ps again to find out what you've just created:

$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4f462e164239 568c4670fa80 "nginx -g 'daemon of…" 28 seconds ago Up 26
seconds 80/tcp nginx-example

Now, let's destroy our container, again using Terraform:

$ sudo /usr/local/bin/terraform destroy
docker_image.example-image: Refreshing state... (ID:
sha256:568c4670fa800978e08e4a51132b995a54f8d5ae83ca133ef5546d092b864ac
fnginx)
docker_container.example-container: Refreshing state... (ID:
4f462e164239c65605c9106378ffb260b8bb7f5d27dc1fe0e008589a1387650e)

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 - destroy

Terraform will perform the following actions:

 - docker_container.example-container

 - docker_image.example-image

Plan: 0 to add, 0 to change, 2 to destroy.

Do you really want to destroy all resources?
 Terraform will destroy all your managed infrastructure, as shown

Git, Configuration Management, and Infrastructure as Code Chapter 10

[628]

above.
 There is no undo. Only 'yes' will be accepted to confirm.

 Enter a value:

Once again, we're prompted to type yes in the field provided. Do so and hit Enter:

 Enter a value: yes

docker_container.example-container: Destroying... (ID:
4f462e164239c65605c9106378ffb260b8bb7f5d27dc1fe0e008589a1387650e)
docker_container.example-container: Destruction complete after 0s
docker_image.example-image: Destroying... (ID:
sha256:568c4670fa800978e08e4a51132b995a54f8d5ae83ca133ef5546d092b864ac
fnginx)
docker_image.example-image: Destruction complete after 0s

Destroy complete! Resources: 2 destroyed.

Boom! Our container is gone.

Packer
Say we don't want to just use the container from Docker Hub. Say we want to tweak it
slightly before we deploy it using Terraform.

This is where Packer comes in, which is a very versatile tool. Packer has builders for
AWS, Scaleway, LXC, VirtualBox, QEMU, and others, but the one we're interested in
is Docker.

Head back into your home directory and create an example-packer directory:

$ cd ~
$ mkdir example-packer
$ cd example-packer

Next, output the following to a file:

$ cat <<HERE > docker.json
{

 "builders":[
 {
 "type": "docker",
 "image": "nginx",
 "commit": true,
 "pull": true,

Git, Configuration Management, and Infrastructure as Code Chapter 10

[629]

 "changes": [
 "LABEL custom=true",
 "EXPOSE 443"
]
 }],

 "provisioners":[
 {
 "type": "shell",
 "inline": ["echo 'Bring back Black Books!'","apt remove nginx -y"]
 }]

}
HERE

Once done, you should be able to run packer to build and tweak your container:

$ sudo /usr/local/bin/packer build docker.json
docker output will be in this color.

==> docker: Creating a temporary directory for sharing data...
==> docker: Pulling Docker image: nginx
 docker: Using default tag: latest
 docker: latest: Pulling from library/nginx
 docker: Digest:
sha256:5d32f60db294b5deb55d078cd4feb410ad88e6fe77500c87d3970eca97f54db
a
 docker: Status: Image is up to date for nginx:latest
==> docker: Starting docker container...
 docker: Run command: docker run -v /root/.packer.d/tmp/packer-
docker860052889:/packer-files -d -i -t nginx /bin/bash
 docker: Container ID:
2047e58a479904968bff162d279ac42d1e162878fb6b8e2176bb3e4551669c17
==> docker: Using docker communicator to connect: 172.17.0.2
==> docker: Provisioning with shell script: /tmp/packer-shell763812364
 docker:
 docker: WARNING: apt does not have a stable CLI interface. Use
with caution in scripts.
 docker: Bring back Black Books!
 docker:
 docker: Reading package lists...
 docker: Building dependency tree...
 docker: Reading state information...
 docker: The following packages were automatically installed and
are no longer required:
 docker: fontconfig-config fonts-dejavu-core libbsd0 libedit2
libexpat1
 docker: libfontconfig1 libfreetype6 libgd3 libgeoip1 libicu57

Git, Configuration Management, and Infrastructure as Code Chapter 10

[630]

libjbig0
 docker: libjpeg62-turbo libpng16-16 libssl1.1 libtiff5 libwebp6
libx11-6 libx11-data
 docker: libxau6 libxcb1 libxdmcp6 libxml2 libxpm4 libxslt1.1 ucf
 docker: Use 'apt autoremove' to remove them.
 docker: The following packages will be REMOVED:
 docker: nginx nginx-module-geoip nginx-module-image-filter nginx-
module-njs
 docker: nginx-module-xslt
 docker: 0 upgraded, 0 newly installed, 5 to remove and 0 not
upgraded.
 docker: After this operation, 5336 kB disk space will be freed.
 docker: (Reading database ... 7026 files and directories currently
installed.)
 docker: Removing nginx-module-njs (1.15.7.0.2.6-1~stretch) ...
 docker: Removing nginx-module-xslt (1.15.7-1~stretch) ...
 docker: Removing nginx-module-geoip (1.15.7-1~stretch) ...
 docker: Removing nginx-module-image-filter (1.15.7-1~stretch) ...
 docker: Removing nginx (1.15.7-1~stretch) ...
 docker: invoke-rc.d: could not determine current runlevel
 docker: invoke-rc.d: policy-rc.d denied execution of stop.
==> docker: Committing the container
 docker: Image ID:
sha256:53a34cbb093015f423de89ad874afebb3b9470f3750e858729f75ed8e3f4bce
4
==> docker: Killing the container:
2047e58a479904968bff162d279ac42d1e162878fb6b8e2176bb3e4551669c17
Build 'docker' finished.

==> Builds finished. The artifacts of successful builds are:
--> docker: Imported Docker image:
sha256:53a34cbb093015f423de89ad874afebb3b9470f3750e858729f75ed8e3f4bce
4

Great! We've now got an image we can use elsewhere:

$ sudo docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 53a34cbb0930 19 seconds ago 110MB
nginx latest 568c4670fa80 19 hours ago 109MB
alpine latest 196d12cf6ab1 2 months ago 4.41MB

How it works…
Let's break this down a bit, starting with Terraform.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[631]

In this section, we defined what we wanted our infrastructure to look like by writing
the configuration to a main.tf file:

provider "docker" {
 host = "unix:///var/run/docker.sock"
}

resource "docker_image" "example-image" {
 name = "nginx"
}

resource "docker_container" "example-container" {
 name = "nginx-example"
 image = "${docker_image.example-image.latest}"
}

Specifically, what we're doing here is giving Terraform its provider and the necessary
information to connect with said provider (in this case, a Unix socket):

provider "docker" {
 host = "unix:///var/run/docker.sock"
}

We're then informing Terraform of the image we want to use as the base of our
container:

resource "docker_image" "example-image" {
 name = "nginx"
}

Finally, we're saying that the container should be called nginx-example and that it
should use the image that we defined previously (note the use of a referencing
variable to the preceding block):

resource "docker_container" "example-container" {
 name = "nginx-example"
 image = "${docker_image.example-image.latest}"
}

Once we saved it, we ran a command to initialize the directory for Terraform use:

$ sudo /usr/local/bin/terraform init

This downloads the provider (docker) and sets up the directory for us to use it. We
then applied our configuration:

$ sudo /usr/local/bin/terraform apply

Git, Configuration Management, and Infrastructure as Code Chapter 10

[632]

Terraform looks for any files ending in .tf within the directory it's invoked from.

Afterward, we destroyed our setup:

$ sudo /usr/local/bin/terraform destroy

Your directory will end up looking something like this:

$ ls -lha
total 16K
drwxrwxr-x. 3 vagrant vagrant 96 Nov 28 17:05 .
drwx------. 9 vagrant vagrant 4.0K Nov 28 17:07 ..
-rw-rw-r--. 1 vagrant vagrant 251 Nov 28 17:02 main.tf
drwxr-xr-x. 3 root root 21 Nov 28 17:02 .terraform
-rw-r--r--. 1 root root 318 Nov 28 17:05 terraform.tfstate
-rw-r--r--. 1 root root 2.9K Nov 28 17:05 terraform.tfstate.backup

Note the state file. This is important as it contains the known state of the
infrastructure you've provisioned. Looking inside, you'll see a JSON-like syntax,
though this can change. The Terraform state file shouldn't be altered by hand.

I have horror stories revolving around having to manually recover
the state of infrastructure, as I'm sure many others do too, and
believe me when I tell you that losing a state file is not fun, nor is it
going to be a quick recovery process. Needless to say, it's a good
idea to keep this file backed up.

It's also worth noting that you can store the Terraform state file in a remote location.
This can be configured to "lock" when in use (to avoid conflicting changes from two
users trying to access the state file at once.) It also means the state file doesn't live on
your local machine, or a Jenkins slave, making distributed building easier.

The preceding terraform directory contains the actual plugin that we downloaded
when we initialized the repository.

On to Packer!

With Packer, things are a little different. First, we set up this configuration file:

{

 "builders":[
 {
 "type": "docker",
 "image": "nginx",
 "commit": true,
 "pull": true,

Git, Configuration Management, and Infrastructure as Code Chapter 10

[633]

 "changes": [
 "LABEL custom=true",
 "EXPOSE 443"
]
 }],

 "provisioners":[
 {
 "type": "shell",
 "inline": ["echo 'Bring back Black Books!'","apt remove nginx -y"]
 }]

}

It's a very vanilla example, but it serves its purpose.

The first thing you might notice is that it's JSON formatted, rather than using HCL (as
Terraform does for its configuration). Secondly, you might note that while we have a
builder configured (docker), we also have a provisioner (shell).

 "builders":[
 {
 "type": "docker",
 "image": "nginx",
 "commit": true,
 "pull": true,
 "changes": [
 "LABEL custom=true",
 "EXPOSE 443"
]
 }],

Starting with the builder, you can see that we're using docker as the type so that
Packer knows what builder this is, and we're also using the nginx image we used
previously as the base.

We apply some metadata changes in the form of a label and expose a different port to
the default in the image (80). We can see these in the resulting Docker image:

$ sudo docker inspect 53a34cbb0930 | grep "custom\|443"
 "443/tcp": {},
 "custom": "true",

Git, Configuration Management, and Infrastructure as Code Chapter 10

[634]

Next, we proceed to the meat of the Packer job, the provisioning step:

 "provisioners":[
 {
 "type": "shell",
 "inline": ["echo 'Bring back Black Books!'","apt remove nginx -y"]
 }]

This is the part in which you would make changes to the container such as here,
where we used shell to echo a poignant statement to the screen, and then
aggressively removed the container's sole purpose in protest.

Packer has other provisioners, such as Ansible, Chef, and Puppet,
but shell is the easiest to understand and implement.

Lastly, we built our image:

$ sudo /usr/local/bin/packer build docker.json

Packer pulled the designated image from Docker Hub and then proceeded to make
the changes we specified to both metadata and contents, before finally packing up the
image and storing it locally.

We could have introduced a post-processor step too, to variously tag and upload our
new image to somewhere for safe keeping.

There's more…
Here's a small but interesting titbit. Terraform has a built-in command for making
sure that all of your syntax is nicely formatted (meaning that everyone can conform to
the same standard, without getting into silly arguments about spacing):

$ terraform fmt
main.tf

Honestly, I think this is one of the greatest things about Terraform, because it means
that no one can have an opinion of their own, and if there's a world I want to live in,
it's that one.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[635]

See also
Hashicorp make a lot of stuff, and while it's important to remember that there are
several options out there when it comes to Infrastructure as Code, it's undeniable to
say that at the moment, if you know their suite well, you'll be seriously bolstering
your chances of getting a job.

Other tools from Hashicorp include the following:

Vagrant, as we know and love
Vault, for secret storage
Consul, for service discovery

Roundup – Git, Configuration
Management, and Infrastructure as Code
This is not a book on Ansible, and while I'm tempted to write one, there are already a
considerable number out there (though truth be told, Ansible is so fast paced that
you're better off learning as you go, and I don't usually advocate that). That said, I do
like Ansible, and, along with the other tools listed in this chapter (Git, Terraform,
Packer), it has made my life so much easier over the last couple of years that I've been
using it.

There's something to be said for the idea that administrators are lazy, because all we
really want to do is make our jobs easier, by automating away the tedious bits. We all
used to joke that we'd end up automating ourselves out of a job one day, but some of
the less lazy in our clan didn't like that idea, and seemingly decided that they were
going to develop a new thing on an almost monthly basis, just so we could pick up
the thing and decide we desperately needed to use it in our infrastructure.

Git is magical making our needs around source control and distribution seamless
(except when you forget how to recover from the complete mess you've got yourself
in, and decide it's easier to just delete the directory and clone it again).

Ansible is a savior, meaning that we no longer have to call up long-retired graybeards
in the early hours of the morning just to find out how the heck they managed to get
half of that old snowflake server running in RAM, and the rest seemingly pulling
itself in from a network drive.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[636]

Don't assume that just because somewhere uses Ansible, and they
claim to be fully automated, that they don't have one server kicking
around somewhere that no one wants to touch because it does
something silly like handle the IVR for the phone server. In these
cases, you can do one of two things. Either option A: offer to
automate the old and crusty snowflake, bringing it in line with the
rest of the infrastructure; or option B: stick your head in the sand
like everyone else, and hope it doesn't break while you're on shift
(though it will... it will...).

Terraform is a headache in code form, though for all of the grievances users
occasionally have with it, there's no denying that in a cloud-orientated world, having
a tool that can automatically provision hundreds of boxes in your Azure subscription
is a must, and if it means that you don't have to learn PowerShell—so much the
better. It is worth saying, though, that I have a friend who insists Terraform isn't
ready yet, and, as a result, he wraps the generation of Terraform files in an Ansible
role... don't ask.

Packer removes tedium and ensures that your Ansible playbooks don't take an age to
apply because you've done the sensible thing and incorporated all your sane defaults
into a base image (hint, hint!).

To round off this chapter, let's talk about the age of the cloud.

All the tools we've mentioned are great in an ephemeral world, where servers can
spin up for a few minutes, complete their purpose in life, and then be
unceremoniously removed from existence by an omnipotent cronjob. They do have
their drawbacks, though, and it's important to be careful when using tools such as
Terraform to manage an estate.

There's a reason why Terraform prompts you with an effective "are you really sure"
message before it'll let you delete infrastructure. I would always advise being one
hundred percent confident in what you're about to do, before you do it. You don't
want to be the one responsible for destroying production (make sure you have good
backups).

In the old days, when I accidentally turned off a server because I got it confused with
a different server of a similar name, and it was down for twelve hours before anyone
noticed, the ramifications were minimal. I could simply turn the box back on while
apologising profusely to the client.

Git, Configuration Management, and Infrastructure as Code Chapter 10

[637]

Now, if you accidentally run terraform destroy against prod, and it also takes the
data with it, you've done more than just flipped the boxes off. They're gone, kaput,
Avada Kedavra'd, so be careful. We have these tools to make our lives easier, but
sometimes I wonder if we're not also giving ourselves the capability for so much
more accidental destruction.

That story about me turning off a box may or may not be true......it's
true.

11
Web Servers, Databases,

and Mail Servers
In this chapter, we will examine the following topics:

Installing and understanding a web server
Basic Apache configuration
Basic Nginx configuration
SSL, TLS, and LetsEncrypt
Basic MySQL or MariaDB installation
Basic PostgreSQL installation
Local MTA usage and configuration (Postfix)
Local MTA usage and configuration (Exim)
NoSQL documents (MongoDB example)
NoSQL KV (Redis example)
Messaging brokers and queues (RabbitMQ example)

Introduction
There's a good chance that you'll come across websites at some point in your career as
a system administrator or developer.

Websites are these things that exist on the internet, where people go to find stuff
(technical description). Most of the web runs on Linux, with segmented and darker
corners for Windows et al.

Web Servers, Databases, and Mail Servers Chapter 11

[639]

It's typical for a lot of people to start their Linux careers working for either an ISP or a
web host of some sort, meaning that a lot of newcomers to the field get thrown into
the deep end of having to manage very public websites immediately. This isn't a bad
thing, as you tend to learn quickly in environments with a variety of issues, and when
you're surrounded by a host of other people who are all experiencing the same
frustration day in, day out, it can be quite the learning experience.

That's not to say that everyone goes the route of a web host or ISP. I
started working with Linux properly when I joined a small telecoms
company, meaning my exposure to web technologies was minimal,
and my exposure to private branch exchange (PBX) phone systems
was considerably greater.

Needless to say, if you do go into the route of managing websites or maintaining
them for other people, you will be in good company. Most engineers you meet at
various levels will have done their time in the trenches, manning the phones, and
dealing with developers across the globe at all hours of the morning.

I wouldn't go so far as to say working with websites is fun, but constantly refreshing
a broken web page while troubleshooting, only to have it eventually spring into life as
though it'd never left, is a hell of a cathartic experience, even if it is three in the
morning.

There are many different components to the web, and though the heyday of static
HTML sites has been and gone (though it's looking at a bit of a resurgence recently
thanks to auto-generated websites hosted in places such as Amazon's S3), there are
many interesting technologies to get your teeth into.

Starting at the easiest, we're going to look at actual web servers (that serve web
content), databases (that hold web content), and TLSs (that encrypt web content in
transit).

We're also going to look at some other pieces of technology that you'll probably come
across at some point (again, definitely if you work for a hosting provider). These are:

(e)mail transfer agents (such as Postfix and Exim)
NoSQL databases (such as MongoDB)
fast key value (KV) stores (such as Redis)
message brokers (such as RabbitMQ)

Don't let any of these scare you—they've just words on a page.

Web Servers, Databases, and Mail Servers Chapter 11

[640]

Technical requirements
In this section, we're going to be using both CentOS and Debian. This is because while
software in the Linux world is fairly universal, some distributions choose specific
defaults for things such as their web and mail servers.

Feel free to use the following Vagrantfile for this chapter:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.define "centos1" do |centos1|
 centos1.vm.box = "centos/7"
 centos1.vm.network "private_network", ip: "192.168.33.10"
 centos1.vm.hostname = "centos1"
 centos1.vm.box_version = "1804.02"
 end

 config.vm.define "debian1" do |debian1|
 debian1.vm.box = "debian/stretch64"
 debian1.vm.network "private_network", ip: "192.168.33.11"
 debian1.vm.hostname = "debian1"
 debian1.vm.box_version = "9.5.0"
 debian1.vm.provider "virtualbox" do |debian1p|
 debian1p.cpus = 1
 end
 end

end

Installing and understanding a web
server
A web server is the component you're interacting with directly when you go to a
website. It traditionally listens on port 80 (for Hypertext Transfer Protocol (HTTP))
or 443 (for Hypertext Transfer Protocol Secure (HTTPS)).

When you type a URL into your browser, these ports are generally hidden unless
explicitly defined; for example, hitting https:/ /duckduckgo. com in Chrome or Firefox
will load the website, but it won't tell you that it's connecting on port 443. In a similar
fashion, if you go to https://duckduckgo.com:443, the exact same page should load.

https://duckduckgo.com
https://duckduckgo.com
https://duckduckgo.com
https://duckduckgo.com
https://duckduckgo.com
https://duckduckgo.com
https://duckduckgo.com
https://duckduckgo.com:443

Web Servers, Databases, and Mail Servers Chapter 11

[641]

Also, if you try to go to port 80 using HTTPS (https://duckduckgo.com:80/), you
will generally get an error saying the site can't provide a secure connection:

This is because you tried to talk to an insecure port (80) using a secure protocol
(HTTPS).

Web servers literally serve the web, but they're usually just the frontend to other
technology. Blog posts on a Wordpress install, for example, might be stored in a
database behind the scenes, while they're presented to the end-user by the web server
frontend.

It's the job of the web server to determine how to display the content of a page to the
requesting client.

Different clients send different "user agents," which tell the web
server what type of pages it'll be able to display to you. Think of it in
terms of a desktop and phone internet browser: if sites are coded to
understand the different user agents of your devices, the exact same
website can look completely different on different devices.

Getting ready
We're going to use both our VMs and set up a web server on each:

$ vagrant ssh centos1 -- -L 127.0.0.1:8080:127.0.0.1:80
$ vagrant ssh debian1 -- -L 127.0.0.1:8181:127.0.0.1:80

Web Servers, Databases, and Mail Servers Chapter 11

[642]

How to do it…
Starting with our CentOS box, we're going to install the default web server that's
provided in the official repositories.

Installing httpd (Apache) on CentOS
As the title suggests, CentOS re-badges the Apache HTTP Server as httpd, I suspect
to genericise the product for ease of understanding (though I've met a fair amount of
system administrators who dislike this re-badge, including me).

Install httpd like so:

$ sudo yum install httpd -y

Now let's start it, since this is CentOS:

$ sudo systemctl enable --now httpd

As we forwarded ports when we logged into our Vagrant boxes, we should now be
able to navigate to our forwarded address and port (http://127.0.0.1:8080) in
our local browser:

Web Servers, Databases, and Mail Servers Chapter 11

[643]

This is the default splash page for Apache on CentOS, configured out of the box.

Installing Nginx on Debian
Now, on our Debian box, let's install Nginx instead:

$ sudo apt install nginx -y

Once installed, as it's Debian, the service will probably start automatically:

$ systemctl status nginx --no-pager
● nginx.service - A high performance web server and a reverse proxy
server
 Loaded: loaded (/lib/systemd/system/nginx.service; enabled; vendor
preset: enabled)
 Active: active (running) since Sun 2018-12-02 11:54:11 GMT; 21s ago
 Docs: man:nginx(8)
 Process: 1936 ExecStart=/usr/sbin/nginx -g daemon on; master_process
on; (code=exited, status=0/SUCCESS)
 Process: 1933 ExecStartPre=/usr/sbin/nginx -t -q -g daemon on;
master_process on; (code=exited, status=0/SUCCESS)
 Main PID: 1938 (nginx)
 Tasks: 2 (limit: 4915)
 CGroup: /system.slice/nginx.service
 ├─1938 nginx: master process /usr/sbin/nginx -g daemon on;
master_process on;
 └─1939 nginx: worker process

As we've forwarded a different port (http://127.0.0.1:8181) to our Debian
machine, we should be able to visit this in our browser, too:

Well, that's a lot less swish out of the box...

Web Servers, Databases, and Mail Servers Chapter 11

[644]

How it works…
What we've done here is install two different web servers, though they accomplish
the same thing.

Arguably, there's no better and simultaneously worse place for standards compliance
than the web, which means that, regardless of the web server you choose to use
(Apache, Nginx), you should still be able to serve content in a consistent fashion.

Standards compliance is the term we use to refer to the agreed
standards for computer systems. A Request for Comments (RFC)
might dictate anything from which IP ranges are to be used for
private use, to how two systems wishing to securely communicate
over HTTPS go about doing that. The Internet Engineering Task
Force (IETF) is one of the bodies that manages RFCs.

The first server we installed was Apache, which for years was the "go to" web server
and the one that is still considered "battle hardened" by a lot of the more traditional
administrators out there. It's obviously the default on CentOS installations, meaning
that the install base is still very large.

At the time of writing, Apache is still seen as the bigger player, but Nginx has been
rising to fame in recent years, and looks set to take over (more on this later).

We then installed Nginx on our Debian box (though Apache is available too).
Debian's claim to fame of having thousands of packages available comes to the fore
here, as it also has a slew of different web servers you might like to try (I only chose
Apache and Nginx as the two biggest).

Regardless of which one you install, both of these systems are now more than capable
of serving static HTTP content to the internet (or at least your little slice of your
network, as it's not publicly accessible).

If we look at the ss output on our Debian box, we see the following:

$ ss -tuna
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
udp UNCONN 0 0 *:68 *:*
tcp LISTEN 0 128 *:80 *:*
tcp LISTEN 0 128 *:22 *:*
tcp ESTAB 0 0 10.0.2.15:22 10.0.2.2:40136
tcp ESTAB 0 0 127.0.0.1:56490 127.0.0.1:80
tcp ESTAB 0 0 127.0.0.1:80 127.0.0.1:56490
tcp LISTEN 0 128 :::80 :::*
tcp LISTEN 0 128 :::22 :::*

Web Servers, Databases, and Mail Servers Chapter 11

[645]

We can see port 80, listening on all available IPs, and we can see the established
communication, which is actually coming from our forwarded web connection and
Firefox. It's the exact same story on the CentOS box.

All of this is great, and it means that when our client (Firefox in this example)
requests content from the web server (Apache), that server is able to deliver the
requested content in a fashion and style that the client can understand.

Firefox can then display the content to the end user in a way they will understand, as
pictures of cats, or whatever other information they might be searching on the
internet (though it should always be cats).

There's more…
I mentioned other web servers, and it's true that there's quite a few.

In OpenBSD land, you'll probably find yourself installing httpd, which isn't a re-
badged Apache (as is the case on CentOS), but is actually completely different
software, that just happens to share the same name, and perform similar functions...

Or, you might like the idea of Tomcat, which is less of a traditional web server, as it
acts as a frontend to Java servlets (usually some sort of web application).

There's lighttpd too, which is (as the name might suggest) supposed to be a
lightweight web server, without the many bells and whistles of functionality that
Nginx or Apache provide.

In the Windows world (a horrible place that I don't like to visit), you get IIS, which is
more of a suite of internet services that's available on a Windows server.

Basic Apache configuration
We've installed httpd on our CentOS machine, meaning that we've got a web server
running on port 80 and we're able to hit it from our Firefox installation on our host
machine.

In this section, we're going to take a look at how our server knows what to display
and what we can do to set up a site of our own so that people aren't greeted by the
default Apache page when they visit our IP.

Web Servers, Databases, and Mail Servers Chapter 11

[646]

Getting ready
For this section, we're going to use the Vagrantfile from the previous section. If
you haven't already installed Apache on the CentOS VM, do so at this point.

Connect to your CentOS box:

$ vagrant ssh centos1 -- -L 127.0.0.1:8080:127.0.0.1:80

How to do it…
First, we should have a quick look at where the default configuration is being loaded
from. On the default page, we can see the following section:

It turns out that we are, in fact, the administrator. With that in mind, let's take a look
at what we can do.

First, we can ls the directory listed in this message to see what's there already:

$ ls /var/www/html/
$

There's nothing... odd.

Let's put a basic index.html page in this directory, just to see what happens:

$ cat <<HERE | sudo tee -a /var/www/html/index.html
WE APOLOGISE FOR THE INCONVENIENCE.
HERE

Web Servers, Databases, and Mail Servers Chapter 11

[647]

Now let's visit our website once more:

It's changed!

OK, so clearly this directory is being used for something, but it doesn't explain where
the configuration on what to display lives.

Let's cat the suggested welcome file:

$ cat /etc/httpd/conf.d/welcome.conf
#
This configuration file enables the default "Welcome" page if there
is no default index page present for the root URL. To disable the
Welcome page, comment out all the lines below.
#
NOTE: if this file is removed, it will be restored on upgrades.
#
<LocationMatch "^/+$">
 Options -Indexes
 ErrorDocument 403 /.noindex.html
</LocationMatch>

<Directory /usr/share/httpd/noindex>
 AllowOverride None
 Require all granted
</Directory>

Alias /.noindex.html /usr/share/httpd/noindex/index.html
Alias /noindex/css/bootstrap.min.css
/usr/share/httpd/noindex/css/bootstrap.min.css
Alias /noindex/css/open-sans.css /usr/share/httpd/noindex/css/open-
sans.css
Alias /images/apache_pb.gif
/usr/share/httpd/noindex/images/apache_pb.gif
Alias /images/poweredby.png
/usr/share/httpd/noindex/images/poweredby.png

Web Servers, Databases, and Mail Servers Chapter 11

[648]

The important takeaway is as follows:

"This configuration file enables the default "Welcome" page if there is no default
index page present for the root URL."

OK, so let's not worry about this for now, and instead focus on our own file.

First, because you can have a large amount of different websites on one web server
(virtual hosts), let's create a small amount of segregation within our folder structure
to keep different website files separate:

$ sudo mkdir /var/www/god-to-marvin
$ sudo mv /var/www/html/index.html /var/www/god-to-marvin/

At this point, our web server will go back to showing the default
Apache page, as we've moved our only index.html file.

Next, add the configuration that's required for this directory to be read:

$ cat <<HERE | sudo tee -a /etc/httpd/conf.d/god-to-marvin.conf
<VirtualHost 127.0.0.1:80>
 ServerAdmin thebestsysadmin@example.com
 DocumentRoot "/var/www/god-to-marvin/"
 ServerName 127.0.0.1
 ServerAlias 127.0.0.1
</VirtualHost>
HERE

Then, we need to reload the configuration:

$ sudo systemctl reload httpd

Web Servers, Databases, and Mail Servers Chapter 11

[649]

Next, head back to our Firefox window and try to visit http://127.0.0.1:8080/.
You should see your message again:

With this in place, while nothing on the surface has changed, it means that you can
add more websites and more quotes from beloved science fiction franchises in the
future.

How it works…
The reason we were able to drop a file into /var/www/html/ and view it in our
browser was because of the DocumentRoot setting within the main Apache
configuration file, which can be seen here:

$ cat /etc/httpd/conf/httpd.conf | grep ^DocumentRoot
DocumentRoot "/var/www/html"

The reason we used index.html as the filename, aside from it being convention, was
because of the following line:

$ cat /etc/httpd/conf/httpd.conf | grep "^ DirectoryIndex"
 DirectoryIndex index.html

This dictates which file to load when a directory is requested.

While the /etc/httpd/conf/httpd.conf file is the default configuration file, we're
also able to add additional configuration for websites under the
/etc/httpd/conf.d/ directory, as we did in this case.

Web Servers, Databases, and Mail Servers Chapter 11

[650]

We used a very specific stanza for our own configuration, as shown here:

<VirtualHost 127.0.0.1:80>
 ServerAdmin thebestsysadmin@example.com
 DocumentRoot "/var/www/god-to-marvin/"
 ServerName 127.0.0.1
 ServerAlias 127.0.0.1
</VirtualHost>

This stanza meant that while we could continue to host the same content as we did
previously on our site, we're also able to host other content too, with different
DocumentRoots.

When we visited our site a second time, instead of being directed to /var/www/html
as the DocumentRoot, we were instead pointed to /var/www/god-to-marvin
because the preceding configuration dictated as such.

We also have a ServerName and a ServerAlias directive, though in this case the
Alias does nothing.

ServerName is the domain or IP address that the end user typed into their browser.
The alias can be others associated with that name.

For example, you could have the following:

 ServerName example.com
 ServerAlias www.example.com fish.example.com europe.example.com

All of these would hit the same DocumentRoot.

There's more…
Virtual hosts only really come into their own when you have multiple domain names
pointing at a server. In practice, you can have hundreds of different domain names
pointing to one box, but because Apache is aware of the domain you're using to
connect, it will only serve the exact site you've requested.

In multi-tenant situations, it's not uncommon for multiple clients to coexist on one
server, only manipulating and updating their own files, oblivious to the fact they're
sharing a box with other companies and users.

If it costs a hosting company a few pounds a month to set up a web server and they
can charge customers of theirs to host sites with them, the company could make their
money back in no time.

Web Servers, Databases, and Mail Servers Chapter 11

[651]

See also
In testing environments, you tend to see multiple websites on one box at once,
because they're usually lightweight and several can run in parallel. This presents a
problem for testing domain name resolution though, as it can get costly and time-
consuming to use public domain name services for test and temporary websites.

One solution to this problem is to use the /etc/hosts file (on Linux and Unix
systems) instead.

A default /etc/hosts file might look like this:

$ cat /etc/hosts
127.0.0.1 centos1 centos1
127.0.0.1 localhost localhost.localdomain localhost4
localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

You could add an additional line to this file, as follows:

192.168.33.11 mysupersite.com

Now when you go to mysupersite.com in your browser, the name will be resolved
to the IP address you specified, instead of going out to an external DNS server for
name resolution.

In this way, you can have multiple "virtual hosts" on your Apache web server, and
because your browser is requesting named sites (even if they're all on the same IP
address), you will get different content depending on the name you connected with.

The only issue with people mucking around with their /etc/hosts
file is when they forget to change them back and get confused when
they can't connect to the "real" site anymore.

Basic Nginx configuration
Heading on to our Debian server now, we're going to have a look at the default Nginx
page that we can see when we visit http://127.0.0.1:8181/, and we're going to
replace this text with our own message.

Web Servers, Databases, and Mail Servers Chapter 11

[652]

Nginx, as we stated previously, is growing in popularity. It has become the go-to web
server because of its ease-of-use and flexibility when required—not that this is a
marketing pitch; they're both open source and free.

Getting ready
For this section, we're going to use the Vagrantfile from the first section. If you
haven't already installed Nginx on the Debian VM, do so at this point.

Connect to your Debian box:

$ vagrant ssh debian1 -- -L 127.0.0.1:8181:127.0.0.1:80

How to do it…
Our default Nginx page doesn't have any pointers on where to look for configuration
changes, only pointing you to the official documentation (which is well worth a
peruse) and a commercial support offering.

This default page actually lives in a very similar location to the one we've just been
examining on CentOS:

$ cat /var/www/html/index.nginx-debian.html
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully
installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

Web Servers, Databases, and Mail Servers Chapter 11

[653]

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Note that this file is called index.nginx-debian.html and that it's the only file in
/var/www/html to begin with.

Like Apache, Nginx has a concept of virtual hosts, which we're going to configure in
/etc/nginx/conf.d/.

Let's start by creating some content:

$ sudo mkdir /var/www/fenchurch
$ cat <<HERE | sudo tee -a /var/www/fenchurch/index.html
How come I'm in one book, then I just disappear?
HERE

Now we can add to our chosen virtual hosts directory:

$ cat <<HERE | sudo tee /etc/nginx/conf.d/fenchurch.conf
server {
listen 80;
listen [::]:80;

root /var/www/fenchurch;
index index.html;

server_name 127.0.0.1;

location / {
try_files \$uri \$uri/ =404;
}
}
HERE

Then, we need to load Nginx:

$ sudo systemctl reload nginx

Now we should be able to see our question in our browser when pointing to the
forwarded port we set up:

Web Servers, Databases, and Mail Servers Chapter 11

[654]

Cool!

How it works…
Our default Nginx configuration file is located at /etc/nginx/nginx.conf and it
sets things like the process ID location, along with the user that Nginx will run as
(www-data here), on this Debian installation:

$ head /etc/nginx/nginx.conf
user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;

events {
 worker_connections 768;
 # multi_accept on;
}

Within this file, there also exists the following block of configuration:

 ##
 # Virtual Host Configs
 ##

 include /etc/nginx/conf.d/*.conf;
 include /etc/nginx/sites-enabled/*;

Note that the top directory is the one we chose to use for our configuration.

When we placed the fenchurch.conf configuration in the /etc/nginx/conf.d/
directory, we were instructing Nginx to load this configuration, along with
everything else it loads at launch.

Web Servers, Databases, and Mail Servers Chapter 11

[655]

Let's look at our configuration:

server {
listen 80;
listen [::]:80;

root /var/www/fenchurch;
index index.html;

server_name 127.0.0.1;

location / {
try_files $uri $uri/ =404;
}
}

The listen directives are fairly straightforward, but if you had multiple IP addresses
on a box, they might be expanded to include a specific entry.

Next, our root entry is the root location of website files. Here, it's set to the one we
chose to create for our great question.

index is the name of the file to load when Nginx enters the directory. The standard
index.html is used here.

And, like Apache, server_name is the domain name or IP address that the end user
is hoping to receive content for. It could be a string of names, as seen elsewhere:

server_name example.com herring.example.com dwarf.example.com;

Lastly, the try_files line within the location block means that files of a given link
will be searched for, and if they're not found, a 404 will be given instead.

You can test this by trying to go to a non-existent file in your browser, for example,
http://127.0.0.1:8181/prefect:

Web Servers, Databases, and Mail Servers Chapter 11

[656]

However, we could change the 404 to a 403 and reload the Nginx config:

$ sudo sed -i 's/404/403/g' /etc/nginx/conf.d/fenchurch.conf
$ sudo systemctl reload nginx

If we do this, we get a 403 Forbidden instead:

404 is perhaps the most common code that web servers return, but
you should be aware that there are more, and they do actually mean
different things (provided they've been configured to return
correctly). 200 is OK, 401 means unauthorized, and so on.

There's more…
You might be wondering about using systemctl reload, and why I chose to use
that instead of restart.

The answer should become clearer when we cat the systemd unit file for Nginx:

$ systemctl cat nginx | grep Reload
ExecReload=/usr/sbin/nginx -g 'daemon on; master_process on;' -s
reload

There's a specific ExecReload line that runs with the -s reload flag.

This sends the reload signal to Nginx (SIGHUP); that is, it's less disruptive to the
running process.

See also
In Debian and Debian-like distributions, the concept of a sites-enabled and
sites-available directory has become commonplace.

Web Servers, Databases, and Mail Servers Chapter 11

[657]

Theoretically, any sites you have on your box could go in the sites-available
directory, and once you're happy with them, you create a symlink to the sites-
enabled directory.

Personally, I find this setup a bit confusing and somewhat outdated for an automated
world, but if that's your jam, then maybe the Debian way of doing things is for you. I
won't judge.

SSL, TLS, and LetsEncrypt
We haven't talked about the "S" part of the HTTP equation yet. Specifically, the S
stands for security, unlike Superman's, which apparently isn't an S, and is actually the
crest of the House of El.

Unlike Superman, web servers could be lying to you.

When you visit a website, you like to know that the website you're hitting is
legitimately owned and operated by the company you believe it to be. If you go to
Amazon, Apple, or PayPal, you want to know that they are who they say they are
before you hand over your digital cash.

However, you also want the website to be able to take your credit card information in
a secure fashion so that those digits and secrets don't get spread over the internet in
plain text format for anyone to read.

Look out for the padlock:

Most browsers (if not all) should show a little padlock when you visit a secure site,
and as long as the site isn't fraudulent, you shouldn't get a warning about potential
problems.

HTTPS is absolutely not perfect, as has been displayed previously
by security researchers. It's possible to get legitimate certificates for
companies you've set up that just happen to have the same or
similar name to existing brands. Be absolutely sure that who you're
sending your credit card information to is the real deal.

Web Servers, Databases, and Mail Servers Chapter 11

[658]

You can click on this padlock and get information about the Certificate that the
site is using to communicate with you, detailing things such as the owner of the cert,
the website in question, and the internet body that verified it:

In this section, we're going to set up our site to listen for HTTPS connections instead
of HTTP, and we're going to discuss a body known as Let's Encrypt.

Web Servers, Databases, and Mail Servers Chapter 11

[659]

Getting ready
In this section, we're going to use our Debian VM.

If you haven't already, it would be a good idea to set up Nginx as described in the
previous sections, including your virtual hosts entry.

If you've not done already, set up your virtual host on your Debian VM using Nginx.

Everything we do in this section is also possible in Apache, though with a different
configuration.

Ensure that you're forwarding your connection to your VM, this time using a new
port:

$ vagrant ssh debian1 -- -L 127.0.0.1:8484:127.0.0.1:443

How to do it…
Assuming your site is currently up and running on port 80, inside your VM, you
should be able to make the following changes to your files to enable HTTPS
communication:

$ sudo sed -i 's/listen 80/listen 443 ssl/g'
/etc/nginx/conf.d/fenchurch.conf
$ sudo sed -i '4iinclude snippets/snakeoil.conf;'
/etc/nginx/conf.d/fenchurch.conf

Ensure that your file looks similar to the following by using cat:

$ cat /etc/nginx/conf.d/fenchurch.conf
server {
listen 443 ssl;
listen [::]:80;
include snippets/snakeoil.conf;

root /var/www/fenchurch;
index index.html;

server_name 127.0.0.1;

location / {
try_files $uri $uri/ =404;
}
}

Web Servers, Databases, and Mail Servers Chapter 11

[660]

Now ensure that the snake oil certificates are available by installing the ssl-cert
package:

$ sudo apt install ssl-cert -y

Then, reload our configuration:

$ sudo systemctl reload nginx

You should now be able to visit the https://127.0.0.1:8484 address in your
browser, and hopefully see a warning such as the following:

This means that while the server is configured to listen on HTTPS and you can
connect to it, the browser doesn't think the certificate is legitimate (because it isn't)
and as a result it will warn you before you try to go any further:

At this point, you could press Add Exception... and trust the self-signed certificate,
enabling you to visit the website. However, unless you're absolutely sure that you
should be seeing the warning, and you're OK with it (because you're testing), it's not a
good habit to get into.

Web Servers, Databases, and Mail Servers Chapter 11

[661]

How it works…
The following is a BIG SUPER WARNING:

The certificates used here are for example only, hence the name "snake oil". They
should NEVER be used in production, by anyone, even for a joke. You should only
use legitimate certificates for any servers you set up (outside of testing and
development, which shouldn't be public facing anyway).

Now that that's out of the way, let's look at what we've got here:

server {
listen 443 ssl;
listen [::]:80;
include snippets/snakeoil.conf;

root /var/www/fenchurch;
index index.html;

server_name 127.0.0.1;

location / {
try_files $uri $uri/ =404;
}
}

We used a couple of sed commands to change this file, but we could have just copied
the contents into the file instead if we wanted.

We changed the listen port to 443 (from 80) and added an ssl directive. We also
included a snippet example file, in this case, snakeoil.conf:

$ cat /etc/nginx/snippets/snakeoil.conf
Self signed certificates generated by the ssl-cert package
Don't use them in a production server!

ssl_certificate /etc/ssl/certs/ssl-cert-snakeoil.pem;
ssl_certificate_key /etc/ssl/private/ssl-cert-snakeoil.key;

So, our little virtual host has access to an SSL certificate and a certificate key.

Reloading our configuration meant that these settings were applied and that we could
then hit our site on 443, inside Firefox.

We then got the scary message about the cert being bogus, but we expected that to
happen.

Web Servers, Databases, and Mail Servers Chapter 11

[662]

We also use the terms SSL and TLS interchangeably quite a bit in this profession
(even I'm guilty of it), and that's technically incorrect (the worst kind of incorrect).

Secure Sockets Layer (SSL) is a long deprecated protocol that's been replaced by
Transport Layer Security (TLS), which is now the standard and usually default for
providing security of data in transit.

There's been several versions of both protocols:

SSL 1.0: Never Published
SSL 2.0: 1995
SSL 3.0: 1996
TLS 1.0: 1999
TLS 1.1: 2006
TLS 1.2: 2008
TLS 1.3: 2018

Realistically, you should be using only TLS 1.2 these days, and when 1.3 becomes
ubiquitous, I'd recommend flipping to that too.

There's entire articles about the various attacks that can be used against some of these
protocols, and I would always advise reading up on the recommendations of the day
when you're setting up a web server.

Heartbleed is usually a good place to start reading up on SSL/TLS vulnerabilities.

Some older operating systems don't support newer protocols,
meaning that you sometimes get websites using long-dead and
insecure protocols just to appease the XP users of the world. If your
boss demands you use SSL (any version) or a TLS earlier than 1.2, I
would suggest a nice sit-down over a cup of tea so that you can
explain why that would be a bad idea.

There's more…
There are a couple of other things, just to make sure you've got a good jumping-off
point.

Web Servers, Databases, and Mail Servers Chapter 11

[663]

Let's Encrypt
If you don't want to use your own CA, you might consider using Let's Encrypt, a
certificate authority that provides free certificates.

Usually, certificates cost money—a lot of money in some cases (such as Extended
Validation certificates)—so it's nice to be able to secure your sites using a free
offering.

The certificates are only valid for 90 days, which is something of a drawback, but it's
perfectly possible to implement auto-renewal to combat this perceived problem.

Deployment and renewal can be accomplished by various tools that are available in a
lot of distributions. On Debian boxes, you might consider installing the certbot
package and having a go at configuring a web server of your own.

Work environment certificates
It's worth noting that the only thing that makes a certificate "trusted" in the traditional
sense is that you know who signed it. Some browsers and most operating systems
come with a list of "trusted" certificate authorities (CAs) that verify that a certificate
is legitimate.

The same is true for workplaces: What you tend to see (especially in bigger
companies) are in-house certificate authorities whose integrity-checking certificate is
installed on every laptop and desktop the company owns. The net result of this is that
it's much easier for a company to sign certificates for internal use, but they'll still
show a warning if any of those systems are accessed from outside (as the outside
device won't have the company CA installed).

You may find that your own employer has a CA on your company laptop, installed
alongside the bigwigs from America, China, and a few governments, too.

See also
It's nice to talk about security in the abstract, but the simple fact of the matter is that
it's actually quite a confusing topic, and one that the general public isn't that well
versed in.

Web Servers, Databases, and Mail Servers Chapter 11

[664]

You'd like to think that when an end user is presented with a big, scary banner telling
them that the site they're trying to hit isn't legitimate and that they'd click away as
fast as they can... but this doesn't happen in a lot of cases.

In reality, an unhealthy number of end users just get annoyed at having to click
through a few warning, before they reach the site they want (or the site pretending to
be the site they want).

Recent years have seen various attempts at damage limitation when it comes to users
blindly accepting fake certificates, such as browsers making it mildly more annoying
to add exceptions for websites, but still it happens.

This highlights a problem you will come across time and time again as a sysadmin,
that of user-education, and making sure your users have a basic understanding of
website security.

Basic MySQL or MariaDB Installation
Databases are great—they keep Database Administrators (DBAs) in jobs, and they
provide a convenient way of storing data on a system that isn't a series of randomly
sized flat files in a directory.

Traditionally, databases have been a great place to store ordered data of specific type
and size, meaning that you get databases backing all sorts of things, from bank
transaction records to website inventory numbers.

SQL databases are what people are most familiar with (more on NoSQL databases
later), and one of the most common is MariaDB, which is a fork of MySQL.

MariaDB was forked from MySQL after the acquisition of the latter
by Oracle. This is perhaps an understandable concern, as a lot of
people in the open source space view Oracle as evil, though
naturally I have no strong feelings one way or the other.

If you run a Wordpress site, you may have already come across MariaDB or MySQL
because they're the databases of choice for most people when setting up that
particular blogging platform.

Web Servers, Databases, and Mail Servers Chapter 11

[665]

Getting ready
In this section, we're going to be using our CentOS VM.

We're leaving web servers for now, meaning that you don't have to worry about
having completed the previous sections to proceed.

Let's hop on to our CentOS VM:

$ vagrant ssh centos1

How to do it…
It's considered a good practice to install software before you try to interact with it.
Bearing this in mind, install mariadb-server:

$ sudo yum install mariadb-server -y

Next, ensure that it's started and configured to start at boot (this can take a few
seconds):

$ sudo systemctl enable --now mariadb
Created symlink from /etc/systemd/system/multi-
user.target.wants/mariadb.service to
/usr/lib/systemd/system/mariadb.service.

Before we go any further, run the mysql_secure_installation script:

$ mysql_secure_installation

This will present you with a series of prompts. Answer them as follows:

Enter current password for root (enter for none): <BLANK, HIT ENTER>
Set root password? Y
New password: examplerootpassword
Remove anonymous users? Y
Disallow root login remotely? Y
Remove test database and access to it? Y
Reload privilege tables now? Y

Web Servers, Databases, and Mail Servers Chapter 11

[666]

Remember: these are just examples for this book. There may be
reasons why you need some of these settings, and you should
always set a secure root password in the real world.

Next, log in to your database:

$ mysql -uroot -pexamplerootpassword
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 10
Server version: 5.5.60-MariaDB MariaDB Server
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.
MariaDB [(none)]>

We gave the password directly on the command line here, for
display purposes, however you can omit the actual password
entirely, and instead have MariaDB prompt you for the password
(this way it won't show up in your Bash history).

Listing, creating, and selecting databases and
tables
From inside your new prompt, you're now able to list the databases within MariaDB
(confusing I know, but the database server (MariaDB) can have multiple databases
that it manages):

MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
+--------------------+
3 rows in set (0.00 sec)

We want to take a look at the built-in mysql database, so let's flip to that:

MariaDB [(none)]> use mysql;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

Web Servers, Databases, and Mail Servers Chapter 11

[667]

Once we're using this database, we can list the tables inside it:

MariaDB [mysql]> show tables;
+---------------------------+
| Tables_in_mysql |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| ndb_binlog_index |
| plugin |
| proc |
| procs_priv |
| proxies_priv |
| servers |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
24 rows in set (0.00 sec)

Now we can get information about specific tables. Here, we're getting the Host, User,
and Password from the user table:

MariaDB [mysql]> select Host,User,Password from user;
+-----------+------+---+
| Host | User | Password |
+-----------+------+---+
localhost	root	*F61E89B5042AB6D880D5BA79586B46BA93FABF09
127.0.0.1	root	*F61E89B5042AB6D880D5BA79586B46BA93FABF09
::1	root	*F61E89B5042AB6D880D5BA79586B46BA93FABF09
+-----------+------+---+
3 rows in set (0.00 sec)

On top of this, we can create our own database and tables, too.

Web Servers, Databases, and Mail Servers Chapter 11

[668]

Let's create exampledb as a database:

MariaDB [mysql]> create database exampledb;
Query OK, 1 row affected (0.00 sec)

We can then use this database and add a table:

MariaDB [mysql]> use exampledb;
Database changed
MariaDB [exampledb]> create table exampletable (food varchar(10),
goodbad char(1));
Query OK, 0 rows affected (0.00 sec)

Let's describe the table we just created, looking at our fields:

MariaDB [exampledb]> describe exampletable;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
| food | varchar(10) | YES | | NULL | |
| goodbad | char(1) | YES | | NULL | |
+---------+-------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

Next, populate it with some data:

MariaDB [exampledb]> insert into exampletable values
('strawberries','b');
Query OK, 1 row affected, 1 warning (0.00 sec)

Now we can see what we've just put into our table by selecting the contents:

MariaDB [exampledb]> select * from exampletable;
+------------+---------+
| food | goodbad |
+------------+---------+
| strawberri | b |
+------------+---------+
1 row in set (0.00 sec)

To exit your database, type exit (or hit CTRL + D):

MariaDB [exampledb]> exit
Bye
$

Web Servers, Databases, and Mail Servers Chapter 11

[669]

How it works…
We installed MariaDB on our system and started it. As a result of that, we created
several databases and associated data in the /var/lib/mysql directory:

$ ls /var/lib/mysql
aria_log.00000001 exampledb ib_logfile0 mysql performance_schema
aria_log_control ibdata1 ib_logfile1 mysql.sock

After running through the secure setup script, we then entered our database using
the password we'd just set:

$ mysql -uroot -pexamplerootpassword

This dropped us into a completely different shell, one within the MariaDB program,
which enabled us to manipulate the databases that MariaDB controls.

We created a database and a table inside it after a bit of poking around:

MariaDB [mysql]> create database exampledb;
MariaDB [exampledb]> create table exampletable (food varchar(10),
goodbad char(1));

The table we specifically created had the name exampletable. We gave it two fields:
a food field and a goodbad field.

We then inserted some data into the database:

MariaDB [exampledb]> insert into exampletable values
('strawberries','b');

As it happens, because we set the food field to be a varchar of 10, the strawberries
entry was too long, leading it to be cut off:

MariaDB [exampledb]> select * from exampletable;
+------------+---------+
| food | goodbad |
+------------+---------+
| strawberri | b |
+------------+---------+
1 row in set (0.00 sec)

This highlights one of the good things about traditional SQL databases, where you
can be very granular about the type of data that's stored in each field and how much
data you can store there.

Web Servers, Databases, and Mail Servers Chapter 11

[670]

This database now exists on our filesystem, as seen when we listed the mysql
directory previously:

$ sudo ls /var/lib/mysql/exampledb/
db.opt exampletable.frm

When you reboot your system, the changes you made to the database will continue to
exist.

There's more…
As hinted at in the opening blurb, MariaDB is a fork of MySQL, which is the reason
that while we installed MariaDB here, we also used the mysql series of commands for
interacting with it. This was to ensure backwards compatibility.

See also
There are also database permissions, which we haven't covered, and which are just as
crucial as regular filesystem permissions. You don't want two Wordpress installations
on the same host to be able to read the database of each other, so you would create a
dedicated user for each and give them their own DB within Maria.

Basic PostgreSQL installation
There's another popular SQL database out there, and I'm not talking about MSSQL
(which is OK, and it even works on Linux these days!).

PostgreSQL (pronounce it however you want; everyone else does) has been around
since 1996, and a lot of people swear by it as a vastly superior product to MySQL or
MariaDB.

Personally, I don't get all that excited about databases, so these sort of conversations
usually pass me by in a haze of wondering-where-my-next-coffee-is-going-to-come-
from.

Like MySQL and MariaDB, Postgres is available in a lot of default repositories, and a
lot of popular software will give you the option of using Postgres as a backend
instead of MariaDB.

Web Servers, Databases, and Mail Servers Chapter 11

[671]

Getting ready
In this section, we're going to use our CentOS machine once more.

Hop on to our CentOS VM (or stay on it if you're there already):

$ vagrant ssh centos1

How to do it…
Like Maria, we actually have to install the software first:

$ sudo yum install postgresql-server -y

Unlike Maria, we have to set Postgres up before we can use it:

$ sudo postgresql-setup initdb
Initializing database ... OK

However, once that's done, you can start and enable the server:

$ sudo systemctl enable --now postgresql

Now, log into your database (in a slightly different fashion than Maria):

$ sudo -u postgres psql
psql (9.2.24)
Type "help" for help.

postgres=#

Listing, creating, and selecting databases and
tables
Some people find it easier to remember Postgres commands and syntax compared to
MariaDB and MySQL. Personally, I always have to look them up, which results in
liberal use of \?, which drops you into the help menu.

Starting at the basics, use \l to list all databases that Postgres manages:

postgres-# \l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+----------+----------+-------------+-------------+--------

Web Servers, Databases, and Mail Servers Chapter 11

[672]

 postgres | postgres | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 |
 template0 | postgres | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/postgres
+
 | | | | | postgres=CTc/postgres
 template1 | postgres | UTF8 | en_GB.UTF-8 | en_GB.UTF-8 | =c/postgres
+
 | | | | | postgres=CTc/postgres
(3 rows)

To create a database, we're going to copy one of the two templates available to us:

postgres=# create database exampledb template template1;
CREATE DATABASE

To change to our new database, use \c:

postgres=# \c exampledb
You are now connected to database "exampledb" as user "postgres".

You might think that to list tables we would use \t, or perhaps \lt, but you'd be
incorrect.

To list tables in the current database, use \dt:

exampledb=# \dt
No relations found.

There's none in this DB, so let's create one:

exampledb=# create table prime_ministers(firstname varchar(10),
lastname varchar(10));
CREATE TABLE

We also need to populate it:

exampledb=# insert into prime_ministers (firstname, lastname) values
('Lord', 'Rosebury'), ('George', 'Canning'), ('Tony', 'Blair');
INSERT 0 3

Then, we need to describe it:

exampledb=# \d prime_ministers
 Table "public.prime_ministers"
 Column | Type | Modifiers
-----------+-----------------------+-----------
 firstname | character varying(10) |
 lastname | character varying(10) |

Web Servers, Databases, and Mail Servers Chapter 11

[673]

Finally, we need to select from it:

exampledb=# select * from prime_ministers;
 firstname | lastname
-----------+----------
 Lord | Rosebury
 George | Canning
 Tony | Blair
(3 rows)

Exit Postgres with \q or CTRL + D:

exampledb=# \q
$

How it works…
After installing Postgres, we end up with data in /var/lib/pgsql, like so:

$ sudo ls /var/lib/pgsql/
backups data initdb.log

We then logged into our database, using the user that was created for us during
installation:

$ sudo -u postgres psql
$ cat /etc/passwd | grep postgres
postgres:x:26:26:PostgreSQL Server:/var/lib/pgsql:/bin/bash

Once inside, we proceeded to create a database of our own, using template1 as a
template:

postgres=# create database exampledb template template1;

template1 can be modified so that you can have a consistent
starting point for new systems, though, again, I find that this is
easier to store in infrastructure as code repositories
nowadays.

We created a table inside our database (after changing to it):

exampledb=# create table prime_ministers(firstname varchar(10),
lastname varchar(10));

Web Servers, Databases, and Mail Servers Chapter 11

[674]

Note that again we're defining specific fields, with types that are associated (varchar
is a very flexible data type, but it's not a good idea to use it for everything. Using
proper types for the sort of data you want to associate with a field is better for
performance).

We populated our table with content, described, and selected from it:

exampledb=# insert into prime_ministers (firstname, lastname) values
('Lord', 'Rosebury'), ('George', 'Canning'), ('Tony', 'Blair');
exampledb=# \d prime_ministers
exampledb=# select * from prime_ministers;

Hopefully, you've noted that a lot of the syntax we used in this section is the exact
same as the syntax that was used in the MariaDB installation. There's a reason for
this, and it's because of the name SQL that both of these databases carry.

Structured Query Language is reasonably consistent, but it's not the case that a
command used in one SQL DB will be copy-and-pastable into another DB. Sadly,
that's a pipe dream for the most part.

Outside of the table and database manipulation commands (\l, \dt, and so on),
you'd be forgiven for confusing Postgres and Maria syntax, but it's sometimes just
different enough to be annoying.

We've also not added MSSQL into the mix.

If you ever hear someone refer to SQL as seeqwel, instead of S.Q.L.,
there's a good chance they've picked up the name from a Windows
DBA, or someone old enough to remember SQL was originally the
"Structured English Query Language". It no longer has an "e" in the
name, but some people insist on creating this ephemeral "e" when
they pronounce the acronym.

Holy wars...

Local MTA usage and configuration
(Postfix)
Email still exists, and while this is a travesty in itself, it also offers us the opportunity
to look at why you might find yourself interacting with a mail server in your day-to-
day job.

Web Servers, Databases, and Mail Servers Chapter 11

[675]

Traditionally, servers sometimes ran a series of checks on a nightly or weekly basis
before compiling the results into a document and firing it off to the sysadmin, who
could then peruse the report and pick up on anomalies or unexpected behavior.
Mostly, this is a forgotten art, and very few people ever bother to configure the
default mailing location on their system to be anything other than root@localhost.

It's for this reason that you occasionally see you have new mail or a similar
notification when you log into a console. The mail in there is usually something that
you don't care too much about, from a program that informed you it was broken in a
different way five days before.

That's not to say that mail isn't important—it's still actively used by monitoring
systems as a first "alert" method, and, as surprising as it sounds, some people really
do still run their own mail servers (though, these days, you're more likely to find a
company using an off-the-shelf solution such as ProtonMail, configured with their
own domain records).

Email has issues, even when used as an alerting method in a
monitoring system. I've lost count of the number of places I've been
who've had a Nagios, Icinga2, or Zabbix set up, configured to email
out when there's a problem, but also when the problem goes away,
or when there might possibly be a problem that someone should
look at. An alert email can mount up fast, resulting in alert fatigue
when engineers simply pipe their email to a junk folder and never
check it (except when it gets too full and they occasionally empty it
out). Text messages are a much more annoying method of
alerting—try those.

Getting ready
In this section, we're going to use our CentOS VM, mostly because Postfix is installed
by default on CentOS boxes.

Log on to your CentOS box and make sure that Postfix is running:

$ vagrant ssh centos1
$ systemctl status postfix
● postfix.service - Postfix Mail Transport Agent
 Loaded: loaded (/usr/lib/systemd/system/postfix.service; enabled;
vendor preset: disabled)
 Active: active (running) since Sun 2018-12-02 11:35:12 UTC; 21h ago
 Main PID: 1125 (master)

Web Servers, Databases, and Mail Servers Chapter 11

[676]

 CGroup: /system.slice/postfix.service
 ├─ 1125 /usr/libexec/postfix/master -w
 ├─ 1129 qmgr -l -t unix -u
 └─10453 pickup -l -t unix -u

If it's not installed and not running, you can simply install the postfix package:

$ sudo yum install postfix -y

How to do it…
Mostly, you'll find that Postfix is already installed and configured, so let's trawl
through what we've got out of the box and look at some common utilities.

First, let's check which MTA your system is configured to use by using the
alternatives command:

$ alternatives --list | grep mta
mta auto /usr/sbin/sendmail.postfix

This tells us that the system is utilizing Postfix to send mail.

Try sending some mail to an example address. For this, we first need to install a small
command line, that is, mailx:

$ sudo yum install mailx -y

You can now run the following mail command, writing whatever you want into the
newlines (and ending the email with a single . on the last line):

$ mail -s "Example Subject" packt@example.co
This is an example email.
We end emails written in this way, using the '.' symbol.
That way, the client knows when the email has come to a close.
.
EOT
$

If we now type mail again, we get dropped into the mail shell:

$ mail
Heirloom Mail version 12.5 7/5/10. Type ? for help.
"/var/spool/mail/vagrant": 1 message 1 unread
>U 1 Mail Delivery System Mon Dec 3 09:35 76/2632 "Undelivered Mail
Returned to Sender"
&

Web Servers, Databases, and Mail Servers Chapter 11

[677]

Note what we're informed that we have one message, one of which is unread, and
below that we get the emboldened line, with the subject in quotes.

To open the message, type in the number corresponding to the message in question:

Web Servers, Databases, and Mail Servers Chapter 11

[678]

You're dropped into a pager, which allows you to scroll through your message.

You can see a few important things in this message, the first of which being that the
responding system is MAILER-DAEMON@centos1.localdomain (mail delivery
system), which suggests that our message didn't get very far.

The email then suggests some things you can do to help alleviate your issue, the first
of which is contact the postmaster, who, like the pagemaster from the film of the
same name, tends to have a certain ethereal quality.

At the bottom, you get a snippet of your email.

What does this tell us? Well, first and foremost, it tells us that your mail server can't
send the message you just attempted to email.

Next, it tells us that Postfix is functioning enough to process mail, because a bounce is
still mail.

main.cf
Postfix uses a primary configuration file at /etc/postfix/main.cf.

This file contains a lot of configuration options, but out of the box, it's not configured
to do much of anything (it won't accept incoming mail from another system, for
example).

/etc/aliases
This is the database, or map, of accounts that receive certain mail.

Generally, the only configuration change made in this file is the destination for the
root's mail. On a local system, you could map this to your user:

Person who should get root's mail
root: vagrant

Then, you run newaliases to apply this change:

$ sudo newaliases

Again, it's not done frequently, but some people still like to grab emails that are
intended for root just to make sure that random programs aren't dying and screaming
into the void as they're claimed by the reaper.

Web Servers, Databases, and Mail Servers Chapter 11

[679]

How it works…
For more detailed output on what's going on when your message fails to send, you
can usually check /var/log/maillog:

$ sudo cat /var/log/maillog
Dec 2 11:35:12 localhost postfix/postfix-script[1120]: starting the
Postfix mail system
Dec 2 11:35:12 localhost postfix/master[1125]: daemon started --
version 2.10.1, configuration /etc/postfix
Dec 3 09:35:43 localhost postfix/pickup[11157]: 8E9A1206B117: uid=1000
from=<vagrant>
Dec 3 09:35:43 localhost postfix/cleanup[11317]: 8E9A1206B117:
message-id=<20181203093543.8E9A1206B117@centos1.localdomain>
Dec 3 09:35:43 localhost postfix/qmgr[1129]: 8E9A1206B117:
from=<vagrant@centos1.localdomain>, size=601, nrcpt=1 (queue active)
Dec 3 09:35:43 localhost postfix/smtp[11319]: 8E9A1206B117:
to=<packt@example.co>, relay=none, delay=0.12,
delays=0.04/0.01/0.06/0, dsn=5.4.4, status=bounced (Host or domain
name not found. Name service error for name=example.co type=AAAA: Host
not found)
Dec 3 09:35:43 localhost postfix/cleanup[11317]: A88F7206B118:
message-id=<20181203093543.A88F7206B118@centos1.localdomain>
Dec 3 09:35:43 localhost postfix/qmgr[1129]: A88F7206B118: from=<>,
size=2545, nrcpt=1 (queue active)
Dec 3 09:35:43 localhost postfix/bounce[11320]: 8E9A1206B117: sender
non-delivery notification: A88F7206B118
Dec 3 09:35:43 localhost postfix/qmgr[1129]: 8E9A1206B117: removed
Dec 3 09:35:43 localhost postfix/local[11321]: A88F7206B118:
to=<vagrant@centos1.localdomain>, relay=local, delay=0.02,
delays=0/0.02/0/0, dsn=2.0.0, status=sent (delivered to mailbox)
Dec 3 09:35:43 localhost postfix/qmgr[1129]: A88F7206B118: removed

Here, we get a bit of detail around what happened, and if we find the message we
want, we can follow the message-id through the thread of the message.

First, we can see the message being picked up by Postfix:

Dec 3 09:35:43 localhost postfix/pickup[11157]: 8E9A1206B117: uid=1000
from=<vagrant>

Next, the daemon processes the message before passing it to the mail queue:

Dec 3 09:35:43 localhost postfix/cleanup[11317]: 8E9A1206B117:
message-id=<20181203093543.8E9A1206B117@centos1.localdomain>

Web Servers, Databases, and Mail Servers Chapter 11

[680]

We learn that the message is on the queue, waiting to be sent:

Dec 3 09:35:43 localhost postfix/qmgr[1129]: 8E9A1206B117:
from=<vagrant@centos1.localdomain>, size=601, nrcpt=1 (queue active)

Finally (for this message), SMTP tries to process the mail:

Dec 3 09:35:43 localhost postfix/smtp[11319]: 8E9A1206B117:
to=<packt@example.co>, relay=none, delay=0.12,
delays=0.04/0.01/0.06/0, dsn=5.4.4, status=bounced (Host or domain
name not found. Name service error for name=example.co type=AAAA: Host
not found)

It immediately fails because the domain isn't real.

A bounce message is created, that is, A88F7206B118, and processed (while the
original message, 8E9A1206B117, is removed):

Dec 3 09:35:43 localhost postfix/cleanup[11317]: A88F7206B118:
message-id=<20181203093543.A88F7206B118@centos1.localdomain>
Dec 3 09:35:43 localhost postfix/qmgr[1129]: A88F7206B118: from=<>,
size=2545, nrcpt=1 (queue active)
Dec 3 09:35:43 localhost postfix/bounce[11320]: 8E9A1206B117: sender
non-delivery notification: A88F7206B118
Dec 3 09:35:43 localhost postfix/qmgr[1129]: 8E9A1206B117: removed

This is done before being sent to the local user, who initiated the mail attempt in the
first place:

Dec 3 09:35:43 localhost postfix/local[11321]: A88F7206B118:
to=<vagrant@centos1.localdomain>, relay=local, delay=0.02,
delays=0/0.02/0/0, dsn=2.0.0, status=sent (delivered to mailbox)
Dec 3 09:35:43 localhost postfix/qmgr[1129]: A88F7206B118: removed

It lands in /var/spool/mail/vagrant, as denoted by this friendly message:

You have mail in /var/spool/mail/vagrant

Each of the steps here is done by Postfix, with one master daemon being responsible
for a lot of little daemons, each of which has a specific job.

If we run ps and look for the postfix daemon, you'll find something such as this:

 1125 ? Ss 0:00 /usr/libexec/postfix/master -w
 1129 ? S 0:00 _ qmgr -l -t unix -u
11157 ? S 0:00 _ pickup -l -t unix -u

Web Servers, Databases, and Mail Servers Chapter 11

[681]

qmgr, as the name suggests, is the queue manager, and pickup is for local mail
pickup.

To view the queue, you can use the postqueue command:

$ postqueue -p
-Queue ID- --Size-- ----Arrival Time---- -Sender/Recipient-------
D71FD206B117 458 Mon Dec 3 10:04:18 vagrant@centos1.localdomain
 (connect to nasa.com[192.64.147.150]:25: Connection
refused)
 contact@nasa.com

-- 0 Kbytes in 1 Request.

Here, you can see a message I sent to contact@nasa.com. This doesn't work because
our connection attempt gets refused.

Also, note port 25, a traditional mail-receiving port.

If you wanted to empty the queue, you'd use postsuper, like so:

$ sudo postsuper -d D71FD206B117
postsuper: D71FD206B117: removed
postsuper: Deleted: 1 message

You can also flush mail queues, which attempts redelivery of the
mail in them. Generally, though, unless you've fixed the problem
that caused undeliverable mail in the first place, you've just caused
the mail to fail again. What's more, you've probably ground your
server to a halt in the process.

There's more…
Postfix is a Mail Transport Agent (MTA).

Sadly, this isn't a book on configuring mail servers, because there are many, many
books on this subject already. All you need to be aware of is how to interact with a
default Postfix installation, should you ever come across one in the wild.

Web Servers, Databases, and Mail Servers Chapter 11

[682]

If you want to know more about Postfix, or want to run your own mail server, I
would advise against it. However, if you came back and said you really, really
wanted to run your own mail server, I would suggest sitting down with Postfix for a
weekend, reading up on best practices (don't create an open-relay, for example), and
trying not to give up immediately. All power to you.

Really, though, most companies these days either use some form of
Exchange server, or they're just using Google, ProtonMail, FastMail,
and so on instead.

See also
It's worth reading up on email because there actually is a good chance that you'll find
yourself opening an email one day to look at the headers. Understanding why email
works in the way it does (that is, handing off a message to the next mail server in a
chain, until it eventually gets to the end user) can be very valuable in this context.

I may expand this section in the future, if the notion of running your own email
server sees some miraculous resurgence.

Local MTA usage and configuration
(Exim)
Like Postfix, we have Exim, which is another MTA.

Where Postfix is powerful and has its focus on security, Exim is known for being
extremely customizable, and with a pedigree that goes all the way back to 1995
(inching out Postfix by three years). It's been the favorite of the Debian project for
years, and, as a result, a lot of the documentation on setting up a mail server
references Exim.

Also, like Postfix, this won't be a long section on fully configuring Exim, as that
would require something much longer than a section, chapter, or realistically a book
when done right. Instead, we're going to look at some configuration, the Exim log file,
and what happens when you try to send a message from your local system.

Web Servers, Databases, and Mail Servers Chapter 11

[683]

Getting ready
In this section, we're going to use our Debian machine.

To ensure that Exim is installed on your system, run the following:

$ sudo apt install exim4 -y

There's quite a few packages in the Exim suite, and it can take some time to run
through them all.

Check it's running with systemctl status:

$ systemctl status exim4
● exim4.service - LSB: exim Mail Transport Agent
 Loaded: loaded (/etc/init.d/exim4; generated; vendor preset: enabled)
 Active: active (running) since Wed 2018-12-05 17:38:01 GMT; 1min 29s
ago
 Docs: man:systemd-sysv-generator(8)
 Process: 5402 ExecStart=/etc/init.d/exim4 start (code=exited,
status=0/SUCCESS)
 Tasks: 1 (limit: 4915)
 CGroup: /system.slice/exim4.service
 └─5649 /usr/sbin/exim4 -bd -q30m

How to do it…
Post-installation, let's quickly test what the mail server looks like out of the box.

Starting by sending an example mail:

$ mail -s "Example Subject" packt@example.co
Cc:
This is another piece of example mail.
In this case we need to end with Ctrl-D.
Like so!
$

If we now run mail again, we'll see our bounced message:

$ mail
"/var/mail/vagrant": 1 message 1 new
>N 1 Mail Delivery Syst Wed Dec 5 17:46 56/1737 Mail delivery failed:
returnin
?

Web Servers, Databases, and Mail Servers Chapter 11

[684]

Again, hitting 1 and Enter will load the first message:

Here, we actually get the helpful message Mailing to remote domains not
supported as the server in question is incapable of doing so.

Web Servers, Databases, and Mail Servers Chapter 11

[685]

With Exim, you can also test how it might route mail to a given address with the
address testing mode. When given the preceding address, it prints a familiar
message:

$ sudo exim -bt packt@example.co
R: nonlocal for packt@example.co
packt@example.co is undeliverable: Mailing to remote domains not
supported

It even tells you it's non-local, whereas if we give the same command, replacing the
fake email with a local user, we get the following:

$ sudo exim -bt vagrant@localhost
R: system_aliases for vagrant@localhost
R: userforward for vagrant@localhost
R: procmail for vagrant@localhost
R: maildrop for vagrant@localhost
R: lowuid_aliases for vagrant@localhost (UID 1000)
R: local_user for vagrant@localhost
vagrant@localhost
 router = local_user, transport = mail_spool

The transport used is the local mail_spool, and there's no messages about mail
being undeliverable.

We can also use ss to confirm that our mail server is only listening on port 25 locally
(127.0.0.1 & ::1):

$ ss -tna '(sport = :smtp)'
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 20 127.0.0.1:25 *:*
LISTEN 0 20 ::1:25 :::*

How it works…
Exim configuration is found in the /etc/exim4 folder on our Debian host. Listing
this file looks as follows:

$ ls /etc/exim4/
conf.d exim4.conf.template passwd.client update-exim4.conf.conf

The configuration file that's being actively used is the update-exim4.conf.conf file
(yes, that's .conf twice).

Web Servers, Databases, and Mail Servers Chapter 11

[686]

This file looks as follows out of the box:

/etc/exim4/update-exim4.conf.conf
#
Edit this file and /etc/mailname by hand and execute update-
exim4.conf
yourself or use 'dpkg-reconfigure exim4-config'
#
Please note that this is _not_ a dpkg-conffile and that automatic
changes
to this file might happen. The code handling this will honor your
local
changes, so this is usually fine, but will break local schemes that
mess
around with multiple versions of the file.
#
update-exim4.conf uses this file to determine variable values to
generate
exim configuration macros for the configuration file.
#
Most settings found in here do have corresponding questions in the
Debconf configuration, but not all of them.
#
This is a Debian specific file

dc_eximconfig_configtype='local'
dc_other_hostnames='debian1'
dc_local_interfaces='127.0.0.1 ; ::1'
dc_readhost=''
dc_relay_domains=''
dc_minimaldns='false'
dc_relay_nets=''
dc_smarthost=''
CFILEMODE='644'
dc_use_split_config='false'
dc_hide_mailname=''
dc_mailname_in_oh='true'
dc_localdelivery='mail_spool'

It can, however, be amended, as the file suggests, by using sudo dpkg-reconfigure
exim4-config:

$ sudo dpkg-reconfigure exim4-config

Web Servers, Databases, and Mail Servers Chapter 11

[687]

This will drop you into a TUI, which looks like this:

Here, you can reconfigure your mail server to your liking, including setting it up as
an internet mail server.

Once done to your liking, you will find that the configuration file has been updated to
reflect those settings.

Web Servers, Databases, and Mail Servers Chapter 11

[688]

If you want to know whether certain configuration settings have taken effect, you can
use the exiwhat command, as follows:

$ sudo exiwhat
 3280 daemon(4.89): -q30m, listening for SMTP on [127.0.0.1]:25
[::1]:25

Exim, like Postfix, also supplies a helpful maillog, though in the case of Exim, it's
called the mainlog and it's generally in a specific exim directory:

$ sudo ls /var/log/exim4/
mainlog

The contents is relatively familiar:

$ sudo cat /var/log/exim4/mainlog
<SNIP>
2018-12-05 19:03:15 1gUcS3-0000xe-Ps <= vagrant@debian1 U=vagrant
P=local S=466
2018-12-05 19:03:15 1gUcS3-0000xe-Ps ** packt@example.co R=nonlocal:
Mailing to remote domains not supported
2018-12-05 19:03:15 1gUcS3-0000xg-SC <= <> R=1gUcS3-0000xe-Ps
U=Debian-exim P=local S=1645
2018-12-05 19:03:15 1gUcS3-0000xe-Ps Completed
2018-12-05 19:03:15 1gUcS3-0000xg-SC => vagrant <vagrant@debian1>
R=local_user T=mail_spool
2018-12-05 19:03:15 1gUcS3-0000xg-SC Completed

We can see some fairly obvious lines in here that we can expand on, too:

2018-12-05 19:03:15 1gUcS3-0000xe-Ps <= vagrant@debian1 U=vagrant
P=local S=466

The following message has arrived from vagrant@debian1 (<=):

2018-12-05 19:03:15 1gUcS3-0000xe-Ps ** packt@example.co R=nonlocal:
Mailing to remote domains not supported

The delivery of the message failed, as the address bounced (**):

2018-12-05 19:03:15 1gUcS3-0000xg-SC <= <> R=1gUcS3-0000xe-Ps
U=Debian-exim P=local S=1645

A new message has been received from Debian-exim:

2018-12-05 19:03:15 1gUcS3-0000xe-Ps Completed

Web Servers, Databases, and Mail Servers Chapter 11

[689]

The original message's journey has come to an end:

2018-12-05 19:03:15 1gUcS3-0000xg-SC => vagrant <vagrant@debian1>
R=local_user T=mail_spool

The new message has gone out to the vagrant user (=>):

2018-12-05 19:03:15 1gUcS3-0000xg-SC Completed

The new message's journey has now ended too.

There's more…
I've got to give a shout out here to an indispensable site for Exim
troubleshooting: http:/ / bradthemad. org/tech/ notes/ exim_ cheatsheet. php.

If you ever find yourself stuck on that one thing you know Exim can do, or you're
certain there's a specific query for the information you're trying to glean, check out
Brad's Exim Cheatsheet—you won't be the first.

Thanks Brad, for helping administrators everywhere.

NoSQL documents (MongoDB example)
We took a look at Structured Query Language (SQL) services earlier, in the form of
MariaDB and PostgreSQL. Now we're going to look at the "newer" way of storing
data in a database, in a NoSQL fashion.

Unlike the table-based relationships of more traditional databases, NoSQL databases
store data in other ways (such as key-value stores, tuple stores, or document stores).
They've come to prominence in recent years due to the sudden and abrupt influx of
big data products to the market, which rely on such databases for storage a lot of the
time.

NoSQL databases can take a few different forms, as hinted at previously, and we'll be
taking a look at an example of one in the next section (Redis).

When thinking about why you might use a NoSQL database in place of a traditional
one, you might consider aspects such as scalability, flexibility, and speed, all of which
can be features of good NoSQL setups.

http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php
http://bradthemad.org/tech/notes/exim_cheatsheet.php

Web Servers, Databases, and Mail Servers Chapter 11

[690]

The term database is perhaps more loosely and accurately applied to NoSQL setups,
which can be a base for data, but that might not require the use of structured storage
for the data they contain.

We're going to install MongoDB in this section, and take a look at the way data is
stored in its databases.

LARGE DISCLAIMER:
MongoDB is perhaps infamous for being a target for unscrupulous
members of hacking society. This is because MongoDB can be
installed with default settings that let it listen on the internet, on an
open port, without any sort of access requirements enabled. THIS IS
BAD, and you should always consider the security implications of
what you're doing, prior to doing them. As with any application,
security is primarily the responsibility of the administrator doing
the installation and management. I go on and on about security in
certain sections of this book, but it's important to hammer the point
home. Too often, I've seen lackadaisical approaches to deploying
servers (of all kinds) that result in a great big hole in your network.
When given free reign, I've seen some very intelligent people do
very silly things without thinking about it (such as leaving default
admin credentials set on a public-facing build server), and Hanlon's
razor always applies:
"Never attribute to malice that is adequately explained by stupidity."

Getting ready
In this section, we're going to be using our CentOS machine, SSH to it:

$ vagrant ssh centos1

Install the EPEL repository, and then MongoDB:

$ sudo yum install epel-release -y
$ sudo yum install mongodb mongodb-server -y

We're using the EPEL repository for convenience here, but there are
more ways to install MongoDB. Specifically, using the official
repositories is the recommended approach for production systems.

Web Servers, Databases, and Mail Servers Chapter 11

[691]

How to do it…
Once installed, you can start and enable MongoDB with the mongod daemon:

$ sudo systemctl enable --now mongod

By default, MongoDB will start on localhost port 27017, but confirm this using ss or
other tools:

$ ss -a '(sport = :27017)'
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 127.0.0.1:27017 *:*

Once started, you can connect to your database using the mongo command-line tool:

$ mongo

The output of the preceding command is as follows:

Note that we connected to test by default. We can confirm what DB we're connected
to (if we missed the notification) with the db command:

> db
test

We can change databases easily (and in familiar fashion) by using use:

> use local
switched to db local

Within our current database, we can see the collections. Because we've switched to
local, these look as follows:

> show collections
startup_log
system.indexes

Web Servers, Databases, and Mail Servers Chapter 11

[692]

The syntax for working with collections is db.<collection name>.<blah>, so if
we wanted to query everything within the startup_log collection, we could do the
following:

> db.system.indexes.find()
{ "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" :
"local.startup_log" }

Obviously, this is a bit messy, so we can use .pretty() to make it nicer to read:

> db.system.indexes.find().pretty()
{
 "v" : 1,
 "key" : {
 "_id" : 1
 },
 "name" : "_id_",
 "ns" : "local.startup_log"
}

You should already be seeing similarities with SQL databases, though the syntax is
wildly different in a lot of cases.

Let's flip back to our test database and create a collection of our own:

> use test
switched to db test
> db.distributions.insert({ name: "Ubuntu", developer: "Canonical
Ltd.", initial_year: 2004 })
WriteResult({ "nInserted" : 1 })

Now, by performing a find on this collection, we should see the data we just shoved
in:

> db.distributions.find().pretty()
{
 "_id" : ObjectId("5c081ba9832e06b5d1b64d50"),
 "name" : "Ubuntu",
 "developer" : "Canonical Ltd.",
 "initial_year" : 2004
}

Let's add another line, this time with some more fields:

> db.distributions.insert({ name: "Alpine Linux", developer: "Alpine
Linux development team", initial_year: 2010, first_version: 2.0,
forked_from: "LEAF Project" })
WriteResult({ "nInserted" : 1 })

Web Servers, Databases, and Mail Servers Chapter 11

[693]

Let's perform our find again:

> db.distributions.find().pretty()
{
 "_id" : ObjectId("5c081ba9832e06b5d1b64d50"),
 "name" : "Ubuntu",
 "developer" : "Canonical Ltd.",
 "initial_year" : 2004
}
{
 "_id" : ObjectId("5c081c31832e06b5d1b64d51"),
 "name" : "Alpine Linux",
 "developer" : "Alpine Linux development team",
 "initial_year" : 2010,
 "first_version" : 2,
 "forked_from" : "LEAF Project"
}

Note that while our insert was fine, the 2.0 from the first_version field has been
simplified to an integer.

If we wanted to narrow down our search, we could specifically search for entries with
the name of Ubuntu:

> db.distributions.find({"name": "Ubuntu"}).pretty()
{
 "_id" : ObjectId("5c081ba9832e06b5d1b64d50"),
 "name" : "Ubuntu",
 "developer" : "Canonical Ltd.",
 "initial_year" : 2004
}

Alternatively, if we wanted to print specific values only (just the names here), we
could use the following:

> db.distributions.find({}, {"name": 1, "_id": 0}).pretty()
{ "name" : "Ubuntu" }
{ "name" : "Alpine Linux" }

Note the odd structure of this query, where we've specified 1 to include the name, but
0 to omit the _id, which is included by default.

There's plenty of other things you can do, including searching by a specific query (in
this case, looking for all entries with an initial_year greater than 2004):

> db.distributions.find({"initial_year": { $gt: 2004}}).pretty()
{

Web Servers, Databases, and Mail Servers Chapter 11

[694]

 "_id" : ObjectId("5c081c31832e06b5d1b64d51"),
 "name" : "Alpine Linux",
 "developer" : "Alpine Linux development team",
 "initial_year" : 2010,
 "first_version" : 2,
 "forked_from" : "LEAF Project"
}

Specifically, though, we're interested in differences between this method of storing
data and a traditional method.

How it works…
Since we're working with documents and things are being created on the fly (rather
than having tables that are populated with a strict dataset), our preceding commands
can seem a lot more ad hoc than traditional databases would perform.

When we created our collection, we didn't have to define anything. We simply started
writing data inside our test database:

> db.distributions.insert({ name: "Ubuntu", developer: "Canonical
Ltd.", initial_year: 2004 })

From there, we were able to add more data, only to then start querying what we'd
just written.

The data we added subsequently didn't really matter, and while there were
correlations in the documents we wrote, such as the name, developer, and
initial_year fields, there were some fields that were unique to our second insert.
The database didn't care.

Because of this method of storing data in a database, NoSQL systems can be seen as a
lot more flexible in terms of input.

This data is now stored within MongoDB, ready to be accessed quickly and easily by
any program that wants to query it (commonly something such as a Node.js
application).

We can see exactly where the dbPath value is using another query:

> use local
switched to db local
> db.startup_log.find({}, {"cmdLine.storage": 1}).pretty()
{
 "_id" : "centos1-1544033443006",

Web Servers, Databases, and Mail Servers Chapter 11

[695]

 "cmdLine" : {
 "storage" : {
 "dbPath" : "/var/lib/mongodb"
 }
 }
}

This means that we can also view it on our host system:

$ sudo ls -l /var/lib/mongodb/
total 163844
drwxr-xr-x. 2 mongodb mongodb 29 Dec 5 18:40 journal
-rw-------. 1 mongodb mongodb 67108864 Dec 5 18:10 local.0
-rw-------. 1 mongodb mongodb 16777216 Dec 5 18:10 local.ns
-rwxr-xr-x. 1 mongodb mongodb 6 Dec 5 18:10 mongod.lock
-rw-------. 1 mongodb mongodb 67108864 Dec 5 18:42 test.0
-rw-------. 1 mongodb mongodb 16777216 Dec 5 18:42 test.ns
drwxr-xr-x. 2 mongodb mongodb 6 Dec 5 18:40 _tmp

There's more…
I suggested the EPEL version of MongoDB is old. At the time of writing this is true, so
it's a good idea to try the most recent version from the upstream repositories, if you'd
like to use MongoDB for your own systems.

Again, I would hammer the point home that enabling some sort of security on your
system is also a must if you plan on using it in production.

Also, if you're still trying to think of a situation where NoSQL databases could be
more useful than traditional PostgreSQL or MySQL setups, think of something such
as logging.

You would hope that a log file is consistent, with the same fields, and the same type
of data in each. However, log files might change, their order could be different, the
types could suddenly change, and the number of fields could increase.

If you're using a traditional database as the backend for these logs (perfectly possible),
you would have to add new tables in the best case, or use a different database entirely
in the worst case.

Piping these same logs into a NoSQL system, one specifically designed to deal with
documents, shouldn't impact the running of the system at all, as the collection will
simply adapt to the new information you've provided.

Web Servers, Databases, and Mail Servers Chapter 11

[696]

NoSQL KV (Redis example)
We've had a look at one type of NoSQL database already, in the form of MongoDB (a
document-specific instance). Now we're going to look at a different type of NoSQL
database, specifically Redis, which is a key-value (KV) offering.

Its unique selling point is the fact it's an entirely in-memory database (with some
writing out to disk periodically, if desired). This means that Redis is not only a great
cache for storing the data you're manipulating or using, but it's also extremely fast.

Because of Redis's design, it is a commonly seen component in web stack setups,
where speed is important for processing requests efficiently.

Of note is one criticism of NoSQL databases that is used in regard to Redis and
others, where data can be lost easily under specific scenarios. Because Redis stores its
data primarily in memory, writing out to disk occasionally, there is a chance that the
catastrophic failure of a node can result in loss of data, even if it is only a few seconds
worth.

Getting ready
In this section, we're going to use our CentOS VM again.

SSH to your CentOS machine:

$ vagrant ssh centos1

Install the EPEL repository, and then MongoDB:

$ sudo yum install epel-release -y
$ sudo yum install redis -y

Again, we're using EPEL for convenience, but more up-to-date
offerings are out there, and one of the most preferred ways of
running Redis is in Docker containers.

Web Servers, Databases, and Mail Servers Chapter 11

[697]

How to do it…
Out of the box, systemd will start the redis-server binary by using the
/etc/redis.conf configuration file. Let's go ahead and do that now:

$ sudo systemctl enable --now redis
Created symlink from /etc/systemd/system/multi-
user.target.wants/redis.service to
/usr/lib/systemd/system/redis.service.

The default port being used is 6379, which we can again check using ss:

$ ss -a '(sport = :6379)'
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 127.0.0.1:6379 *:*

Here, we're listening on localhost, port 6379:

The same warning as ever applies: If you start opening any of your
installed services, make sure they're secure and aren't about to let
bad actors steal your data.

Connecting to an instance is achieved using redis-cli from the command line, and
simply invoking it should land you inside the Redis shell:

$ redis-cli
127.0.0.1:6379>

Redis recommends using ping to see whether Redis is responding properly:

127.0.0.1:6379> ping
PONG

Because Redis is a KV store, the syntax for interacting with it can be incredibly
simple. The following example creates a key with a string value:

127.0.0.1:6379> set distro centos
OK

To retrieve that data, we use get:

127.0.0.1:6379> get distro
"centos"

Web Servers, Databases, and Mail Servers Chapter 11

[698]

If we wanted to set an integer value, we simply specify it:

> set number_of_linux_distros 20
OK

 We could then increment it whenever a new Linux distribution is created:

127.0.0.1:6379> incr number_of_linux_distros
(integer) 21
127.0.0.1:6379> incr number_of_linux_distros
(integer) 22
127.0.0.1:6379> incr number_of_linux_distros
(integer) 23
127.0.0.1:6379> incr number_of_linux_distros
(integer) 24
127.0.0.1:6379> incr number_of_linux_distros
(integer) 25
127.0.0.1:6379> get number_of_linux_distros
"25"

You're not limited to one get at a time either with mget:

127.0.0.1:6379> mget distro number_of_linux_distros
1) "centos"
2) "25"

You might be wondering what utility this could have. I mean, sure, it's quick, but is it
really so good that it becomes an indispensable part of any decent web stack?

Redis can do a lot more, including storing binary data (such as images) as the value to
a key; it can create keys with a short time to live, meaning it could be used for
temporary caching; and it can be clustered.

How it's used is generally up to the programmer of an application, and not up to the
admin who's tasked with setting it up. However, that doesn't mean you can't suggest
it if your developers are all sat around a table scratching their heads, trying to think of
an in-memory key-value store that they can use as a cache for website data.

How it works…
We started Redis as a service, using /etc/redis.conf as the configuration file (the
default).

Web Servers, Databases, and Mail Servers Chapter 11

[699]

The default settings shipped with the EPEL version, at the time of writing, mean that
when it starts, it's on the localhost address (127.0.0.1) and port 6379:

$ sudo cat /etc/redis.conf | grep "port 6379\|^bind 127.0.0.1"
bind 127.0.0.1
port 6379~

The settings in here also set the mode (protected by default) that dictates how Redis
can start when listening on other ports:

By default protected mode is enabled. You should disable it only if
you are sure you want clients from other hosts to connect to Redis
even if no authentication is configured, nor a specific set of
interfaces
are explicitly listed using the "bind" directive.
protected-mode yes

Sensible!

We know Redis is in-memory, but there's also that fact about it writing out to disk
occasionally.

This DB dump is viewable in the given directory from the config file:

$ sudo ls /var/lib/redis
dump.rdb

Unless the appendonly value is set, this database file lags a little behind the running
instance, meaning that if Redis or the server crash, you can lose a few seconds of data.

How robust you want your data to be is generally up to the
application developers. If they don't mind the possibility that you
might lose a second or two of data, meaning a value might not be
cached or similar, then you might want to not take the performance
impact of writing everything to disk as fast as you can.

Messaging brokers and queues
(RabbitMQ example)
Moving on from databases of all shapes and sizes, in this section, we're going to look
at something very different, in the form of a messaging software called RabbitMQ.

Web Servers, Databases, and Mail Servers Chapter 11

[700]

Like Redis, RabbitMQ is a staple of a lot of modern web applications, because of its
open source and wel-documented nature.

"But what is a messaging queue?"

I knew you'd ask that, unless you already know, in which case this section might be a
bit useless to you.

A messaging queue, usually utilizing the Advanced Message Queuing Protocol
(AMQP), is part of a message broker, which is software that's used to send and
receive messages as part of an application stack.

These messages are usually sent from different components that can talk and listen in
different ways. The messaging broker is there to facilitate the conversation between
these components.

You'll commonly find that messaging brokers and queues start to come into
conversations about "decoupling", which is a fancy way of suggesting different
elements of an application stack shouldn't be so reliant on one another.

Think of a web server, talking to a processing application for data. In the old world,
the web server would talk to the processing application directly, firing messages
backward and forward while waiting for responses. This can be good in a flat design,
but you run the risk of things such as the frontend website locking up, while the
backend-processing application gets stuck on a tricky task.

Instead of this direct communication, message brokers can be used, and while it does
rely on the web developers writing code that doesn't rely on a direct or immediate
response from the backend, it effectively decouples the hard dependency of the
backend application working (or being there at all).

In theory. you could rip out a database from a queue, replace it, and the frontend
website would be none the wiser.

You also tend to see RabbitMQ (and others) in designs for
distributed and redundant setups, instead of one website talking to
one processing the backend, several frontends, and several backends
just talk to the queue, taking and processing messages as they see fit.

Web Servers, Databases, and Mail Servers Chapter 11

[701]

Getting ready
In this section, we're going to use our Debian box... just for a change.

Connect to debian1, like so:

$ vagrant ssh debian1 -- -L 127.0.0.1:15672:127.0.0.1:15672

Note the forwarded ports for accessing the management interface later.

A word of warning: RabbitMQ starts on all interfaces by default in
this setup, so you should ensure that you have a firewall keeping
those ports inaccessible from the outside. If you're just working on
the Vagrant test VM for this, then it should only be set up for a local
network anyway.

Install rabbitmq-server from the default repositories:

$ sudo apt install rabbitmq-server -y

How to do it…
Once installed, Rabbit should start up automatically (ah, Debian). This means that we
can immediately see what's running with ps (and the default user it runs as,
rabbitmq):

$ ps -fu rabbitmq
UID PID PPID C STIME TTY TIME CMD
rabbitmq 5085 1 0 14:25 ? 00:00:00 /bin/sh /usr/sbin/rabbitmq-server
rabbitmq 5094 5085 0 14:25 ? 00:00:00 /bin/sh -e
/usr/lib/rabbitmq/bin/rabbitmq-server
rabbitmq 5244 1 0 14:25 ? 00:00:00 /usr/lib/erlang/erts-8.2.1/bin/epmd
-daemon
rabbitmq 5307 5094 0 14:25 ? 00:00:02
/usr/lib/erlang/erts-8.2.1/bin/beam -W w -A 64 -P 1048576 -t 5000000 -
stbt db -zdbbl 32000 -K true -B i -- -root /usr/lib/erlang
rabbitmq 5417 5307 0 14:25 ? 00:00:00 erl_child_setup 65536
rabbitmq 5442 5417 0 14:25 ? 00:00:00 inet_gethost 4
rabbitmq 5443 5442 0 14:25 ? 00:00:00 inet_gethost 4

Web Servers, Databases, and Mail Servers Chapter 11

[702]

From this, we can immediately see that RabbitMQ uses Erlang, and that
the /usr/lib/rabbitmq/bin/rabbitmq-server script is used to start the server.

First, let's set up the RabbitMQ management interface:

$ sudo rabbitmq-plugins enable rabbitmq_management
The following plugins have been enabled:
 mochiweb
 webmachine
 rabbitmq_web_dispatch
 amqp_client
 rabbitmq_management_agent
 rabbitmq_management

Applying plugin configuration to rabbit@debian1... started 6 plugins.

Now, you should be able to hit this interface on your local machine.

Navigate to http://127.0.0.1:15672 and you should see something such as the
following:

The default username and password are guest/guest.

Going back to my security point from earlier, this highlights the
need to set up and configure software in a secure testing
environment, with absolutely no production data, prior to going
anywhere near a live environment.

Web Servers, Databases, and Mail Servers Chapter 11

[703]

Once logged in, you should see this:

RabbitMQ overview page

Usually, I would suggest starting with the CLI, but it just so happens that this is a
great way to visualize what Rabbit is, and what it's doing.

At the top of this screen, we have our Totals, which are a breakdown of the messages
that Rabbit is currently aware of (it's idle right now).

In the Nodes section, we can see straight away that we have a single node, called
rabbit@debian1, and that we have a breakdown of its usage at the moment.

We also have a list of the relevant Paths that Rabbit looks for, including the
configuration file (currently not there) and the actual database directory. There's also
information on the various log files.

Have a click around this interface (though you may find it a bit sparse).

Web Servers, Databases, and Mail Servers Chapter 11

[704]

Back on the command line, let's take a look at how you might query information on a
remote server that doesn't have a web interface enabled.

Start by listing the queues:

$ sudo rabbitmqctl list_queues
Listing queues ...

This is empty, as we saw on the GUI (if you clicked on the Queues tab).

By default, we have one vhost, which is a way to segment RabbitMQ (like vhosts in
Apache and Nginx):

$ sudo rabbitmqctl list_vhosts
Listing vhosts ...
/

We can take a look at the configured users:

$ sudo rabbitmqctl list_users
Listing users ...
guest [administrator]

We can also create users:

$ sudo rabbitmqctl add_user exampleUser examplePassword
Creating user "exampleUser" ...

Let's create a vhost to go along with that:

$ sudo rabbitmqctl add_vhost exampleVhost
Creating vhost "exampleVhost" ...

Now let's give our user access to said vhost:

$ sudo rabbitmqctl set_permissions -p exampleVhost exampleUser ".*"
".*" ".*"
Setting permissions for user "exampleUser" in vhost "exampleVhost" ...

How it works…
Most of what we did should be self-explanatory, with the exception of the
permissions line:

$ sudo rabbitmqctl set_permissions -p exampleVhost exampleUser ".*"
".*" ".*"

Web Servers, Databases, and Mail Servers Chapter 11

[705]

Here, we're specifically granting access to configure, write, and read to our user,
exampleUser. This means that within the exampleVhost vhost, our user will have
complete access to do as they please.

Access is granted here by way of Regex, meaning that you can have
more fine-grained control over what a user can and can't access
within a vhost.

Like Redis, RabbitMQ really doesn't do much without setup and without applications
talking to it.

Various languages have ways of interfacing with RabbitMQ. It's generally up to the
developers of your company to decide how they're going to write to the queues,
which queues they're going to write to, how they're going to read from those queues
once done, and what language they're going to use.

Sadly, from an administrator's point of view, you'll very rarely have anything to do
with the actual requests and actions of RabbitMQ. Most of your job is going to centre
around making sure security is in place (TLS, user authentication, and so on) and
ensuring clusters remain consistent.

I would highly recommend going through the Rabbit documentation and having a go
at some of their quickstart guides for interacting with Rabbit. If you have a developer
mindset, or you just like hacking around with Python scripts, it could be a good way
to gain a deep understanding of this messaging broker, and messaging brokers in
general.

Roundup – web servers, databases, and
mail servers
In this chapter, I deliberately tried to talk about some of the most popular technology
on the market at the moment, including programs that I know for a fact have large
minds and market share. Some of this software has been around for ages, near
decades, but more of it has joined the scene recently, owed in large part to the
explosion of cloud computing in the latter half of the 2010s.

Web Servers, Databases, and Mail Servers Chapter 11

[706]

When we talk about web servers, mail servers, and databases, they come in all shapes
and sizes, meaning that it's hard to suggest sensible defaults that will fit absolutely all
use cases. The only advice that I can give, and which is universal, is to not
compromise security for simplicity. (You've probably read enough about leaks and
security breaches in recent months and years that you want to make sure your name
isn't tied to something catastrophic such as that.)

That's not to say this stuff can't be fun. The weird and wonderful things people are
doing with NoSQL databases, messaging brokers, and even mail servers are
extremely interesting to a lot of people, one of whom might be you!

I also don't want to really take you away from the notion of running any of this stuff
yourself, especially now that most of this stuff is available "as a service" from various
cloud providers and third parties. It can be a great learning experience and teach you
the good and bad of certain programs when you install and configure this stuff
yourself.

One other thing to note, and this is just like, my opinion, man.

I don't like mixing similar technologies in the same infrastructure. If you need an SQL
database, and you've never used one in your infrastructure before, it's fine to think
about it for a while before deciding on either MariaDB or PostgreSQL. Most modern
software just wants some sort of SQL backend, and it doesn't care what software
provides it.

That GitLab server you're installing? Maybe you've decided to use PostgreSQL.

Now you've got a WordPress instance to set up? Go with PostgreSQL again.

You need something to connect Icinga2 to? Try PostgreSQL.

Imagine how much of a headache you might get into if you decide to use MariaDB for
one thing, MySQL for another, and PostgreSQL for a third. Unless there's an
extremely good reason to use one over the other, I'm a big fan of keeping your
infrastructure as simple as you can. That way, when you have to learn a bit of SQL to
properly manage your databases, you only have to worry about the intricacies of a
certain SQL provider, rather than three different ones.

This is across the board, too—if you've got to set up a mail server for something, I
would always favor setting up Postfix on both Debian and CentOS machines, just so I
know where to look in terms of logs and configuration directives, regardless of the OS
I'm on.

Web Servers, Databases, and Mail Servers Chapter 11

[707]

In fact, scratch that! Take it one step further and choose a single OS to deploy,
scrapping any notion of a mixed Debian, CentOS, and Ubuntu deployment.

Logically, this doesn't only save your sanity when it comes to managing components,
but it drastically cuts down on the infrastructure as code you'd have to maintain, the
repositories you'd have to mirror, and the security mailing lists you have to subscribe
to.

But in your own time? Meh, that's up to you—go nuts, play, learn.

Super personal preference time!
If you tied me to a chair, and said I absolutely had to choose which software I prefer,
I'd say the following:

Postfix > Exim
Nginx > Apache
MariaDB > PostgreSQL

Note: This is tongue-in-cheek; don't take these to heart.

12
Troubleshooting and

Workplace Diplomacy
In this chapter, we will examine the following topics:

What is troubleshooting?
Isolating the real issue
Giving estimates and deciding on next steps
Using ss, iftop, tcpdump, and others for network issues
Using curl, wget, and openssl for remote web issues
Using itop, top, and vmstat for local resource issues
Using ps, lsof, strace, and /proc for service issues
Making a copy of problems for later debugging
Temporary solutions and when to invoke them
Handling irate developers
Handling irate managers
Handling irate business owners

Introduction
In this chapter, we're going to start winding down on the technical aspects of what
we've looked at. We're not going to look at new services and software too much, and
the software we do use is going to be mostly those tools we've already covered in
other areas (only here we will talk about when and how you might use them).

Troubleshooting and Workplace Diplomacy Chapter 12

[709]

Troubleshooting is the main focus of this chapter, with a lot of emphasis on doing the
communication aspect of troubleshooting too. You can be the best engineer in the
world, a literal code-whisperer, and yet if you're not able to relay your findings in a
way that someone else can understand, all your ability amounts to naught.

When you troubleshoot something, in extra-time or under-fire, you've got to make
sure that what you learn is properly noted (even if it's on a scrap of paper initially,
and in a document store such as Confluence later) so that, should it happen again,
someone who isn't you will be able to work out what's going on faster, and hopefully
fix the issue sooner.

While you troubleshoot, it's also worth keeping those around you informed of what's
happening. I've seen this done in various ways over the years, but a more common-
place solution to keeping people in the picture these days seems to be a Rocket.Chat
or Slack channel that you can post announcements and information into. That way,
anyone can keep abreast of the situation, even if it's only due to a passing interest.

And, yes, there will be occasions where you're troubleshooting that someone wants
an update every five minutes on what's going on. This can be a client, a manager, a
developer, or a business owner, but it's important to keep your cool in these
situations, not get stressed, and ensure you keep your answers succinct and to the
point, without too much guesswork.

Technical requirements
All of what we do in this chapter can be accomplished using a single node; in this
case, I'm using a CentOS machine.

Feel free to use the Vagrantfile to play along:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.define "centos1" do |centos1|
 centos1.vm.box = "centos/7"
 centos1.vm.network "private_network", ip: "192.168.33.10"
 centos1.vm.hostname = "centos1"
 centos1.vm.box_version = "1804.02"
 end

end

Troubleshooting and Workplace Diplomacy Chapter 12

[710]

What is troubleshooting?
Troubleshooting, or debugging (more frequently used for specific software), is the
act of trying to work out what's going wrong with a solution right now or what went
wrong historically during an incident. That incident can be anything from the entire
network going down in a data center, to working out why that one Docker container
suddenly decided it was going to bounce itself up and down like a tennis ball.

No software is perfect. If it were, we'd all be out of jobs, and it's because of this simple
statement of fact that you will almost inevitably find yourself in a situation at some
point in your life where you're faced with a broken system and there's someone
screaming at you to fix it.

You can do everything in your power before this point to try to ensure you never
experience something such as a production outage, including using multiple
environments and testing changes through a promotion pipeline. But I can guarantee
that you'll never account for everything, and, as most companies will tell you, issues
can and will happen in production too. You just have to hope that when issues do
happen, you're not being woken up at two in the morning to fix them, because you're
the on-call engineer.

How to do it…
When troubleshooting an issue, there's some important first steps to take:

Get a drink of your choice, or ask someone nicely to make one for you (if1.
the incident is so serious it requires an immediate immediate response). Try
to avoid this drink being alcoholic. I usually go for tea.
Ensure you know what raised the alert. Generally, this will be from a2.
monitoring system, or a panicked shift engineer on the other end of the
phone. This is a good jumping-off point for the next step.
Get the impact of the problem; for example, does it mean that the website is3.
down and no one can do their Christmas shopping, or is the system that
routes incoming support calls down? This will help you to assess the
importance of the issue.

Troubleshooting and Workplace Diplomacy Chapter 12

[711]

There is a difference between people not being able to call into the
support desk at three in the morning, and a traffic routing system
for a small municipality being down. Surprisingly, though, some
people will panic the exact same amount, no matter the scale of the
issue.

Once these things are established, move on to isolating the real issue.4.

Isolating the real issue
When you're troubleshooting, or you've been presented with an obvious problem and
it's up to you to work out what's going on, it's important not to jump to conclusions. It
can be extremely easy to see a problem, such as a website being down, and
immediately think, Ah, I've seen this before; it was that time the database had too many
rows to count and the website slowed to a crawl—I'll look there.

Lightning does strike twice in computing, especially when root causes haven't been
addressed, but it's an anti-troubleshooting technique to immediately assume you
know the cause of a problem, based on tentative similarities with past issues.

Getting ready
After you've got as much information about the problem, either from your own
cursory glance of the symptoms (the website is down) or the support person who
pestered you with it, it's time to get to the issue of isolation.

Be sure to recreate the issue for yourself. It's an important and often overlooked step
that should be taken by anyone looking into an issue. If you have the means to
recreate a problem, you should start by doing so, even if it's as simple as going to the
company's URL in your browser and checking for yourself that the site doesn't load.
This is important, as it gives you a base from which to start, and you can use the same
series of steps every time you make a change, or believe you've fixed the problem. If
you can confirm that the problem exists, work to fix the said problem. Then, prove it's
fixed for at least you, after which you can start to engage other people in the process
and ask them to confirm the same.

Stabbing around in the dark doesn't only put you at risk of losing fingers, but it also
makes it incredibly hard to determine when, or if, a chance you've made has actually
had an impact.

Troubleshooting and Workplace Diplomacy Chapter 12

[712]

You might also find that in recreating the issue for yourself, you
come across some pertinent information that hasn't been readily
shared with you. "The website is down" is a vague statement, but
"the website is timing out" is more informative, and if you go to a
site to find it's been hijacked by someone using it to share pictures of
their cat, then it might not be down, but the URL could be
compromised.

How to do it…
Once the issue is recreated, you can get down to the meat of the work:

To begin, you need to know which boxes are likely to be connected to the1.
problem, either directly, or by one degree of separation. For example, if the
company website is down, I would immediately log on to whichever
system hosted the website, while trying to find information on any systems
that supplied it, such as messaging brokers or databases.
If you don't know what the topology of the deployment looks like off the2.
top of your head, and you can't find a document in your internal systems
that details the layout, it can be a good idea to engage others in the process
of troubleshooting.

You might not feel entirely comfortable about waking someone else
up in the middle of the night, or pestering someone at their desk,
but if it would take you literally hours to reverse-engineer a setup,
and it's definitely worth considering circumventing this effort and
going to the source instead. If the other person is reasonable, they'll
probably offer their knowledge, though they may be grumpy about
it, and you'll have to apologise the next time you see them.

Once you are sure you've got all the systems you might need to check in3.
your head, or better yet, on a notepad, you should begin the isolation.
Depending on how lucky you are, this can be a quick or a slow process.
Using the example of web servers and websites being down, you might try4.
to SSH to your company website boxes and find that you can't. This could
mean one of two things straight away:

There's a network problem hampering communication
The box is down

Troubleshooting and Workplace Diplomacy Chapter 12

[713]

These issues may seem wide-ranging, but they're easy to isolate. The next4.
step here would be trying to SSH to another box, preferably in the same
network, and if you can connect to it you've narrowed the field of what the
issue might be. It would suggest that the first box is down, or experiencing
personal network issues.
Assuming you can't get to another box, you should try another couple to be5.
sure, and if you can't get to them either, it might be time to get your
network team involved (or if you have the power to do so, logging on to
the switches or routers yourself).
If you've determined that it's one or two boxes having a problem, you6.
might have to get a data center engineer into the situation (or drive down
yourself, if it's your job) and plug into the box directly. If it's a cloud
solution, it'll be time to break open whatever console you have access to
and check for obvious issues that way.
Once you're on the box, it's a good idea to check that the same issues can be7.
recreated locally on the box itself. We'll talk about ways you might do this
in a little while.
If you work through your troubleshooting steps and determine that the8.
local box isn't the issue, it's time to work outwards and test the other parts
of the solution that you haven't checked yet, or might not have direct
control over.

People have different techniques when it comes to troubleshooting,
but I like to check the stuff I have direct access and control over first.
There's a good chance for certain issues that problems are being
caused by external factors (such as your distributed content delivery
provider having problems), but in cases such as these, it's a good
idea to try to prove external factors as much as possible before you
get on the phone yourself and start blaming other people.

Check the next most likely candidate for the source of the issue (the load10.
balancer in front of the web server maybe, or the database behind it) and
carry on until you find something that isn't behaving as it should.

Troubleshooting and Workplace Diplomacy Chapter 12

[714]

Giving estimates and deciding on next
steps
While you're working through the troubleshooting process, it's a great idea to make
notes as you go, and keep track of significant times during the incident:

What time was the incident first reported?
What time did you get into a position to start troubleshooting?
What time did you isolate the issue?
What time was pertinent information discovered?
And so on

Another thing to be aware of is the estimate. Estimates are something that higher-ups
like to hear, in a lot of cases, because it means they can pass the estimates on to their
own higher-ups, or to customers.

If you have no clear idea what's causing an issue yet, you can't give a reliable
estimate, and you should explain this. However, if you've managed to isolate the
issue and found it to be caused by something such as a stored procedure running
against a database, it may be possible to give a rough estimate in that situation.
Deciding on the next steps can be tricky due to various factors, as we'll see here.

Getting ready
Using the example from the last recipe, you've discovered that the website you're
looking at is going slow because of a stored procedure running against the database.
You've determined that this stored procedure runs weekly, and that it ran
successfully last Sunday, where it took about an hour to complete before everything
went back to normal, and no alarms were triggered.

Now, though, it's been an hour and a half, with no obvious sign of the stored
procedure finishing its run. You should note what you've found, make a note of the
time that you found it, and inform whoever you need to that you believe you've
found the source of the problem.

Try to avoid using phrases such as "it's definitely this" or "I've found
the problem," because those kinds of absolutes only succeed in
making you look foolish and potentially making other people angry
when they turn out to be red herrings.

Troubleshooting and Workplace Diplomacy Chapter 12

[715]

How to do it…
Estimates can be easy, or they can be incredibly difficult. I wouldn't advise pulling
numbers out of the air, as they can make you seem incompetent when you end up
waving at your self-imposed deadlines as they fly by. What you can check, though,
are historical records:

If your stored procedure is running and taking a while, start by looking1.
back through your logs and trying to determine how long the last few runs
took. The more data the better.
If you've got logs going back two years, and you can see that the stored
procedure took a few minutes to run at the beginning of its life, when the
company was small and the database was smaller, then you might start to
build a picture of a job taking longer to run, the larger the database gets.
You could confirm this by checking each run in a chart and seeing whether
the increase in the time taken correlates with size. At this point, you might
be able to pull a figure out that you know will be roughly when the job will
finish.
If, however, those historic logs show that the stored procedure always runs2.
at the same time, for the same amount of time, then you might start to
believe something else has caused the sudden uptick in processing time.
You should note this, and decide what to do next.

It goes without saying, but checking specific process logs (if they
exist) is also a must in situations such as this, as is reading through
and understanding what the script or stored procedure might do.
Again, if you need to get others involved, make a judgement call,
but don't try and shoulder absolutely everything yourself, as this
only results in more pressure and more stress.

In this situation, you have to start thinking about factors outside the
database that might be affecting processing time:

Has there been any recent work that might have changed
how the stored procedure works (check Git logs)?
Has anyone logged on to the box recently and made changes
(check audit logs)?
Is there anything else running on the database server that
could be impacting performance (check top for process
information)?

Troubleshooting and Workplace Diplomacy Chapter 12

[716]

It's up to you to decide on the priority of these things and work through
them one at a time.

Back to the estimates problem: if you've determined that the cause of the3.
problem is a code change, and you need to roll back to an earlier version,
then it's not impossible to again provide an estimate. You should know
how long a package is going to take to build, and how soon it will be
deployed to boxes before a service can be restarted.
Ultimately, though, the adage of "it takes as long as it takes" is true, though4.
it's best not to say this to people pestering you for answers. Let them down
more gently, and assure them you're working on it... show them your
notes.

There's more…
A lot of places have timetables for what's supposed to happen during an incident, for
example:

If the issue is ongoing within an hour, inform only designated individuals
If the issue is taking longer than an hour or up to two, inform stakeholders
If the issue looks likely to leave systems offline for longer, arrange meetings
every thirty minutes to keep stakeholders updated

Though not consistent anywhere I've worked, good companies have
plans in place to make sure everyone is on the same page, and better
places don't invite the troubleshooting engineers to these meetings,
instead designating a liaison who gets the information from the
engineers while they're working.

Using ss, iftop, tcpdump, and others for
network issues
In this recipe, we're going to list a few tools that can be used for isolating and
debugging network issues, most of which can be found in the default repositories of
common distributions.

Troubleshooting and Workplace Diplomacy Chapter 12

[717]

A lot of these, if not all, where covered before in this book, but it's a good idea to
repeat these tools over and over again, because 20% of what you'll find yourself doing
in a troubleshooting scenario is trying to remember which tool is good for
troubleshooting this particular problem.

Getting ready
In this recipe, feel free to try out some or all of the commands listed (or even go off
script and have a read of the relevant man pages). We will be using the CentOS VM.

SSH to your CentOS VM:

$ vagrant ssh centos1

Install two of the tools we will be using:

$ sudo yum install epel-release -y
$ sudo yum install iftop tcpdump -y

How to do it…
We're going to run through our tools in turn.

Ping
If you think you've got a network problem, the ping command is one of the oldest
tools available to you, and one of your best friends:

Start by making sure your networking is up, pinging your loopback1.
address and your own node IP. We will check whether the localhost is
working:

$ ping 127.0.0.1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.044 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.081 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.086 ms
--- 127.0.0.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time
1999ms
rtt min/avg/max/mdev = 0.044/0.070/0.086/0.019 ms

Troubleshooting and Workplace Diplomacy Chapter 12

[718]

Then, check your Eth1 address:2.

$ ping 192.168.33.10
PING 192.168.33.10 (192.168.33.10) 56(84) bytes of data.
64 bytes from 192.168.33.10: icmp_seq=1 ttl=64 time=0.064
ms
64 bytes from 192.168.33.10: icmp_seq=2 ttl=64 time=0.069
ms
64 bytes from 192.168.33.10: icmp_seq=3 ttl=64 time=0.098
ms
--- 192.168.33.10 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time
2008ms
rtt min/avg/max/mdev = 0.064/0.077/0.098/0.015 ms

Now that you're sure your networking stack is up, check that you can talk3.
to your router. If you don't know your router's IP, grab that first:

$ ip route | grep default
default via 10.0.2.2 dev eth0 proto dhcp metric 102

We will now ping that IP:4.

$ ping 10.0.2.2
PING 10.0.2.2 (10.0.2.2) 56(84) bytes of data.
64 bytes from 10.0.2.2: icmp_seq=1 ttl=64 time=0.473 ms
64 bytes from 10.0.2.2: icmp_seq=2 ttl=64 time=0.861 ms
64 bytes from 10.0.2.2: icmp_seq=3 ttl=64 time=0.451 ms
--- 10.0.2.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time
2016ms
rtt min/avg/max/mdev = 0.451/0.595/0.861/0.188 ms

Awesome! We're relatively sure that our actual packet routing is fine.

Next, check whether your DNS works using the ping command:5.

$ ping bbc.co.uk
PING bbc.co.uk (151.101.192.81) 56(84) bytes of data.
64 bytes from 151.101.192.81 (151.101.192.81): icmp_seq=1
ttl=63 time=43.9 ms
64 bytes from 151.101.192.81 (151.101.192.81): icmp_seq=2
ttl=63 time=31.5 ms
64 bytes from 151.101.192.81 (151.101.192.81): icmp_seq=3
ttl=63 time=38.4 ms
--- bbc.co.uk ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time

Troubleshooting and Workplace Diplomacy Chapter 12

[719]

2017ms
rtt min/avg/max/mdev = 31.545/37.973/43.910/5.059 ms

Cool, so we know we can resolve domain names to IPs.

Should name resolution not work for some reason, try checking that
your /etc/resolv.conf actually has a nameserver entry in it,
and try pinging that server to see whether you can actually reach it
for communication. DNS resolution failures can have weird knock-
on effects (such as slow SSH connections on some default
installations).

Ping is great, and many issues that are encountered can be tracked down
immediately, thanks to its simplicity.

ss
The ss is great for local port checking, as I might have made obvious for the number
of times we've used it throughout this book so far:

If you have a web server on your machine, and you know for a fact it1.
should be running on port 80, you might find yourself using the fish
arguments first, regardless:

$ ss -tuna
Netid State Recv-Q Send-Q Local Address:Port Peer
Address:Port
udp UNCONN 0 0 *:733 *:*
udp UNCONN 0 0 127.0.0.1:323 *:*
udp UNCONN 0 0 *:68 *:*
udp UNCONN 0 0 *:111 *:*
udp UNCONN 0 0 :::733 :::*
udp UNCONN 0 0 ::1:323 :::*
udp UNCONN 0 0 :::111 :::*
tcp LISTEN 0 128 *:111 *:*
tcp LISTEN 0 128 *:22 *:*
tcp LISTEN 0 100 127.0.0.1:25 *:*
tcp ESTAB 0 0 10.0.2.15:22 10.0.2.2:51224
tcp LISTEN 0 128 :::111 :::*
tcp LISTEN 0 128 :::22 :::*
tcp LISTEN 0 100 ::1:25 :::*

Troubleshooting and Workplace Diplomacy Chapter 12

[720]

We do this immediately in some situations, just to get an overview of what
the box thinks it's doing in terms of IP networking.

We get to see what ports are active and listening on the box, immediately
ruling out usual suspects (such as 22 and 25), and we get to see connected
(ESTAB) sessions from remote connections, in this case, my machine.

You can also run ss without the -n argument, if you want to see a
best-guess at service names. I call it "best-guess" because all ss will
do is read the /etc/services file and match a port to a name, but
there's no guarantee that SSH is really running on 22, instead of
2323 or something else.

You can also use ss to get a snapshot of what the machine looks like in2.
terms of networking right now:

$ ss -s
Total: 194 (kernel 0)
TCP: 7 (estab 1, closed 0, orphaned 0, synrecv 0, timewait
0/0), ports 0

Transport Total IP IPv6
* 0 - -
RAW 0 0 0
UDP 7 4 3
TCP 7 4 3
INET 14 8 6
FRAG 0 0 0

iftop
This is the first of the tools in this recipe that's unlikely to be installed by default; we
sometimes come to iftop during the troubleshooting process because it's great for
visualization. Humans tend to like visualization. We're simple creatures with simple
dreams, and those dreams are generally vivid in color, and feature confusing graphs
and charts (if you're me).

As a result, where a computer prefers strings and structure, we tend to like a good
representation of what it is we're looking at, and iftop gives us this:

$ sudo iftop

Troubleshooting and Workplace Diplomacy Chapter 12

[721]

We've generated a bit of traffic here, to three different locations, to show how easy it
can be to see different sources and communication:

We went into iftop a lot earlier in this book, but remember that it exists!

Troubleshooting and Workplace Diplomacy Chapter 12

[722]

tcpdump
Another tool we've used before is tcpdump; it prints and saves network traffic for
debugging later or in the moment:

$ sudo tcpdump not port 22
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144
bytes
15:26:48.864239 IP centos1 >
server-54-230-129-152.ams50.r.cloudfront.net: ICMP echo request, id
3927, seq 284, length 64
15:26:48.866009 IP centos1.46283 > 10.0.2.3.domain: 32699+ PTR?
152.129.230.54.in-addr.arpa. (45)
15:26:48.899019 IP 10.0.2.3.domain > centos1.46283: 32699 1/0/0 PTR
server-54-230-129-152.ams50.r.cloudfront.net. (103)
15:26:48.899678 IP centos1.44944 > 10.0.2.3.domain: 7093+ PTR?
15.2.0.10.in-addr.arpa. (40)
15:26:48.900853 IP 10.0.2.3.domain > centos1.44944: 7093 NXDomain
0/0/0 (40)
15:26:48.903765 IP centos1.37253 > 10.0.2.3.domain: 25988+ PTR?
3.2.0.10.in-addr.arpa. (39)
15:26:48.911352 IP server-54-230-129-152.ams50.r.cloudfront.net >
centos1: ICMP echo reply, id 3927, seq 284, length 64
15:26:48.964402 IP 10.0.2.3.domain > centos1.37253: 25988 NXDomain
0/0/0 (39)
15:26:49.869214 IP centos1 >
server-54-230-129-152.ams50.r.cloudfront.net: ICMP echo request, id
3927, seq 285, length 64
15:26:49.909387 IP server-54-230-129-152.ams50.r.cloudfront.net >
centos1: ICMP echo reply, id 3927, seq 285, length 64
15:26:50.875756 IP centos1 >
server-54-230-129-152.ams50.r.cloudfront.net: ICMP echo request, id
3927, seq 286, length 64
15:26:50.913753 IP server-54-230-129-152.ams50.r.cloudfront.net >
centos1: ICMP echo reply, id 3927, seq 286, length 64
15:26:51.881191 IP centos1 >
server-54-230-129-152.ams50.r.cloudfront.net: ICMP echo request, id
3927, seq 287, length 64
15:26:51.927357 IP server-54-230-129-152.ams50.r.cloudfront.net >
centos1: ICMP echo reply, id 3927, seq 287, length 64
^C
14 packets captured
14 packets received by filter
0 packets dropped by kernel

Troubleshooting and Workplace Diplomacy Chapter 12

[723]

Note the preceding example, where I specifically ran tcpdump but excluded SSH
traffic:

$ sudo tcpdump not port 22

As a result, what I got was a lot of information on the ping requests from my second
session, but, crucially, I avoided the noise from the SSH traffic. (Which would be extra
noisy, because every time something is printed to my session, that's SSH traffic,
meaning it would grow and grow and grow.)

Though if we did want to debug SSH, this is possible and quite easy, given
that tcpdump lets you output to a file:

$ sudo tcpdump port 22 -w ssh-traffic.pcap
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size
262144 bytes
^C3 packets captured
5 packets received by filter
0 packets dropped by kernel

This file can then be opened and read with tools such as Wireshark: https:/ /www.
wireshark.org/ .

Using cURL, wget, and OpenSSL for
remote web issues
If you've come to the conclusion that during your immense troubleshooting session
that the issue you're facing is one of the following, then some of these tools might be
for you:

Something to do with the connectivity to a remote site
Something to do with the certificates associated with a remote site

https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/

Troubleshooting and Workplace Diplomacy Chapter 12

[724]

Getting ready
SSH to your CentOS VM:

$ vagrant ssh centos1

cURL and OpenSSL should be universal at this point, and you can
expect a system to have them by default.

Wget is a bit more elusive, and is rarely part of a default install, but it's easy enough
to install:

$ sudo yum install wget -y

At the moment, OpenSSL is everywhere, but due to a string of high-
profile vulnerabilities, *cough* heartbleed *cough*, it has been
forked a couple of times to produce approximations, though
hopefully approximations with a limited number of problems. The
most famous of these is LibreSSL by the OpenBSD folks, and while
it's the default in that particular OS, it's unlikely to be the default in
CentOS or Ubuntu any time soon.

For the examples in this recipe, we're also going to break the trust of some key areas
of the internet (only locally to your VM, though—don't worry). To do this, you can
run the following command:

$ sudo mv /etc/pki/ /etc/pki-backup

How to do it…
We're going to run through these three programs, including examples of how you
might use them as we go.

Troubleshooting and Workplace Diplomacy Chapter 12

[725]

cURL
If you've ever used an open source OS, of any sort, there's a good chance that cURL
has been bundled alongside it, and as a result you will find its license agreements
under the license agreements page (things such as game consoles, intelligent cars, and
fridges usually feature a build of cURL). However, it's generally always available to
you on the command line, and, as a result, it's a favorite of a lot of admins. This is
partly because cURL features an extensive (and highly detailed) list of exit codes:

For example, curling the BBC results in the following:1.

$ curl bbc.co.uk
$ echo $?
0

The curl command was successful, so we got a 0 exit code, which pretty
much universally means OK.

We can try to curl an illegal URL:

$ curl bbc.co.uks
curl: (6) Could not resolve host: bbc.co.uks; Unknown
error
$ echo $?
6

Here, we get a 6 exit code. This is defined in the cURL manual, as follows:

 6 Couldn't resolve host. The given remote host
was not resolved.

Another popular flag, which you'll see used frequently, is -I:2.

$ curl -I bbc.co.uk
HTTP/1.1 301 Moved Permanently
Server: Varnish
Retry-After: 0
Content-Length: 0
Accept-Ranges: bytes
Date: Sun, 09 Dec 2018 15:25:09 GMT
Via: 1.1 varnish
Connection: close
X-Served-By: cache-lcy19221-LCY
X-Cache: MISS
X-Cache-Hits: 0
X-Timer: S1544369109.457379,VS0,VE0

Troubleshooting and Workplace Diplomacy Chapter 12

[726]

Location: http://www.bbc.co.uk/
cache-control: public, max-age=3600

What you're looking at are the headers from the site we've tried to hit.
Instantly, this tells us a couple of things:

We're actually getting a 301, redirecting us to a different address
We're hitting a varnish server (a popular caching server)

If we instead attempt to hit the BBC on HTTPS, and with the www
subdomain, we get the following exit code:

$ curl -I https://www.bbc.co.uk
curl: (77) Problem with the SSL CA cert (path? access
rights?)

This, crucially, is caused because cURL doesn't have access to a Certificate
Authority (CA), as we moved the only authority on the system, at the head
of this chapter. Helpfully, it even gives you the exit code, and details of
what it thinks the problem is, in the output.

This brings us to another cURL option, -k:3.

$ curl -k -I https://www.bbc.co.uk
HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
ETag: W/"48dfc-dDZDVBqnqFbBCKLot3DWVM1tjvM"
X-Frame-Options: SAMEORIGIN
<SNIP>
X-Cache-Hits: 513
X-Cache-Age: 90
Cache-Control: private, max-age=0, must-revalidate
Vary: Accept-Encoding, X-CDN, X-BBC-Edge-Scheme

Here note that we've got a 200 (OK) response, despite not having access to
a CA to validate the website as being legitimate. -k is used to set the
insecure flag, see the following section of the cURL documentation
(available at https:/ / curl. haxx.se/ docs/ manpage. html):

-k, --insecure

(TLS) By default, every SSL connection curl makes is verified to be secure.
This option allows curl to proceed and operate even for server connections
otherwise considered insecure.

https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html

Troubleshooting and Workplace Diplomacy Chapter 12

[727]

Obviously, using -k isn't advisable, ideal, or practical for everyday
use. Instead, you should ensure that your CAs are up to date and
the site you're trying to connect to isn't fraudulent.

Feel free to replace your CA certificates now:4.

$ sudo mv /etc/pki-backup/ /etc/pki/

You can also use curl to download remote files by using the -o option5.
(after you've replaced your CA certificates, or you will get a certificate
error):

$ curl https://www.bbc.co.uk -o index.html
 % Total % Received % Xferd Average Speed Time Time Time
Current
 Dload Upload Total Spent
Left Speed
100 291k 100 291k 0 0 867k 0 --:--:-- --:--:-- --:--:--
871k
$ ls -lh
total 292K
-rw-rw-r--. 1 vagrant vagrant 292K Dec 9 15:33 index.html

Here, we simply pulled the entire page and saved it to index.html locally.

cURL is also frequently used during troubleshooting and debugging to talk to REST
APIs; this is because, from the command line, an engineer or admin can easily craft
custom requests and see the output from the web server.

Wget
Like cURL, Wget is a tool for talking to web servers.

By default, the output is quite verbose and will tell you exactly what's happening:

$ wget bbc.co.uk
--2018-12-09 15:46:15-- http://bbc.co.uk/
Resolving bbc.co.uk (bbc.co.uk)... 151.101.128.81, 151.101.0.81,
151.101.64.81, ...
Connecting to bbc.co.uk (bbc.co.uk)|151.101.128.81|:80... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: http://www.bbc.co.uk/ [following]
--2018-12-09 15:46:15-- http://www.bbc.co.uk/
Resolving www.bbc.co.uk (www.bbc.co.uk)... 212.58.249.215,
212.58.244.27

Troubleshooting and Workplace Diplomacy Chapter 12

[728]

Connecting to www.bbc.co.uk (www.bbc.co.uk)|212.58.249.215|:80...
connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://www.bbc.co.uk/ [following]
--2018-12-09 15:46:15-- https://www.bbc.co.uk/
Connecting to www.bbc.co.uk (www.bbc.co.uk)|212.58.249.215|:443...
connected.
HTTP request sent, awaiting response... 200 OK
Length: 298285 (291K) [text/html]
Saving to: 'index.html.1'

100%[===>]
298,285 --.-K/s in 0.1s

2018-12-09 15:46:15 (2.66 MB/s) - 'index.html.1' saved [298285/298285]

Here, we can see the following:

wget resolving the website to an IP address
Connecting and getting a 301 telling it the site has moved
Following the site to http://www.bbc.co.uk
Getting another 301 telling the client to use HTTPS
Following the site to https://www.bbc.co.uk
Finally, connecting, getting a 200, and immediately downloading
index.html (which it saves to index.html.1 as we already have one from
curl)

From this, we can deduce that the BBC could save milliseconds with each request if it
just knocked out one of those redirects (pointing to HTTPS straight away), and we
also learn that wget's default behaviour is to save the content locally (instead of
spitting things to stdout like cURL).

wget also features an "insecure" flag in the form of --no-check-
certificate, though I don't want to bang on about skipping
certificate checks in this book (because they're important).

wget is found to be ideal for downloading multiple files from websites, manipulating
what we are downloading, and running checksum checks on the content. Personally, I
think the flags are a little more intuitive than cURL, and it's the default behaviour of
downloading files locally that I find more than useful when troubleshooting.

Troubleshooting and Workplace Diplomacy Chapter 12

[729]

OpenSSL
When it comes to certificate checking, there isn't a better tool (right now) than
OpenSSL.

Used to create both certificates, and entire CAs, OpenSSL can also be an excellent
troubleshooting tool for your certificate problems.

For example, if you want to quickly check the certificate chain of a website, you can
use s_client:

$ openssl s_client -quiet -connect bbc.co.uk:443
depth=2 C = BE, O = GlobalSign nv-sa, OU = Root CA, CN = GlobalSign
Root CA
verify return:1
depth=1 C = BE, O = GlobalSign nv-sa, CN = GlobalSign Organization
Validation CA - SHA256 - G2
verify return:1
depth=0 C = GB, ST = London, L = London, O = British Broadcasting
Corporation, CN = www.bbc.com
verify return:1

Here, we can see the Root CA (GlobalSign Root CA), followed by the GlobalSign
Organization Validation CA, and finishing with the British Broadcasting
Corporation certificate. It also shows us the common name (CN) of the site
(www.bbc.com).

This is actually interesting, because we're not following redirects when we do this, so
we're actually returning the certificates used by bbc.co.uk instead of
www.bbc.co.uk, which look like this:

$ openssl s_client -quiet -connect www.bbc.co.uk:443
depth=2 C = BE, O = GlobalSign nv-sa, OU = Root CA, CN = GlobalSign
Root CA
verify return:1
depth=1 C = BE, O = GlobalSign nv-sa, CN = GlobalSign Organization
Validation CA - SHA256 - G2
verify return:1
depth=0 C = GB, ST = London, L = London, O = British Broadcasting
Corporation, CN = *.bbc.co.uk
verify return:1

Troubleshooting and Workplace Diplomacy Chapter 12

[730]

If you wanted the actual text representation of certificates in the chain, you can print
these:

$ openssl s_client -showcerts -connect www.bbc.co.uk:443
CONNECTED(00000003)
depth=2 C = BE, O = GlobalSign nv-sa, OU = Root CA, CN = GlobalSign
Root CA
verify return:1
depth=1 C = BE, O = GlobalSign nv-sa, CN = GlobalSign Organization
Validation CA - SHA256 - G2
verify return:1
depth=0 C = GB, ST = London, L = London, O = British Broadcasting
Corporation, CN = *.bbc.co.uk
verify return:1

Certificate chain
 0 s:/C=GB/ST=London/L=London/O=British Broadcasting
Corporation/CN=*.bbc.co.uk
 i:/C=BE/O=GlobalSign nv-sa/CN=GlobalSign Organization Validation CA
- SHA256 - G2
-----BEGIN CERTIFICATE-----
MIIHDDCCBfSgAwIBAgIMRXeRavSdIQuVZRucMA0GCSqGSIb3DQEBCwUAMGYxCzAJ
BgNVBAYTAkJFMRkwFwYDVQQKExBHbG9iYWxTaWduIG52LXNhMTwwOgYDVQQDEzNH
<SNIP>
MNHQq0dFAyAa4lcxMjGe/Lfez46BoYQUoQNn8oFv5/xsSI5U3cuxPnKy0ilj1jfc
sDEmTARcxkQrFsFlt7mnmMmCVgEU6ywlqSuR7xg6RLo=
-----END CERTIFICATE-----
 1 s:/C=BE/O=GlobalSign nv-sa/CN=GlobalSign Organization Validation CA
- SHA256 - G2
 i:/C=BE/O=GlobalSign nv-sa/OU=Root CA/CN=GlobalSign Root CA
-----BEGIN CERTIFICATE-----
MIIEaTCCA1GgAwIBAgILBAAAAAABRE7wQkcwDQYJKoZIhvcNAQELBQAwVzELMAkG
A1UEBhMCQkUxGTAXBgNVBAoTEEdsb2JhbFNpZ24gbnYtc2ExEDAOBgNVBAsTB1Jv
<SNIP>
SOlCdjSXVWkkDoPWoC209fN5ikkodBpBocLTJIg1MGCUF7ThBCIxPTsvFwayuJ2G
K1pp74P1S8SqtCr4fKGxhZSM9AyHDPSsQPhZSZg=
-----END CERTIFICATE-----

Server certificate
subject=/C=GB/ST=London/L=London/O=British Broadcasting
Corporation/CN=*.bbc.co.uk
issuer=/C=BE/O=GlobalSign nv-sa/CN=GlobalSign Organization Validation
CA - SHA256 - G2

No client certificate CA names sent
Peer signing digest: SHA256
<SNIP>

Troubleshooting and Workplace Diplomacy Chapter 12

[731]

First, we get the text representation of the BBC certificate, then the text representation
of the intermediary CA.

If we want to test and make sure that a secure protocol is being used, we can do so
with simple flags:

First, we'll check that the insecure sslv3 isn't enabled:1.

$ openssl s_client -showcerts -connect bbc.co.uk:443 -ssl3
CONNECTED(00000003)
140015333689232:error:14094410:SSL
routines:ssl3_read_bytes:sslv3 alert handshake
failure:s3_pkt.c:1493:SSL alert number 40
140015333689232:error:1409E0E5:SSL
routines:ssl3_write_bytes:ssl handshake
failure:s3_pkt.c:659:

no peer certificate available

No client certificate CA names sent

SSL handshake has read 7 bytes and written 0 bytes

New, (NONE), Cipher is (NONE)
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
 Protocol : SSLv3
 Cipher : 0000
 Session-ID:
 Session-ID-ctx:
 Master-Key:
 Key-Arg : None
 Krb5 Principal: None
 PSK identity: None
 PSK identity hint: None
 Start Time: 1544372823
 Timeout : 7200 (sec)
 Verify return code: 0 (ok)

This doesn't work (thankfully).

Troubleshooting and Workplace Diplomacy Chapter 12

[732]

Now, we'll check for TLS1.2 support:2.

$ openssl s_client -showcerts -connect bbc.co.uk:443 -
tls1_2
CONNECTED(00000003)
depth=2 C = BE, O = GlobalSign nv-sa, OU = Root CA, CN =
GlobalSign Root CA
verify return:1
depth=1 C = BE, O = GlobalSign nv-sa, CN = GlobalSign
Organization Validation CA - SHA256 - G2
verify return:1
depth=0 C = GB, ST = London, L = London, O = British
Broadcasting Corporation, CN = www.bbc.com
verify return:1

Certificate chain
 0 s:/C=GB/ST=London/L=London/O=British Broadcasting
Corporation/CN=www.bbc.com
 i:/C=BE/O=GlobalSign nv-sa/CN=GlobalSign Organization
Validation CA - SHA256 - G2
-----BEGIN CERTIFICATE-----
MIIGnDCCBYSgAwIBAgIMIrGYrFe1HwATfmJWMA0GCSqGSIb3DQEBCwUAMG
YxCzAJ
Y2FjZXJ0L2dzb3JnYW5pemF0aW9udmFsc2hhMmcycjEuY3J0MD8GCCsGAQ
UFBzAB
<SNIP>
J+k3TBG221H4c3ahePIfp7IzijJhdb7jZ21HHMSbJu4LN+C7Z3QuCQDnCJ
IGO3lr
YT7jN6sjN7FQXGEk+P0UNg==
-----END CERTIFICATE-----
 1 s:/C=BE/O=GlobalSign nv-sa/CN=GlobalSign Organization
Validation CA - SHA256 - G2
 i:/C=BE/O=GlobalSign nv-sa/OU=Root CA/CN=GlobalSign
Root CA
-----BEGIN CERTIFICATE-----
MIIEaTCCA1GgAwIBAgILBAAAAAABRE7wQkcwDQYJKoZIhvcNAQELBQAwVz
ELMAkG
A1UEBhMCQkUxGTAXBgNVBAoTEEdsb2JhbFNpZ24gbnYtc2ExEDAOBgNVBA
sTB1Jv
<SNIP>
SOlCdjSXVWkkDoPWoC209fN5ikkodBpBocLTJIg1MGCUF7ThBCIxPTsvFw
ayuJ2G
K1pp74P1S8SqtCr4fKGxhZSM9AyHDPSsQPhZSZg=
-----END CERTIFICATE-----

Server certificate
subject=/C=GB/ST=London/L=London/O=British Broadcasting
Corporation/CN=www.bbc.com

Troubleshooting and Workplace Diplomacy Chapter 12

[733]

issuer=/C=BE/O=GlobalSign nv-sa/CN=GlobalSign Organization
Validation CA - SHA256 - G2

No client certificate CA names sent
Peer signing digest: SHA512
Server Temp Key: ECDH, P-256, 256 bits

SSL handshake has read 3486 bytes and written 415 bytes

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
<SNIP>

Phew! So, we've established that we can talk to bbc.co.uk and that the
certificates we see are functional. But what if we wanted information on
those certificates?

We know that we're hitting bbc.co.uk, and yet the certificate CN is
www.bbc.com; logically, this should result in a certificate error in your
browser, so why doesn't it?

Let's check!3.

$ openssl s_client -connect bbc.co.uk:443 | openssl x509 -
text | grep DNS
depth=2 C = BE, O = GlobalSign nv-sa, OU = Root CA, CN =
GlobalSign Root CA
verify return:1
depth=1 C = BE, O = GlobalSign nv-sa, CN = GlobalSign
Organization Validation CA - SHA256 - G2
verify return:1
depth=0 C = GB, ST = London, L = London, O = British
Broadcasting Corporation, CN = www.bbc.com
verify return:1
 DNS:www.bbc.com, DNS:fig.bbc.co.uk,
DNS:bbc.co.uk, DNS:www.bbc.co.uk, DNS:news.bbc.co.uk,
DNS:m.bbc.co.uk, DNS:m.bbc.com, DNS:bbc.com

Here, we're piping the output of our s_client command into OpenSSL
again. We're then using the x509 (certificate management tool) to output
the text information of the cert (decoded from that splodge of text seen
previously), and then we're grepping out for DNS.

Troubleshooting and Workplace Diplomacy Chapter 12

[734]

Specifically, DNS usually sits under this heading:

 X509v3 Subject Alternative Name:
 DNS:www.bbc.com, DNS:fig.bbc.co.uk,
DNS:bbc.co.uk, DNS:www.bbc.co.uk, DNS:news.bbc.co.uk,
DNS:m.bbc.co.uk, DNS:m.bbc.com, DNS:bbc.com

Subject Alternative Names (SANs) are alternative names that this certificate can
cover. One of these names is bbc.co.uk, and another is www.bbc.co.uk. There's
also a news one and a couple of mobile (m) entries (presumably for historic reasons).

Isn't OpenSSL cool?

...When it's not causing mass hysteria.

Using iotop, top, and vmstat for local
resource issues
Again, these are more tools that we've definitely covered before, but which can be
extremely handy when it comes to troubleshooting local problems, specifically those
around resources.

Getting ready
SSH to your CentOS VM:

$ vagrant ssh centos1

Install the appropriate packages:

$ sudo yum install iotop -y

How to do it…
We'll run through these tools in brief, but hopefully you've already picked up their
basic usage from the rest of this book.

Troubleshooting and Workplace Diplomacy Chapter 12

[735]

iotop
Invoked with the following command, iotop displays I/O usage on a system, by
process:

$ sudo iotop

On our system, this means that we can see very little in the way of activity (because
the VM isn't doing much by default):

Troubleshooting and Workplace Diplomacy Chapter 12

[736]

As with ps, the square brackets around a thread (such as "[kthrotld]", for
example) denote kernel threads.

If we wanted to see I/O in action, we could do the following in another session:

$ fallocate -l 2G examplefile
$ rsync -z -P --bwlimit=2M examplefile examplefile-copied

We're specifically compressing and bandwidth, limiting the transfer
of the preceding file. We've also got a -P in there, but that's mostly
so that you can see what's happening as it happens.

Troubleshooting and Workplace Diplomacy Chapter 12

[737]

In our first session (iotop), we should see the rsync command in action:

Note how the very top line is our command, and shows our specific DISK WRITEs as
being 95.21 M/s.

Troubleshooting and Workplace Diplomacy Chapter 12

[738]

top
You've probably used top so many times now that you're sick of reading about it, and
you probably know a great deal about how useful it can be, despite its simple
invocation.

$ top

Pretty much universal across UNIX systems, top gives you a near-real-time
representation of process usage across your system:

Troubleshooting and Workplace Diplomacy Chapter 12

[739]

When it comes to troubleshooting, top is generally indispensable. Not only useful for
seeing process, memory, and CPU information at a glance, top will work with an
extremely small footprint, meaning that it's likely to work on systems that are
seemingly exponentially contended.

Even if you prefer top alternatives, such as htop or glances, there's
no guarantee that these programs will be available on each and
every system you touch. Because of this, it's a good idea to become
familiar with top, then fall back to alternatives once you're sure you
can use it properly (or at least passably!).

vmstat
On systems that are very contended, or where you might want to output system
information for later correlation and debugging, vmstat is ideal. Giving you more of a
global overview of your system, it can be handy to store periodic values to a file,
which you can then check later:

When run on its own, it can also be set to periodically print to screen:1.

$ vmstat -t 3
procs -----------memory---------- ---swap-- -----io---- -
system-- ------cpu----- -----timestamp-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
UTC
 2 0 0 15072 164 419900 0 0 1 12 11 11 0 0 100 0 0
2018-12-11 15:40:46
 0 0 0 15084 164 419900 0 0 0 0 15 12 0 0 100 0 0
2018-12-11 15:40:49
 0 0 0 15084 164 419900 0 0 0 0 11 9 0 0 100 0 0
2018-12-11 15:40:52
 0 0 0 15084 164 419900 0 0 0 0 11 10 0 0 100 0 0
2018-12-11 15:40:55
 0 0 0 15084 164 419900 0 0 0 0 10 8 0 0 100 0 0
2018-12-11 15:40:58
 0 0 0 15084 164 419900 0 0 0 0 15 12 0 0 100 0 0
2018-12-11 15:41:01
...

Outputting to a file is just as easy; simply redirect stdout:2.

$ vmstat -t 3 > vmstats
^C
$ cat vmstats
procs -----------memory---------- ---swap-- -----io---- -

Troubleshooting and Workplace Diplomacy Chapter 12

[740]

system-- ------cpu----- -----timestamp-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
UTC
 1 0 0 11848 164 423132 0 0 1 12 11 11 0 0 100 0 0
2018-12-11 15:43:35
 0 0 0 11856 164 423136 0 0 0 0 17 12 0 0 100 0 0
2018-12-11 15:43:38
 0 0 0 11856 164 423136 0 0 0 1 15 19 0 0 100 0 0
2018-12-11 15:43:41
 0 0 0 11856 164 423136 0 0 0 0 14 11 0 0 100 0 0
2018-12-11 15:43:44

Using ps, lsof, Strace, and /proc for
service issues
ps, lsof, strace, and /proc are all valuable tools when troubleshooting under fire.
They can display something so obvious that you'd never have thought to look for it in
a million years, and they can also work through certain tasks quicker than you'll be
able to do so yourself.

strace is probably the most often overlooked of these tools, and it's easily one of the
most awkward to learn well, but it should always be at the back of your mind for
program debugging.

Personally, I generally forget about strace quite a lot, that is until
someone wanders over and asks me why I'm trying to debug
something in the most awkward way possible, before reminding me
that strace is a thing that exists.

Getting ready
SSH to your CentOS VM:

$ vagrant ssh centos1

Install lsof for this section (the others should be installed already):

$ sudo yum install lsof -y

Troubleshooting and Workplace Diplomacy Chapter 12

[741]

How to do it…
Running through each of our commands in turn, let's make our ps rundown very
quick!

ps
ps, which is used to show a snapshot of the current processes on a system, is a first
port of call for many admins, and with good reason:

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Dec09 ? 00:00:03 /usr/lib/systemd/systemd --switched-root -
-system --d
root 2 0 0 Dec09 ? 00:00:00 [kthreadd]
root 3 2 0 Dec09 ? 00:00:01 [ksoftirqd/0]
root 5 2 0 Dec09 ? 00:00:00 [kworker/0:0H]
root 7 2 0 Dec09 ? 00:00:00 [migration/0]
root 8 2 0 Dec09 ? 00:00:00 [rcu_bh]
root 9 2 0 Dec09 ? 00:00:01 [rcu_sched]
<SNIP>
root 2690 2 0 15:28 ? 00:00:01 [kworker/0:1]
postfix 2756 1065 0 15:42 ? 00:00:00 pickup -l -t unix -u
root 2759 2 0 15:43 ? 00:00:00 [kworker/0:2]
root 2783 2 0 15:48 ? 00:00:00 [kworker/0:0]
vagrant 2800 2636 0 15:50 pts/0 00:00:00 ps -ef

As noted, ps also includes kernel threads by default (those in square brackets).

More frequently than carefully crafted ps commands I've just seen people pipe the
output through other commands to accomplish what they need. It's not uncommon to
see commands such as this in the wild:

$ ps aux | grep rsysl | grep -v grep | column -t -o, | cut -f1,9,10,11
-d","
root,Dec09,0:22,/usr/sbin/rsyslogd

This isn't necessarily a bad thing, and it's generally done as a quick query instead of
something you'd actually put in a script.

Troubleshooting and Workplace Diplomacy Chapter 12

[742]

Big tip, no one (well... nearly no one) writes commands, as they're
printed in text books. More often than not, the person crafting the
command will get a close approximation of what they want using
the primary command, and then they'll shove it through a series of
other commands to get the output they really need. We all (well...
nearly all) do it.

What I'm getting at is don't worry when you can't remember exact ps syntax when
troubleshooting; do whatever you can do quickly.

lsof
lsof is a great tool with a very confusing help section. In short, it's used to list open
files on a system, but run raw (without arguments), that's a lot of information.

The most common way I've seen it used is like so:

$ lsof | head -n1; sudo lsof | grep "$(pidof rsyslogd)" | grep -v
"socket\|lib64\|dev\|rs:main\|in:imjour" | grep REG
COMMAND PID TID USER FD TYPE DEVICE SIZE/OFF NODE NAME
rsyslogd 861 root txt REG 253,0 663872 34070960 /usr/sbin/rsyslogd
rsyslogd 861 root mem REG 0,19 4194304 7276
/run/log/journal/deb74f074ec9471f91c6c5dd7370484f/system.journal
rsyslogd 861 root 4w REG 253,0 182727 100834552 /var/log/messages
rsyslogd 861 root 5r REG 0,19 4194304 7276
/run/log/journal/deb74f074ec9471f91c6c5dd7370484f/system.journal
rsyslogd 861 root 6w REG 253,0 12423 100834553 /var/log/secure
rsyslogd 861 root 7w REG 253,0 15083 100664480 /var/log/cron
rsyslogd 861 root 9w REG 253,0 392 100834554 /var/log/maillog

This is confusing, yes, so let's break it down a bit:

lsof | head -n1;

This is one stupid trick to make sure you have the header line in your output to
screen; it does arguably waste clock cycles, as we're running lsof twice (once just to
get the first line), but who's counting?

The semi-colon means the end of the command:

sudo lsof | grep "$(pidof rsyslogd)"

Troubleshooting and Workplace Diplomacy Chapter 12

[743]

Now, we're using lsof again, only this time we're specifically grepping out lines that
match the process ID of rsyslogd. The use of a dollar and parentheses here invokes a
subshell that returns the value of the command run:

$ pidof rsyslogd
861

Lastly, we run our output through grep -v to return a list of strings. These are
generally built up gradually by the person running the command, while they work
out the entries they don't need. Finally, we grep for REG explicitly to remove other
entries we're not interested in (such as DIR, for directory):

grep -v "socket\|lib64\|dev\|rs:main\|in:imjour" | grep REG

It looks stupid and long, but it works.

Strace
strace, a program that's written to specifically trace system calls (and signals), is
often forgotten, but extremely powerful. If you want to find out what a program is
doing in real-time, you can use strace.

At a glance, it can be extremely baffling:

$ sudo strace -p $(pidof NetworkManager)
strace: Process 550 attached
restart_syscall(<... resuming interrupted poll ...>) = 1
epoll_wait(14, [], 1, 0) = 0
poll([{fd=11, events=POLLIN}], 1, 0) = 1 ([{fd=11, revents=POLLIN}])
read(11,
"\2\0\0\0\200\0\0\0G\10\0\0\20\0\0\00054\0\0\0\0\0\0\0\0\0\0\0\0\0\0".
.., 2048) = 128
poll([{fd=11, events=POLLIN}], 1, 0) = 0 (Timeout)
poll([{fd=3, events=POLLIN}, {fd=6, events=POLLIN}, {fd=7,
events=POLLIN|POLLPRI}, {fd=11, events=POLLIN}, {fd=12,
events=POLLIN}, {fd=14, events=POLLIN}, {fd=15, events=POLLIN}], 7,
41395) = 1 ([{fd=11, revents=POLLIN}])
epoll_wait(14, [], 1, 0)
...

What we're looking at here are the events triggered by me connecting to a box
(NetworkManager being the process we're following).

We can see that a few system calls are made, mainly epoll_wait and poll.

Troubleshooting and Workplace Diplomacy Chapter 12

[744]

The man pages for these calls lists the following:

epoll_wait, epoll_pwait: Wait for an I/O event on an epoll file
descriptor
poll, ppoll: Wait for some event on a file descriptor

These might not be overly helpful when you're not a C or kernel hacker, but with a
perusal of the manual pages, they can point you to the source of the problems.

Generally, strace is a nice tool to use when a program is locking up, and you're not
sure why (usually after you've checked the logs and discovered there's nothing useful
in them). You can connect to the program as it's running, wait for (or cause) a lock,
and then find the last few things it tried to do.

Another useful use of strace is finding files that a program is opening:

$ strace cat testfile 2>&1 | grep open
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
open("/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
open("testfile", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/usr/share/locale/locale.alias", O_RDONLY|O_CLOEXEC) = 3
open("/usr/share/locale/en_GB.UTF-8/LC_MESSAGES/libc.mo", O_RDONLY) =
-1 ENOENT (No such file or directory)
open("/usr/share/locale/en_GB.utf8/LC_MESSAGES/libc.mo", O_RDONLY) =
-1 ENOENT (No such file or directory)
open("/usr/share/locale/en_GB/LC_MESSAGES/libc.mo", O_RDONLY) = 3
open("/usr/share/locale/en.UTF-8/LC_MESSAGES/libc.mo", O_RDONLY) = -1
ENOENT (No such file or directory)
open("/usr/share/locale/en.utf8/LC_MESSAGES/libc.mo", O_RDONLY) = -1
ENOENT (No such file or directory)
open("/usr/share/locale/en/LC_MESSAGES/libc.mo", O_RDONLY) = -1 ENOENT
(No such file or directory)

Here, we ran cat testfile, but did so with strace as the first command.

We can then see (by grepping for open) the files that cat attempted to use when
reading our file, and we can also see the response when it determines the file doesn't
exist.

strace prints to stderr by default, so we redirected stderr to
stdout in our command using 2>&1 first.

Troubleshooting and Workplace Diplomacy Chapter 12

[745]

/proc
Again, you're probably sick of reading about /proc, but here's a real-world example
of how useful it can be.

VMs suck for entropy, so it's usually a good idea to work out how much random data
you can generate on your system. You can find that a lack of entropy can severely
hamper processes that need to do things such as encrypt files.

Using /proc, we can determine the entropy that's currently available to our system:

$ cat /proc/sys/kernel/random/entropy_avail
874

This is one great example of how useful /proc can be. But what else is it useful for?

We could use /proc to quickly count up the number of CPU cores our machine has:

$ cat /proc/cpuinfo | grep "core id"
core id : 0

We only have one CPU core in our machine. How about network statistics?

Here, we're using /proc to check the TCP statistics relating to our system, at the
current point in time:

$ cat /proc/net/snmp | grep Tcp
Tcp: RtoAlgorithm RtoMin RtoMax MaxConn ActiveOpens PassiveOpens
AttemptFails EstabResets CurrEstab InSegs OutSegs RetransSegs InErrs
OutRsts InCsumErrors
Tcp: 1 200 120000 -1 117 5 0 5 1 19756 13690 2 0 97 0

Yes, there are better and faster ways of getting this information in general, but it's
important to appreciate that a lot of the information you otherwise scrape is actually
gained from the "process information pseudo-filesystem" in the first place.

Making a copy of problems for later
debugging
In this section, we're going to talk about copying files for later debugging. Frequently,
we find ourselves on systems where a problem has resulted in an outage. In these
situations, the impetus among engineers can be to get the system up again, no matter
what the problem is.

Troubleshooting and Workplace Diplomacy Chapter 12

[746]

You might discover, during your troubleshooting steps, that /var/log has filled up,
and has taken the rest of the disk with it. In these situations, it can be incredibly
tempting to simply delete the offending log file(s) and restart the broken daemon.

You should do that, but not right away. First, you need to make sure you've got the
file for later consumption so that the problem doesn't happen again.

Getting ready
In this example, we're going to mess around with some of the log files in
/var/log/. We're going to use our CentOS VM again.

How to do it…
Take a quick look in /var/log/ at the messages file:

$ ls -lh /var/log/messages
-rw-------. 1 root root 179K Dec 11 16:18 /var/log/messages

It's not huge, but if you've got an incredibly small disk, this could be a massive
problem.

Say you've completely run out of space on the /var/log partition—what happens?

Let's remind ourselves of an example VM's partition layout, noting the lack of a
dedicated '/var' partition:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup00-LogVol00 38G 4.8G 33G 13% /
devtmpfs 235M 0 235M 0% /dev
tmpfs 244M 0 244M 0% /dev/shm
tmpfs 244M 4.5M 240M 2% /run
tmpfs 244M 0 244M 0% /sys/fs/cgroup
/dev/sda2 1014M 63M 952M 7% /boot
tmpfs 49M 0 49M 0% /run/user/1000

The quick answers to the preceding question are as follows:

If the /var/log partition is the same one that / is on (as it is here), you've
got a problem, and might even find yourself unable to reboot a system due
to a lack of space. The /var/log partition could consume all available disk
space, even what's needed by critical services, such as SSH.

Troubleshooting and Workplace Diplomacy Chapter 12

[747]

If the /var/log partition is on its own partition (which it really should be),
then you can't log anything anymore. While this might not bring the
system down, it would still cause issues if you need to keep logs for
debugging or auditing purposes (and don't pipe them away somewhere,
such as an Elastic Stack cluster).

In the case of the first problem, you've pretty much got to resign yourself to rebooting
the box using either one of several abrupt tricks (or getting the data center to take a
look themselves).

In the case of the second problem, you'll have to do a few things:

Determine which process is running rampant, using the various other1.
techniques we've discussed. Kill the process and stop the service if it can't
be fixed immediately.
Copy the contents of /var/log/messages to another part of the system (a2.
partition with more space) or a different system if required (using rsync or
scp).
See if you can manually trigger logrotate to rotate and compress your 3.
messages log. This might fail depending on the actual space
that's available.

If you can't manually compress or logrotate a file, it may be time to delete the
original messages file and create a new one in its place (with the same permissions).

You should make a copy of your logs prior to deleting them.
Otherwise, you'll have no idea what happened to cause the issue in
the first place.

Temporary solutions and when to invoke
them
Temporary solutions can be great, and necessary, depending on the situation you've
found yourself in.

Troubleshooting and Workplace Diplomacy Chapter 12

[748]

For example, if you've found yourself being awoken by an alarm at 5:00, informing
you that a disk only has about 10% of disk space left available, you might decide to
invoke a temporary fix:

You've troubleshooted and determined that the disk is filling up at a rate of1.
a gigabyte an hour, meaning it'll be full in an hour and a half
You've also determined that the LVM setup on the box has 10 GB of free2.
space available to you, to grow your logical volume
You check to make sure the problem isn't caused by a more significant3.
issue (the site being down) and realize it's just a noisy log because of
Christmas sales
You apply 50% of the free LVM space to your logical volume, and go back4.
to bed

This is a good temporary solution because it means that the problem can be safely
investigated during daylight hours (when others might be available, and you making
the problem worse won't be that much of an issue). However, you should be aware of
the flaws.

Temporary solutions in IT, as in UK politics, tend to become permanent fixes faster
than you can blink. In our example, this will be less of an issue, because we only have
a finite amount of disk space, but I've seen it happen whereby this solution becomes
the recommended "fix" and engineers proceed to continue adding virtual disks for
much longer than they should, only compounding the problem further (and
potentially masking other issues, too).

How to do it…
If a temporary solution buys you time, or means alarms stop going off and a website
comes back online, then by all means do them, but also make a note of what you've
done and log it in whatever ticketing system you use.

Be responsible for your own cludge. It's on you, and only you, to ensure that your
temporary cron-job, system timer, or disk-space extension doesn't become the
permanent fix for a problem.

In a similar vein, if you write a bash script to periodically check a log file, and if it's
over a certain size to compress it, make sure you also write checks to ensure that the
bash script is working. There's nothing more annoying than coming to a system that
has a "fix" applied to it, only to discover that the bash script eventually fell over due
to being unable to work with files over a certain size, and nobody noticed.

Troubleshooting and Workplace Diplomacy Chapter 12

[749]

You will not be thanked if a temporary "fix" that you put in place
brings down a box a few months later. This will also only be made
worse if you've since left the company, and find that your name is
jokingly dragged through the mud forevermore, whenever there's a
similar issue to the one you've caused. If there's one thing you
should avoid, it's allowing your name to become a verb in relation to
something going wrong.

Handling irate developers
The systems administration life would be an awful lot easier if we never had to deal
with other people (and I'd imagine those other people would say much the same
about us).

So, let's talk about developers. Our developer friends are doing their job, developing.
It's in the nature of computing that no software is perfect, and bugs will creep in to
even the most beautiful of code; it can even pass its previous tests, run perfectly in
development and preprod environments, only to bring down production.

You can think you've got a solution working perfectly, running like a dream, purring
like a cat, and then one new "feature" from a developer can seemingly bring an entire
solution crashing to the floor. It can be tempting to look for someone to blame in these
scenarios. However, I would instead urge calm and composure, because getting
annoyed at something usually only makes the situation worse (and, half of the time,
it's something you did and forgot about that caused the problem anyway...). Everyone
can start to blame everyone else in nightmare situations, so it's up to you (and your
colleagues) to remain level-headed, working together to find the root of the problem.

If a developer comes to you to report an issue, either in a live environment or a non-
live environment, and assuming they've gone through the appropriate channels
before doing so (submitting a ticket, talking to team leads, and so on), you may find
that they're already frustrated with what's going on.

Troubleshooting and Workplace Diplomacy Chapter 12

[750]

How to do it…
It can be tempting to dismiss this sort of request out of hand because you're busy on
something else, or you don't think it's your job to fix the problem. This would be bad
diplomacy, and would generally only result in both parties getting annoyed with
each other:

Instead, appreciate that the other person is only trying to do their job, and1.
whatever they've come to report, it's probably hindering them actually
carrying on with the said job. The problem could be of their own design, or
because of an issue you've missed in your infrastructure, but whatever the
reason, it's important to handle the situation carefully.
Even if you're not the point of contact for the issue in question, and you2.
have no idea how you'd even start debugging it, consider smiling, politely
explaining how much of an idiot you are with things such as that, and
directing them (or better yet leading them) to someone who might be able
to triage or help with their problem.

Good communication and diplomacy results in a calmer working environment, and
the idea of "you scratch my back, I'll scratch yours" comes into play, if you ever need
a friendly dev to help you debug an issue you think might be caused by an
application.

This goes the other way, too; don't feel pressured to drop absolutely
everything just because someone has come over to you and started
screaming that "your terrible infrastructure sucks"; in these
situations, it's best to first find a mediator for the problem (a
manager, usually) before looking into an issue. It's not appropriate
for anyone to scream at or belittle anyone else in a workplace,
remember that, and if you ever find yourself getting wound up, it
might be a good idea to remove yourself from a situation entirely
before it escalates. I've seen good engineers get into serious trouble
and put their jobs on the line, just for having a temper.

Troubleshooting and Workplace Diplomacy Chapter 12

[751]

Handling irate managers
Managers, such as developers, are only doing their jobs. They are perhaps harder to
talk to in some circumstances, as they sometimes just want the problem and the
solution to the problem in plain English, even if you don't know what the solution (or
problem) is yet. Some of the best managers understand that not every problem can be
located and fixed within ten minutes, and, likewise, some of the worst expects you to
have fully formed solutions in the time it takes them to stand up from their desk and
march over to yours.

Should you find yourself in the situation where you're having to talk to an irate
manager, perhaps because there's a production issue and someone higher than them
is breathing down their neck too, try not to wind them up further by bombarding
them with jargon they're unlikely to understand, or similarly giving them vague
platitudes.

I'm using the term manager loosely here; the same logical could be
applied to delivery leads, team leads, and so on.

How to do it…
Not all managers are technical, but a lot are. It's generally a good idea to establish
how technical your manager is early on so that you can gauge the exact level of
information you need to pass on to them during an issue. If they're on, above, or
about your level, you can probably give them everything and allow for them to distill
it upstream; if they're less technically minded, it's better to summarize key points.

Remember that good managers manage and shield engineers or others from the day-
to-day pressures of a workplace that aren't technical. Sure, you might get invited to
the odd meeting to explain a solution, or defend a technical decision, but for the most
part it's an engineer's job to engineer, an administrator's job to administrate, and a
manager's job to manage (while also doing all the meetings the others don't want to).

Should an angry manager start bombarding you with questions, or asking for updates
every five minutes, during a period when you're trying to concentrate, it might be
time to direct them to a ticket you're keeping your logs in, and simply pasting a
message in there every few minutes to update stakeholders on progress. I mentioned
slack channels too, or other communication mediums, and these can be a good way of
keeping people informed while allowing you time to concentrate.

Troubleshooting and Workplace Diplomacy Chapter 12

[752]

Before now, I've been dragged on to conference calls with the following people on
during actual problems:

My manager
My manager's manager
My manager's manager's manager
Other members of the team
Members of the development team
A representative of the sales team
A representative of the client-relations team

Now, I don't know about you, but that seems like too many people for a call when
there's an ongoing problem.

In my professional opinion, it is OK to say you can't join a call of that magnitude right
that second, while also providing an update of where exactly you are in your
troubleshooting.

Handling irate business owners
Above co-workers, managers, and even division leaders, are business owners. Again,
there are good business owners, and there are bad business owners. Most of the time,
you'll probably never meet them in larger companies, but it seems to be something of
a universal law that you'll cross paths at some point, and sometimes, this will
coincide with an actual outage, just because the universe thinks it's funny.

Business owners can lose their job and their business in one fell swoop if there's a
perceived mistake in their leadership. This won't be a defense of capitalism, and I'm
not about to suggest the rising up of the working classes to seize the means of
production, but it's always worth bearing in mind that the person who's getting angry
at you for not giving complete enough (in their mind) answers might actually be
about to lose their customer base and, by extension, livelihood.

Troubleshooting and Workplace Diplomacy Chapter 12

[753]

How to do it…
Tread carefully when the person you're talking to has the power to hire or fire you,
depending on what you say. Where you might lose your job if you royally screw up
(and frankly, it would have to be continuous and egregious screw ups), it's only your
job, and you might be able to find another one while putting that particular chapter of
your life behind you.

Hopefully, you won't, but if you do ever find yourself in the situation where you're
dealing with an extremely irate individual with the power to let you go (off a cliff or
otherwise), it's generally tread-on-eggshells time. Assure them that you're doing
everything in your power to resolve the issue, point to progress made, if there is any,
and reassure them that every able-bodied individual is working on the problem.

Who knows—if you impress them enough in a time of crisis, keeping your head when
all around are losing theirs, you might find yourself in a favored position in the not-
too-distant future.

Roundup - Troubleshooting and
workplace diplomacy
This chapter was something of a mixed bag because I tried to suggest what the best
courses of action can be during a production (or even a minor) problem. I included
programs I thought might be useful to you in a pinch, some vague directives on what
you should think about during an outage, and then concluded with a few suggestions
on dealing with other people during what could be the most stressful time of your
professional career.

All that said, there's time for a few more points I'd like to make.

Don't trust time
A good 70 percent of the time (random figure), I've found time to be the root cause of
most of my problems. It is because of this that one of the first commands I run when I
log on to a box is date:

$ date
Tue 11 Dec 17:51:33 UTC 2018

Troubleshooting and Workplace Diplomacy Chapter 12

[754]

If the time is wrong (and not just offset because of timezones), then there's a very
good chance that the weird and wonderful problems you're seeing are the direct
result of two or more computer systems arguing about which of their completely
arbitrary representations of time is correct.

Fix time before you fix anything else.

Incorrect time and fixing incorrect time can cause problems of its
own so, check and keep backups regularly.

Don't overlook the simple
Alongside date, another command I run almost as an impulse is df -h:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VolGroup00-LogVol00 38G 4.8G 33G 13% /
devtmpfs 235M 0 235M 0% /dev
tmpfs 244M 0 244M 0% /dev/shm
tmpfs 244M 4.5M 240M 2% /run
tmpfs 244M 0 244M 0% /sys/fs/cgroup
/dev/sda2 1014M 63M 952M 7% /boot
tmpfs 49M 0 49M 0% /run/user/1000

Like time being wrong, cosmically stupid errors can occur when disk space has run
out, with no actual indication as to what the real problem is. Programs rarely print I
can't write to this file, so I'm broken, and instead usually settle on cryptic, baffling, and
altogether mind-numbing errors that make no sense on the face of it.

Check disk space second.

On "cloud" deployments
Time for another small rant!

One of the most annoying things that "cloud" has done has been to introduce the
"solution" of "destroy and redeploy".

In the realm of temporary fixes, I consider the most egregious temporary fix to be
"Oh, just tear down the solution and let it rebuild; that error happens sometimes."

Troubleshooting and Workplace Diplomacy Chapter 12

[755]

This isn't a "fix", and it annoys me immensely when I hear it. Yes, we can simply
destroy and recreate environments these days, at the drop of a hat usually, but that
doesn't excuse the original error that caused your systems to break in the first place. If
they did it once, there's every chance that they'll do it again, and if they wake me up
in the middle of the night or interrupt my holiday to Egypt, someone is getting a
sternly worded email.

"Destroy and recreate" should be a means for getting a solution back online, but as we
covered in this chapter, you should also have a backup of any files you might need to
work out what went wrong, and you shouldn't consider the problem to be "resolved"
until it stops happening.

If anyone ever tells you a solution is to destroy and recreate, tell them to fix their
code.

Learn from my mistakes
In terms of handling irate people, I'm a good authority, because as many of my
former colleagues will attest, I usually was that irate person.

It took me a good few years to realize that getting angry at a situation or people didn't
make the situation any better, or my workplace nicer; it only made my mood worse.
Thankfully, I've learned from my mistakes, and I take a very different approach to
problems these days, not just flipping immediately to complain-and-blame mode
(though I would always endeavour to fix the problem) and instead taking a step back
from the situation first, assessing it, and then diving in with a nice cup of tea.

Being zen in a crisis is hard; I'm not going to claim otherwise, but the more people
with level heads, the calmer the situation will stay. It's far too easy to jump on to
random threads when you're worked up, reaching dead ends and getting more
annoyed before backtracking.

Breathe.

13
BSDs, Solaris, Windows,

IaaS and PaaS, and DevOps
The following topics will be covered in this chapter:

Determining the type of system you're on
Understanding how the BSDs differ
Understanding how Solaris and illumos differ
Understanding how Windows differs
IaaS (Infrastructure as a Service)
PaaS (Platform as a Service)
The Ops versus DevOps Wars

Introduction
When I was approached to write this book, I was initially asked to compose twelve
chapters on the Linux system and modern administration. I now wish I'd agreed to
that initial pitch, but instead I brazenly suggested a thirteenth chapter. What a fool I
was.

So here we are, the ultimate chapter in this slog of a read (sorry, I'm so sorry), and it's
all about the other systems in the computing world that you're going to need to
know, because unfortunately, modern computing and IT infrastructure is frequently a
hodgepodge of trends and antiques, in the form of Windows, Linux, and the mesh
that goes in between.

We're going to look at the BSDs briefly, because they're probably the closest you can
get to "real" Unix in this day and age, and they're also close enough to Linux that
there's BSD users out there who get viscerally angry when you use phrases like
"they're close enough to Linux."

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[757]

Then, we're going to discuss Solaris (again, in brief) and talk about the two forms it
takes in modern infrastructure.

We'll have to discuss Windows, although I'm going to attempt to keep this section the
briefest. If you're anything like me, you dislike the word "Windows" and all the
connotations it brings. (We're not fooled by your semi-hippy approach to Linux in
recent years, Microsoft—some of us like to be stubbornly tribal.)

Following our foray into other OSes, we're also going to look at Infrastructure as a
Service (IaaS) and Platform as a Service (PaaS), despite how stupid these anagrams
are, because they're a big part of modern DevOps and platform creation. You will
have to use services like AWS and Azure in any full career, so it's good to get an
understanding of the way they work sooner rather than later.

Lastly, there'll be a word on DevOps (I'll save the surprises of that section, for that
section).

Determining the type of system you're on
Think about this: you were blindfolded, bundled into the trunk of a car, and then
unmasked at the other end of a long journey to be presented with a blinking prompt.
How would you determine what sort of system you were on?

Your immediate instinct might be to assume you've been placed in front of a Linux
box, but that's not a certainty. While it's true that Linux dominates the server's space,
just because the instance has a black screen, white text, and a login prompt, doesn't
mean that you've been placed in front of our friendly penguin OS.

It could be Linux, a BSD system, a Solaris system, or one of the many Unix derivatives
from the nineties.

Assuming you've been given the credentials to log in, do so.

How to do it…
There's an easy starting point.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[758]

uname
When you've logged in successfully, determine what sort of kernel you're running:

$ uname
Linux

Well that was anti-climactic... it's just a regular Linux system.

But what if it wasn't? Imagine the following:

$ uname
FreeBSD

That's more like it! This is a FreeBSD box!

Or is it a different BSD?

$ uname
OpenBSD

An OpenBSD box, cool! But we can go one further:

$ uname
SunOS

Huh? What's a SunOS when it's at home?

The short answer is that you can assume you've landed on either an
Oracle Solaris or illumos distribution, both of which are relatively
rare, but deserve a degree of respect.

The filesystem check
If you're still uncertain, you can quickly check the type of filesystem being used for
slash-root, /:

$ mount | grep "/ "
/dev/mapper/VolGroup00-LogVol00 on / type xfs
(rw,relatime,seclabel,attr2,inode64,noquota)

XFS is commonly found on Linux systems, specifically RHEL and CentOS:

$ mount | grep "/ "
/dev/ada0s1a on / (ufs, local, journaled soft-updates)

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[759]

The Unix file system (UFS) is usually seen on FreeBSD boxes (alongside ZFS, if
you've got the RAM for it):

$ mount | grep "/ "
/dev/wd0a on / type ffs (local)

FFS? You're joking... no, it's the fast file system (FFS), and it's commonly used on
OpenBSD boxes:

FFS and UFS have the same heritage, though the code base isn't
identical.

$ mount | grep "/ "
/ on rpool/ROOT/openindiana read/write/setuid/devices/dev=4410002 on
Thu Jan 1 00:00:00 1970

While we don't get an actual filesystem type here, we can see openindiana listed in
the output, which we know to be an illumos distribution. We can then use zfs to
determine what our filesystem design is (and confirm it's zfs):

$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 6.82G 41.1G 31.5K /rpool
rpool/ROOT 2.70G 41.1G 23K legacy
rpool/ROOT/openindiana 2.70G 41.1G 2.46G /
rpool/ROOT/openindiana/var 203M 41.1G 202M /var
rpool/dump 2.00G 41.1G 2.00G -
rpool/export 73.5K 41.1G 23K /export
rpool/export/home 50.5K 41.1G 23K /export/home
rpool/export/home/vagrant 27.5K 41.1G 27.5K /export/home/vagrant
rpool/swap 2.13G 43.3G 12K -

How it works…
Though the prompts might look the same (though generally, these distributions don't
set Bash as the default shell; that's a Linux thing), but the underlying system can be
vastly different from the familiar GNU userland that you're used to.

When we run uname, as we've discussed previously, we output the kernel of the
system we've logged on to.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[760]

Hopefully it's a Linux box, especially if you've been held against your will and asked
to fix something, but even if you're somewhat good with Linux, things should be
relatively familiar. Processes run, the default tools are the same, and you can read
README files or man pages to understand what you don't yet.

The filesystem check we did isn't the most scientific, but you can usually guarantee
that commands like mount and df will be available to you, thanks to their pedigree.

There's more…
There's a notable omission in the preceding section, and that's how you work out if
you're on a Windows system or not.

The easiest way I've found to check that I'm at a Windows prompt is to measure how
quickly my soul is ebbing away from my body. Failing that, I look for a Music folder
somewhere on the filesystem, which seems to be inexplicably on desktop and server
installs alike.

Obviously, if the preceding two methods fail you, then consider that Windows
usually has a GUI (unless it's a modern Server OS with a trendy systems
administrator, in which case it might just be a blue PowerShell prompt instead. Either
way, I suspect you'll know).

Understanding how the BSDs differ
You might have noticed that I deliberately split up OpenBSD and FreeBSD in this
chapter, but they're just different distributions of "BSD", right?

Wrong.

Unlike Linux, the different "flavors" of BSD don't share a kernel, and are more like
different OSes than different distributions.

OpenBSD, FreeBSD, NetBSD, and Dragonfly BSD are all unique and distinct projects.

NetBSD even has a Dreamcast port. Finally, that console has a use!

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[761]

That's not to say there's no sharing of code and fixes between the
distributions—providing porting is quicker than writing your own implementation,
and the BSDs are more likely to use more "liberal" open source licenses, such as the
MIT license, instead of "restrictive" open source licenses like the GPL (generally for
ideological reasons).

The differences
As we've already said, the BSDs are distinct operating systems, with an estimated
ranking of popularity as follows:

FreeBSD
OpenBSD
NetBSD
Other BSDs

Here, I'm going to touch on the two most popular and well-known: FreeBSD and
OpenBSD.

FreeBSD
An OS with a varied focus (servers, desktops, IOT devices), FreeBSD is the most
popular of the BSD derivatives.

It prides itself on having a vast array of software available, both in the form of pre-
built packages (built quarterly at the time of writing) and "ports" that are built locally
and are usually the most recent version of that piece of software.

A lot of open source software is heavily Linux focused. This isn't the
fault of the BSDs—it simply comes down to market share. Because
of this focus, the FreeBSD project has a lot of volunteers who
dedicate their time to making packages work natively on FreeBSD,
having to do minor and sometimes major tweaks to software to get
it to compile and run. Much of this effort is then pushed back
upstream, and I've yet to see a project that isn't thankful for FreeBSD
support being added.

Another element of FreeBSD that makes it a popular choice for people of the BSD
mindset is the fact that it ships with ZFS as standard, and you're prompted to use ZFS
for additional storage as well as the root filesystem of your device.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[762]

ZFS (specifically OpenZFS) is a filesystem, storage management, and all round
wonder solution for storage desires. I've heard it being called "the last word in
filesystems," and it's only the license associated with it that makes it uncommon on
Linux platforms (FreeBSD has no such qualms).

The cuddle, or Common Development and Distribution License
(CDDL) is a fairly rare license in the open source world. Produced
by Sun Microsystems in its heyday, the license has been called
"incompatible" with the GPL.

While ZFS really is a great solution for storage, it can be confusing to newcomers,
owing to the fact it doesn't follow the same patterns as traditional filesystems (even
UFS—FreeBSD's simpler alternative) and blurs the lines a lot between filesystems and
things like partitions. It also has some flaws. Because of its design, ZFS is memory-
hungry, and given the fluctuating price of RAM in recent years, this can be
prohibitive for end users.

FreeBSD also has a focus on stability, meaning that it includes features like the ability
to rollback changes easily (if using ZFS) and has a very solid upgrade path (though it
can be a little confusing and convoluted).

Jails are worth a mention too, since FreeBSD fans will be annoyed if I don't bring
them up. Before Docker, there were jails, the ability to segment portions of your OS
from each other on FreeBSD systems. Introduced in 2000, they allow FreeBSD users to
segregate their software on a host system, and even install different versions of
FreeBSD alongside each other so that software explicitly written for FreeBSD 9 can
run on a FreeBSD 12 box.

It's a bit unfair that jails didn't really take off, though a lot of this is
down to FreeBSD market share again. They're also a lot more
unwieldy than Docker and other container solutions, despite being
arguably superior. I hold that Docker took off in the way it did
owing in large part to places like Docker Hub, which FreeBSD
lacked an equivalent of.

In short, I can sum up FreeBSD like so:

Pros:
Ships with ZFS
Very up-to-date packages available
Stable systems

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[763]

FreeBSD jails
Sensible segmentation of first-party packages and third-party
(additional packages are normally wholly installed under
/usr/local/)
Very good "FreeBSD Handbook"

Cons:
Smaller install base than Linux systems
Unlikely to have newer drivers (though this has improved in
recent years)
Usually favors older solutions (X over Wayland)
Upgrade process can be confusing
Sometimes gets overlooked by vendors for patches and
security disclosures (think vulnerabilities in Intel CPUs)

FreeBSD is a good choice, but I deliberately don't recommend it to Windows or
macOS switchers. Instead, I point them to popular Linux distributions like Ubuntu
and Fedora. FreeBSD has its place, and you can do a lot worse for a storage server,
but it's not the first choice in a lot of minds.

OpenBSD
An OS with an almost legendary focus on security and stability, OpenBSD is the
software that took out its "Linux compatibility layer" because of concerns around the
security of keeping it.

If you've not heard of or used OpenBSD, I can guarantee that you've at least used an
associated project. Some that fall under the OpenBSD realm are the following:

LibreSSL
OpenSMTPD
OpenNTPD
OpenSSH
httpd (that's the OpenBSD-specific package, not re-badged Apache)

This means that while you've probably never SSH'd onto an OpenBSD system itself,
you're still using software that's built primarily on OpenBSD systems. I know of no
distribution of Linux that doesn't use OpenSSH as the default SSH client and server
(though alternatives do exist).

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[764]

The software aside, for as good as that software is, OpenBSD is so much more.

Being a relatively small project, and again both open source and donation-funded,
OpenBSD doesn't have a very large install base, but it's extremely popular when it
comes to embedded systems, firewalls, and routers. This is because while its multi-
processor elements perhaps aren't as robust as some other projects, it features
software such as the packet filter (pf) firewall, and is known for putting security
first.

OpenBSD's tagline on their website is "Only two remote holes in the default install, in
a heck of a long time!", which just goes to show exactly how committed to security
they are. I've seen OpenBSD actively remove software because of the simple fact that
it had dubious security associated with it.

LibreSSL was born out of the frustration around OpenSSL and the
fact that it was easier to fork and fix the project (in the developer's
minds) than it was to argue for increased security upstream. It's easy
to see how software that underpins a lot of the internet's security
should be kept secure.

Famous for tweaking software to diminish the opportunity for vulnerabilities to pop
up, this can sometimes backfire on OpenBSD, as they can get overlooked for
vulnerability disclosure, for fear they'll fix the problem immediately (instead of
waiting until the "official" date at which the vulnerability can be revealed to the
public). For an interesting case study of this, see the "KRACK Attacks" vulnerability,
and OpenBSD's response (https:/ /www. krackattacks. com/#openbsd).

Because OpenBSD is a different OS to FreeBSD, it doesn't include the likes of jails nor
does it have ZFS (favoring FFS). There isn't much you can do to the default
installation in terms of tweaks, and the argument goes that "you shouldn't have to."

It can be used as a desktop, server (generally a firewall from what I've seen), or an
embedded OS.

You could probably sum up OpenBSD as such:

Pros:
Extremely heavy focus on security
Heavy focus on quality of code
Reasonable upgrade path (though time-consuming)
Frequent release cycle and fast patching
Pf, which is honestly great

https://www.krackattacks.com/#openbsd
https://www.krackattacks.com/#openbsd
https://www.krackattacks.com/#openbsd
https://www.krackattacks.com/#openbsd
https://www.krackattacks.com/#openbsd
https://www.krackattacks.com/#openbsd
https://www.krackattacks.com/#openbsd
https://www.krackattacks.com/#openbsd
https://www.krackattacks.com/#openbsd
https://www.krackattacks.com/#openbsd
https://www.krackattacks.com/#openbsd

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[765]

Cons:
Lack of packages (though its ports system has a lot)
Stable and secure can mean a lack of features (this depends
on the individual really)
Very small install base
FFS is creaky and showing its age
Theo de Raadt (OpenBSD's benevolent dictator for life) is
known to speak his mind (read into that what you will)

I use OpenBSD on a singular laptop, mostly for the experience of the thing, but we're
on 6.4 now and it was first installed with 6.0 (that also featured some kick-ass release
artwork). The laptop runs well, though it's doing very little most of the time. I have
also tried using OpenBSD as a server, but for my sins I soon found it annoying when I
couldn't get hold of packages I thought were pretty standard.

Understanding how Solaris and illumos
differ
I've sort of been dreading this section, because it's very hard to talk about companies
like Oracle without getting at least a little annoyed.

We're going to look briefly at the history of Oracle and their Sun acquisition, as well
as looking at the OpenSolaris movement and the systems that spawned out of it.

Before we start, I should point out that illumos and Solaris have a very Unix
background, and they're arguably the "purest" Unix derivatives available today. You
might have never used either of them, but there's a good chance you've used a
website or an online portal that's back-ended by either of these two OSes.

The differences
First, a bit of history.

Solaris (sort-of-previously SunOS) was released in the early nineties by Sun
Microsystems, and was initially designed to work on the also-Sun SPARC line of
processors, though it quickly got expanded to support x86 processors too.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[766]

For a while, Sun (and its purple behemoths in server racks everywhere) were well
regarded and a fairly common sight in data centers. The company went from strength
to strength, developing things such as Solaris Zones (like FreeBSD jails, as we
discussed previously), ZFS, and Java.

Not really a home-user system, Solaris was popular alongside SPARC processors in
enterprise environments, though as Linux gained traction and market mind-share,
this and other alternative OSes, soon lost ground.

In 2005, Sun made the decision to open source Solaris under the CDDL license,
creating the "OpenSolaris" project at the same time. This was an effort to build a
community around Solaris that might increase uptake and mind-share.

However, when Oracle bought Sun in 2009 (completed in 2010), they almost
immediately discontinued the practice of distributing public updates to the source
code, and effectively reverted Solaris 11 (as it was) to being a closed source product.

They couldn't put the genie back in the bottle though, and the code had been released
once already, meaning that while OpenSolaris effectively died, derivatives continued.

Confusingly, a lot of these derivatives fall under the "illumos" umbrella, which is
probably the main fork of the OpenSolaris project, with some related projects such as
SmartOS (from Joyent, now a Samsung company) deviating slightly.

illumos (small "i", for some reason) comprises a kernel, system
libraries, system software, and device drivers.

In general, this means that when people refer to "Solaris" nowadays, they're either
remembering Sun-of-old lovingly, alongside installations they may have done a
decade ago, or they're using it to refer to the not-uncommon Solaris 11 that Oracle is
still publishing, supporting, and allegedly actively developing. At the time of writing,
the latest release was 11.4 in August of 2018.

I refer to SmartOS, OpenIndiana, and others as Solaris in casual
conversation, though this is technically incorrect and probably going
to get me an angry letter from Oracle one of these days.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[767]

Oracle Solaris
As we've already said, Oracle still actively publishes and supports Solaris, though a
lot of the installations you'll come across these days are likely old installs that are still
going. Solaris 10, first released in 2005, is technically still in support.

Solaris 10 officially goes out of support in January 2021—though I'm
willing to bet the limit to how long this support continues comes
down to how deep your pockets are.

Featuring SPARC processor support and a tendency toward database installations,
Solaris may be something you come across in your lifetime as an engineer, and if you
do decide to become familiar with it, there's a good chance you'll join a diminishing
pool of people with the knowledge of how to support it, meaning you may find
yourself in demand.

Please don't decide to learn Oracle Solaris inside and out on the
gamble of having work in the future—I won't be held responsible if
you find yourself an expert in a dead field.

ZFS is also a strong feature of Solaris, and while cross compatibility was attempted by
the OpenZFS project, this seems to have fallen by the wayside in recent years, owing
mostly to the diverging code base and a seeming unwillingness to keep parity of
features by Oracle (though don't take my word on that—I'm just a consumer of
rumor).

illumos
The spiritual continuation of the OpenSolaris project, illumos forms the base of a few
different distributions that sought to keep the legacy of CDDL-based Solaris alive.

OpenIndiana is perhaps the most user-friendly of these distributions, and still
features ongoing enhancements. It can be downloaded and tried out in a VM (which I
would encourage, just for a poke around).

When you run it, though, don't be surprised to find references to Solaris and SunOS:

$ uname -a
SunOS openindiana 5.11 illumos-42a3762d01 i86pc i386 i86pc

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[768]

Featuring a small package pool, you're also unlikely to find the trendier software of
the day, but it will have the programming languages you're familiar with, and it's
undeniably solid.

Both Oracle's Solaris and illumos have had some great minds work on them in the
past, meaning that they also feature stable kernels and sensible approaches to
development (if you believe some of the more vocal engineers who worked on it).

Sadly, there's a certain amount of head-butting that goes on in the Solaris, BSD, and
Linux world, with everyone being very opinionated about the "correct" way to do
specific things, despite all of these OSes being able to trace their legacy or inspiration
back to a common core (Unix).

Personally, I like installing OSs and tinkering—I'm weird like that.

Understanding how Windows differs
You'll have to use Windows—it's a fact of life (at least at the moment).

If you're not forced to use Windows as the desktop OS of choice in your workplace,
then there's a good chance there's going to be at least one Windows server you have
to babysit or manage.

Windows still sees common installations for the following reasons:

Active Directory
Email with Exchange
File servers

It's also used in the wider server world, with software like IIS holding a sizeable
(though much smaller than open source offerings) chunk of the web.

Right from the off, and as we talked about previously, Windows and Linux differ in
some key ways.

The differences
Windows is licensed. This is perhaps the most obvious difference between the open
source offerings and the proprietary world. If you want to use Windows in
production, you have to ensure that you're correctly licensed, or face a fine for being
out of compliance.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[769]

Funnily enough, this is probably the biggest reason why Linux saw the adoption that
it did. When faced with a free offering of something that can do the exact same thing
you're trying to do with Windows, most admins would at least try the free version
first.

The second most obvious difference, although this is slowly changing, is the fact that
Windows installs a GUI by default, whereas Linux prefers a simple text prompt.

The argument of CLI versus GUI has raged for years, and I'm not
about to continue it now, but I will say that expending extra
resources on graphics capabilities on an OS that's rarely—if
ever—going to be logged into, seems immensely stupid and
wasteful.

While it's perfectly possible to install a cut-down version of Windows now that
doesn't feature a GUI (Windows Server 2016 Nano, for example), it's still not
frequently seen in data centers, and a lot of functionality is still mostly driven by
GUIs (especially in third-party software).

Unlike Linux, where SSH is king, Windows features Remote Desktop Protocol (RDP)
as its connection method of choice, delivering a graphical representation of the
server's desktop to your local machine.

Amusingly, RDP has also started to be replaced by the likes of remote PowerShell
connections, and even SSH (which Microsoft has seemingly started to appreciate as a
very nice and lightweight solution, though adoption rates are still up in the air).

Obviously, Windows also doesn't feature the Linux kernel, instead using the NT
kernel for its own interaction with hardware and low-level work.

Anecdote time!

A few years ago, I was talking with a friend as we walked through the city after work.
I was young and naive, so I casually mentioned that it might be a good idea for Linux
people to use Windows more, because adoption from our side would only drive
improvements on the other side of the fence.

This resulted in raucous laughter and mockery, along with my friend relaying this
mad suggestion to others from our workplace once we got to the restaurant we were
heading to. Everyone had a good chuckle at my expense and the matter was closed,
with the general consensus from us Linux people being that Windows was always
going to be garbage, and nothing could save it.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[770]

Fast forward a few years, that same friend now actively advocates PowerShell, has
Windows installed on his work machine, and talks about the virtues of using
Windows over Linux for select tasks.

I bring this up because I suspect he'll read this book at some point, and I just want to
remind him that back in the midst of time, he dismissed Windows out of hand, just
for being Windows.

Times do change, and while Microsoft still get a lot of (arguably justified) flack for
their stance on things like privacy, they do seem to be making an effort to realize their
OS as a cloud-world solution.

Some people reading this will be old enough to remember embrace, extend, and
extinguish (EEE), which is a phrase that was used internally at Microsoft to talk about
its plan for manipulating open and widely adopted standards, extending them with
proprietary additions before pushing the open and free alternatives out of the market,
by saying their product could do everything the others could, and more. (Think AD,
which is basically LDAP with more bells and whistles.)

There's a few people who believe Microsoft's recent "Microsoft loves Linux" stance is
just a ploy, and we're about to see a revival of the "EEE" approach.

IaaS (Infrastructure as a Service)
In short and disingenuously, IaaS can be summed up as "cloud servers."

IaaS is the term used by cloud providers for denoting the idea that you can shift all
those dusty, noisy, and expensive on-premises boxes into "the cloud."

In reality, the cloud is just the marketing term for "a bunch of servers in various data
centres," and it annoys many engineers who dislike wool-filled terms that only serve
to obfuscate and confuse.

The benefits of doing something like shifting your infrastructure into the cloud
should be obvious, and we've discussed the idea of Infrastructure as Code
(IaC)before.

Gone are the days when deploying a development environment means buying new
servers from your distributor, racking and cabling them all, and making sure you've
got a decent method of getting your OS of choice on there.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[771]

Now, infrastructure, from switches to firewalls and servers, can be deployed with
only a few clicks of the mouse, or better yet, a few commands on the keyboard.

IaaS means that you can deploy thousands of boxes in seconds, and tear them down
just as quickly. This scalability and ease of deployment has meant that companies
who would previously need to have entire data centres, just for jobs they ran once a
month, can now save the cost of power and cooling by simply spinning up those
servers for one "fifteen minute job" and then removing them again.

Perhaps the biggest benefit of using a cloud solution for your infrastructure though, is
the fact you don't have to worry about the underlying hardware. Someone else (the
provider) is responsible for making sure that the servers you're building on top of are
working, and you generally don't have to concern yourself with things like hardware
alarms.

IaaS providers and features
The biggest provider of IaaS services at the moment is Amazon, with their Amazon
Web Services (AWS) offering. It might seem a bit strange that an online retailer is
also the biggest supplier of cloud solutions, but when you consider the infrastructure
they would have had to design and build for their own platform, it makes sense that
they would see their way to selling it as a service.

AWS is well supported by IaC tools such as Terraform and Packer, being a first class
citizen, and it also features tools of its own, such as CloudFormation (like Terraform).

Amusingly, AWS also obfuscates names for some strange reason, leading to sites
like https://www. expeditedssl. com/ aws- in-plain- english, which offers a list of
Amazon's names for things, and then the English equivalent.

EC2, for example, is basically Amazon's name for servers.

AWS was launched in 2006, meaning that they had a head-start on Azure, which
launched in 2010.

Microsoft, with Azure, are probably the second largest supplier of cloud solutions,
and they have the added advantage that if your enterprise signs up to use Office365
for email and documents, there's a good chance Microsoft will push you to use Azure
for your infrastructure, too.

https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english
https://www.expeditedssl.com/aws-in-plain-english

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[772]

There's obviously other providers too, and not all IaaS has to be a remote solution.
You could deploy an OpenStack installation in your data centre, and then interact
with its APIs to create an IaaS platform that you use to programmatically spin up
virtual infrastructure. Obviously, the caveat here is that you still have to maintain the
underlying boxes, OS, and IaaS software.

Google has an IaaS offering, as do Oracle, Rackspace, and IBM. On the smaller side,
you have the likes of DigitalOcean, Scaleway, and OVH. The choice is yours as to
which you use, and it comes down to features that are offered more often than not.

If you have certain requirements (such as data sovereignty), you may find that you
absolutely have to use an on-shore offering, meaning that you may find some of the
contenders for IaaS providers are instantly ruled out, but there's usually something to
fit your needs.

IaaS provides the administrator with flexibility, which means that you no longer run
the risk of under-speccing a box for specific software, as you can determine if you
need more resources and simply destroy the box, before creating a new one of a
bigger type.

IaaS means that your firewall and load balancer rules are no longer stored in a
dumped config file from the half-U box that's inconspicuously whirring near your
feat. Instead, you can configure text files, which are then read and applied as the rest
of your infrastructure is built.

IaaS even means that you can test your infrastructure periodically, destroying and
rebuilding whole clusters on a schedule, just to make sure an OS update or a code
change hasn't broken anything.

PaaS (Platform as a Service)
On the other side of IaaS, or perhaps in parallel to it, is the concept of PaaS.

Platform as a Service is almost the logical continuation of the virtualization of
infrastructure, abstracting one level further and asking the question "why are we
asking our users to spin up a server for PostgreSQL, when we could just spin up a
PostgreSQL instance?".

Yes, there will always be a server somewhere, that's a given. These services don't just
run ephemerally atop a CPU that's floating in a room full of mist somewhere (despite
that being a cool mental image), but the critical part of this philosophy is the idea that
you don't care.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[773]

Realistically, you don't give a damn about the OS your database is running on, as
long as it's actually running and isn't about to crash. However, as an administrator in
the past, you would be tasked with exactly that—keeping on top of patches and
reboots just to make sure that the database itself kept going.

PaaS as a concept therefore sounds wonderful.

Why should you spin up several OS instances for hosting a website, running a
database, or deploying Redis, when you could use off-the-shelf offerings that provide
an endpoint to connect to, and leave the worry of the OS behind?

In the new world, you can deploy your website to a shared web segment, connect to a
database you've specified, and interact with a Redis endpoint that you've no idea
what version of Linux it's running on top of (if it's Linux at all!).

In theory, this also means that developers will have an easier time when writing
software, as they don't have to concern themselves with specific OS quirks or minor
differences that might affect their code. As long as developers target the common
platform provided to them by PaaS, they need not know what OS is running
underneath at all.

PaaS providers and features
As with IaaS, AWS and Azure are rife with PaaS offerings.

The most obvious offerings are databases, with AWS offering PaaS relational
databases, NoSQL databases (DynamoDB), and caching systems like Amazon
ElastiCache.

Azure offerings for databases include MSSQL deployments (obviously) and recently,
the inclusion of PostgreSQL too.

Amazon offer domain name services in the form of Route 53 (ha-ha guys, very clever,
now quit it with the stupid naming). They also offer CDN solutions, VPN setups, and
Active Directory services.

Azure offer a CDN solution too, alongside Web Apps (used to host web applications
and sites), Azure Blob Storage, and non-relational database offerings, such as Cosmos
DB. There's even a specifically named "Redis Cache" offering to stop you having to
create your own.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[774]

The list goes on and on, meaning that it's not uncommon for greenfield projects to get
lost among the potentials they can use in their deployment. I would hazard that a
good rule of thumb for any 21st Century sysadmin should be "if you don't have to
manage it, don't try."

If you can get away with using a PaaS option, do, because in the long run it'll save
you an immense amount of headaches. While the learning curve might be steep to
begin with, you'll thank your lucky stars that you've gone with a PaaS offering the
next time there's some major OS vulnerability and you need to start a round of critical
patching.

Azure and AWS are the obvious two, but as with IaaS, other providers do exist. GCP
(Google Compute Platform) is the most obvious third contender, but the smaller
providers are taking their tentative first steps into the market too.

DigitalOcean have started offering things like managed Kubernetes (which is sort of
PaaS, because you can deploy your own containers into a managed platform), block
storage, and load balancers. Scaleway have started a public beta for Object Storage (at
the time of writing).

I think the biggest problem with PaaS is the fact that a lot of work goes into it behind
the scenes to make it seamless for the end users.

You consume that database offering like it's nothing, creating your schema atop a
transparent fabric, but somewhere down the chain, someone is having to design and
maintain the systems those PaaS offerings sit atop... I hope they get paid a lot of
money to do it.

Obviously, there's negatives—when you go PaaS, there's frequently a case of
WYSIWYG (what you see is what you get), and the off-the-shelf offering you're using
won't always be a hundred percent suitable for what you need. If it's ninety percent
suitable, though, you need to make the judgement call on if it's worth that ten
percent, or if you'd rather fight a full-fat but customizable IaaS deployment instead.

The Ops versus DevOps Wars
DevOps as a word has been misunderstood, abused, and twisted by recruiters
everywhere.

Go to the subreddit for DevOps (https:/ /old. reddit. com/ r/ devops) and you'll see
DevOps referred to as a "movement," which is what it was originally intended to be.

https://old.reddit.com/r/devops
https://old.reddit.com/r/devops
https://old.reddit.com/r/devops
https://old.reddit.com/r/devops
https://old.reddit.com/r/devops
https://old.reddit.com/r/devops
https://old.reddit.com/r/devops
https://old.reddit.com/r/devops
https://old.reddit.com/r/devops
https://old.reddit.com/r/devops
https://old.reddit.com/r/devops
https://old.reddit.com/r/devops
https://old.reddit.com/r/devops

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[775]

A contraction of Development and Operations, DevOps is supposed to be a
methodology that combines the principles of software development with traditional
IT operations.

However, we live in the real world, and while it might be fun for you to shout
"DevOps isn't a job title!" at the recruiter on the other end of the phone (don't do this),
it doesn't make the winds of change any weaker.

I've been called a DevOps engineer, and I know many other people who have too. I've
also applied for jobs that were specifically hiring for "a DevOps person to come on-
board and help us evolve." It comes down to usage, as with so much in the language
world, and if the person doing the hiring says "I want a DevOps," then the recruiter is
going to advertise for one.

The sector itself is only going from strength to strength, as the proven advantages of
combining traditional development approaches with infrastructure and application
management become more obvious, and the rise of IaaS and PaaS solutions has only
succeeded in speeding this adoption up.

In short, I would say working in a DevOps environment comes down to the
following:

Appreciating infrastructure as code
Valuing reusability of code and practices
Assessing and adopting new technologies or practices where appropriate

Many people have different definitions of what "DevOps" is, despite those who shout
until they're blue in the face that it's a black and white definition, but perhaps the
worst offenders are the stuck sysadmins and operations engineers who simply don't
believe in progress.

I've met people like this—those who don't believe in codification—who seem to like
snowflake servers for some reason, and who always bill themselves as administrators,
despite being overlooked for jobs because of it.

There's definitely value in knowing and appreciating traditional system
administration, but those skills go hand in hand with modern methodologies.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[776]

More of a skirmish, really
It used to be that every sysadmin was expected to know at least a little bit of SQL,
because they were usually thought of as being the DBA (Database Administrator) for
the infrastructure, too. Now, it's assumed that the sysadmin will also be proficient in
at least a couple of "DevOps" tools.

"DevOps tools" also has a bit of a vague definition, but anything by
Hashicorp probably applies.

Where things start to get tricky is the devolution of responsibility.

There are companies out there that have the following:

A platform team
An operations team
A DevOps team
A development team with a DevOps engineer

You tell me, based on the aforementioned list, who is responsible for making sure that
the OS is up to date.

It's the platform team, surely? The platform is theirs, so they've got a responsibility to
ensure that all the OSes in the environment are on the latest version.

But what about the DevOps team? They wrote the code to configure the boxes, and
we know that a bit of their Ansible runs a "yum update" right at the
beginning—surely they should just run that same Ansible again?

What about operations? In the past, their responsibility might have been ensuring OS
changes didn't impact software, so surely they should be the ones to update the OS?

The developers are the ones who want the latest features of that OS package, and
they're the ones who've asked for the update to be done—does the responsibility
therefore lie with their "DevOps" team member?

It's confusing, but not uncommon, to see arguments about responsibility, or even
arguments about what job title an individual is hired for.

Partly, this is the fault of the company for not defining a rigid structure, but it's also
the fault of people who bill themselves a certain way and then silo themselves from
anything they don't deem to be related to their job.

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[777]

If you find yourself in a company like this, with warring factions who don't want to
take responsibility for anything, it might be an idea to talk to your superior, or
superior's superior, or even CTO, about structure.

A friend of mine once said (and I'm paraphrasing), "the job title changes, but we're
just operations engineers at the end of the day." His meaning was that while new
technologies and trends come and go (I'm looking at you, Node.js!), we'll still be
needed in our traditional capacities to pick up the pieces when it all goes to hell.

Roundup – BSDs, Solaris, Windows, IaaS
and PaaS, DevOps
I wanted this chapter to be a bit of a mixed bag that touched on various addendum
elements to our existence as system administrators. Many of these concepts could fill
a chapter on their own, but I've already been told by a few people that this book is too
long, and I've not even finished writing it yet!

Hopefully you've got some idea about the other OSes that exist in the world, if you
didn't already, and you might even have an inclination to go away from this chapter
and install SmartOS, or OpenBSD, which I would highly encourage. It's good to not
silo yourself, and who knows? At some point in the future, this beast we know as
Linux might die, and something else could rise from the ashes to take its place. You
should be ready.

Like Linux dying, traditional system administration is definitely changing, and if my
somewhat sarcastic tone throughout this chapter has suggested anything, it's that you
should be ready to change with it. IaaS is already commonplace, though it's
increasingly losing market share to PaaS solutions, especially in the enterprise world.
Learn how to deploy a website without touching an underlying OS once, and you'll
be in demand (for the moment, at least).

Lastly, there's DevOps, which I've tried to keep short on purpose, because I already
think I'm going to get people arguing with me about definitions. My friend is right,
and our job title seems to changes every five years, but ultimately it always comes
back to the same thing—do you know where to find the log file, and can you work
out why the service crashed?

BSDs, Solaris, Windows, IaaS and PaaS, and DevOps Chapter 13

[778]

If you take anything away from this section, take away the fact that you'll never know
everything there is to know about the systems administration world, but the more
you know, the more you can earn... or the more pride you might feel in your
work—something fluffy like that.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Linux Administration on Azure
Frederik Vos

ISBN: 978-1-78913-096-6

Understand why Azure is the ideal solution for your open source
workloads
Master essential Linux skills and learn to find your way around the Linux
environment
Deploy Linux in an Azure environment
Use configuration management to manage Linux in Azure
Manage containers in an Azure environment
Enhance Linux security and use Azure’s identity management systems
Automate deployment with Azure Resource Manager (ARM) and
Powershell
Employ Ansible to manage Linux instances in an Azure cloud environment

https://www.packtpub.com/virtualization-and-cloud/hands-linux-administration-azure

Other Books You May Enjoy

[780]

PowerShell Core for Linux Administrators Cookbook
Prashanth Jayaram, Ram Iyer

ISBN: 978-1-78913-723-1

Leverage the object model of the shell, which is based on .NET Core
Administer computers locally as well as remotely using PowerShell over
OpenSSH
Get to grips with advanced concepts of PowerShell functions
Use PowerShell for administration on the cloud
Know the best practices pertaining to PowerShell scripts and functions
Exploit the cross-platform capabilities of PowerShell to manage scheduled
jobs, Docker containers and SQL Databases

https://www.packtpub.com/networking-and-servers/powershell-core-linux-administrators-cookbook

Other Books You May Enjoy

[781]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

-
--user-install (gem) 372
--user/ --system (pip) 372

/
/dev
 hardware, determining 254
/proc
 hardware, determining 249
 used, for troubleshooting service issue 745
/sys
 hardware, determining 251

A
Advanced Message Queuing Protocol (AMQP)

700

Amazon Web Services (AWS) 771
Ansible
 command module 612
 configuration, storing in Git 620, 621, 622
 installing 602, 603, 604, 606, 607, 608,

609, 610
 Java, installing from role 613, 614, 615, 616,

617, 618, 620
 raw module 611
 reference 604
 shell module 612
AppArmor
 about 518
 caveats 500
 modification 497
 using 497, 498, 499, 501

B
backporting 11
basic Apache configuration 645, 646, 647,

648, 649, 650
basic MySQL installation 664, 665
basic Nginx configuration 651, 652, 654, 655,

656

basic PostgreSQL installation 670, 671
bastion hosts 109, 110, 115
blank disk
 configuring 282, 283, 284, 285, 286
 mounting 282, 283, 284, 285, 286
BSD
 about 760, 761, 777
 FreeBSD 761
 OpenBSD 763, 765

C
CentOS 6 234
CentOS installation media
 checksum, checking 21, 22
 obtaining 19, 20, 21
 reference 19
centralizing logging, with Elastic Stack
 centos2, using 469
 debian1, using 469
 debian2, using 469
 Kibana, using 470, 472
centralizing logging
 about 416, 417, 422, 423
 remote logging with journald 420
 remote logging with rsyslog, TCP example

419, 420
 remote logging with rsyslog, UDP example

418

 using, with Elastic Stack 466, 467, 474
Certificate Authority (CA) 663, 726
certificates 661
cgroups 525
Chrony

[783]

 about 167
 reference 167
client-side SSH configuration file
 using 76, 77, 78, 79, 80, 83, 84
cloud 347
command line
 firewall rules, adding on 175
 firewall rules, listing on 167, 168
 firewall rules, removing from 175
commands
 executing, in Docker container 536
Common Vulnerabilities and Exposures (CVE)

database
 reference 351
Community Enterprise Operating System

(CentOS)
 about 12, 13
 ELRepo repository, adding by file 390, 391
 EPEL repository, adding with epel-release

389

 httpd (Apache), installing on 642
 installation, on VM 24, 25, 26, 27, 28, 29,

30, 31, 32
 OS version, checking 323, 324, 325
 package managers 313, 316
 reference 13, 353
 updates, automating 339, 340, 341, 342,

343

 updates, checking 332, 334
configuration management 635, 636
containers
 about 522, 576
 breakdown of creation 526
 creating 523
 debugging 537, 539
 searching for 540, 541, 542, 544, 545
 versus virtualization 548
cron
 working with 227, 229, 231
cURL
 reference 726
 used, for troubleshooting of remote web issue

725, 727
 used, for troubleshooting of remote web

issues 723

current filesystem formats 304, 305, 306

D
daemons 238
database 690
Database Administrators (DBAs) 664
Debian 7 236
Debian VM
 using 659
Debian
 about 11
 Nginx, installing on 643
 OS version, checking 326, 327
 package managers 317, 321
 reference 11
 repositories, adding 393, 394, 395
 updates, automating 343, 344, 345
 updates, checking 335, 337
debugging 710
dependency hell
 about 373, 374, 378
 detecting, with Apt 376
 in conflicting Pip packages 375
 Pip, using 374
 solutions 377
desktop management interface (DMI) 41
DevOps 777
DevOps Wars
 versus Ops 774, 775
df
 filesystem, listing 272
 mount points, listing 271
disk encryption
 about 298, 299, 301
 working with 300
disk
 configuration, on Linux 269, 270, 277, 278
 listing, with lsblk 270, 271
 re-configuring, LVM used 288, 289, 290,

291, 292
distribution
 about 8
 CentOS installation media, obtaining 19, 20,

21

 Community Enterprise Operating System

[784]

(CentOS) 12, 13
 Debian 11
 installing, manually 19
 Red Hat Enterprise Linux 13, 14
 selecting 8, 9
 Ubuntu 9, 10
 virtual machine (VM), setting up 22
DistroWatch
 reference 9
dmesg
 hardware, determining 252
dmidecode
 about 41, 44
 hardware, determining 253
Docker container
 commands, executing 536
 creating 535
 listing 536
 running 533, 534
Docker Nginx install
 cons 568
 pros 567
Docker versions
 Community Edition (CE) 530
 Enterprise Edition (EE) 530
Docker
 installing 528, 529, 531
domain name resolution 153, 154, 157
domain resolution settings
 checking 155, 156
 modifying 156
domain
 querying 154

E
Elastic Stack
 about 473
 using, with centralizing logging 466, 467,

474

ELRepo repository
 adding, by file 390, 391
embrace, extend, and extinguish (EEE) 770
encryption
 working with 298, 299, 300, 301
EPEL repository

 adding, with epel-release 389
errata pages
 checking 348
Ethernet interface configuration file (ifcfg-eth2)

152

Exim Cheatsheet
 reference 689
Exim
 about 682
 configuring 683
 using 685
 working 685, 686, 687
Extra Packages for Enterprise Linux (EPEL)

188, 389

F
fallocate 555
fast file system (FFS) 759
FastCGI Process Manager (FPM) 450
file permissions
 access control lists (ACLs) 490
 hierarchical permissions 489
 modifying 484
 modifying, with chattr command 486, 488
 modifying, with chmod command 486, 487
 modifying, with chown command 484, 485,

487

 octal notation, avoiding 488
filesystem hierarchy 279, 280, 281
Filesystem Hierarchy Standard (FHS) 331
Filesystem in Userspace (FUSE) 306
filesystems
 listing, with df 272
firewall rules
 adding, on command line 175
 listing, on command line 167, 168
 removing, from command line 175
firewall-cmd
 configured zones, listing 172, 173
 firewall, adjusting 175
Flatpak
 about 361
 executing 363, 364
 installing 362
 listing 364

[785]

 reference 362
 removing 364
 searching 362
 updating 365
 user installation 364
 using 361, 362, 365, 366
FreeBSD 393, 761
from-scratch distributions 10
fstab
 using 294
full virtualization 551

G
gateway address
 discerning 140, 141
Git repository
 branching 595, 596, 597, 598, 599, 600,

601, 602
 changes, committing 595, 596, 597, 598,

599, 600, 601, 602
 committing 591, 592, 593, 594
 matching, versus simple 594
Git server
 setting up 588, 589, 590, 591
Git
 about 580, 584, 635, 636
 Ansible configuration, storing 620, 621, 622
 cloning 581
 exploring 581
 installing 581
 modifying 581
 using 586, 588
graphical user interface (GUI) 34
groups
 about 491
 on system 494
 working 496
GUID Partition Table (GPT) 286

H
hardware
 about 240, 241
 determining 242, 243
 determining, /dev used 254
 determining, /proc used 249

 determining, /sys used 251
 determining, dmesg used 252
 determining, dmidecode used 253
 determining, lshw used 246, 248
 determining, lspci used 243, 244
 testing 257, 258
hdparm 259
host keys
 removing, from server 98
 rotating 94, 95, 96, 97
httpd (Apache)
 installing, on CentOS 642
Hypertext Transfer Protocol (HTTP) 640
Hypertext Transfer Protocol Secure (HTTPS)

640, 657

I
iftop
 debugging with 188, 189, 190, 191
 using, for network issues 716, 720, 721
illumos
 about 765, 766, 767
 versus Solaris 765, 766
Infrastructure as a Service (IaaS)
 about 757, 770, 777
 features 771, 772
 providers 771, 772
Infrastructure as Code (IaC)
 about 48, 635, 636, 770
 options, exploring 622, 623
 Packer, using 628, 630
 Terraform, using 624, 625, 626, 628
init systems 234
installed services
 listing 201, 204, 205
interface
 configuring 150
 working with 145
Internet Engineering Task Force (IETF) 644
iotop
 used, for troubleshooting local resource

issues 734, 735, 737
ip suite
 example 144, 147
IP

[786]

 adding, against interface 144, 145
 discerning 137, 139
 removing, against interface 144, 145
iptables
 configuration, checking of firewall 168, 169,

170

 firewall, adjusting 177
irate business owners
 handling 752
irate developers
 handling 749, 750
irate managers
 handling 751, 752

J
Java
 installing, from role with Ansible 613, 614,

615, 616, 617, 618, 620
journalctl
 using, on systemd systems 408, 409, 412,

414, 416
just a bunch of disk (JBOD) 308

K
kernel mailing list
 reference 353
Kernel Virtual Machine (KVM) 15, 548
kernel
 about 8
 role 263, 264, 265, 267
key pairs
 authorized_keys file 66
 Ed25519 example 62, 63
 flags, adding 69, 70
 generating, with passphrase 69
 generating, with ssh-keygen 57, 58, 59
 generating, without passphrase 69
 permissions 68
 private key file 64, 65, 66
 public key file 64, 65, 66
 RSA example 60, 61
 using, with ssh-keygen 57, 58, 59
key-value (KV) 696
Kibana 474
known_hosts

 updating 94, 95, 96, 97

L
Let's Encrypt 658, 663
Linux 7
Linux file permissions
 about 479
 exampledir 480
 examplefile 481
 execute characters 482
 root access, to directories and files 482
Linux for Human Beings 9
Linux Standard Base (LSB) 331
local forwarding
 about 99
 on command line 100, 101
 SSH config file, using 101
 SSH session, viewing 103, 104
 systems, connecting beyond remote host 104
 using 99, 100, 102, 103, 104
local logs
 reading 400, 402, 403, 404, 407
local monitoring tools
 about 434
 atop command 434, 436
 sar command 437
 vmstat command 438
 working 439, 440
local MTA configuration 675, 677
local MTA usage 675, 677
local Nginx install
 cons 567
 pros 566
local resource measuring tools
 about 423, 433
 free command 428
 htop command 429, 430
 NetData 431, 432
 top command 424, 426, 428
 working 424, 432
logging 398, 475
logical volumes
 listing 275
logstash 474
long-term support (LTS) 10

[787]

lsblk
 disks, listing 270, 271
lshw command
 about 44
 hardware, determining 246, 248
lsof
 used, for troubleshooting service issue 740,

742

lspci
 hardware, determining 243, 244
LVM
 disk, re-configuring 288, 289, 290, 291, 292
LXD daemon 527

M
macOS
 VirtualBox, command-line installation 17
 VirtualBox, graphical installation 17
 VirtualBox, installing 17
Mail Transport Agent (MTA) 206, 681
mailing lists
 checking 348
 sources 351, 352
MariaDB
 databases, creating 666
 databases, listing 666
 databases, selecting 666
 databases, using 668
 installation 664, 665
 tables, creating 667
 tables, listing 667
 tables, selecting 667
Master Boot Record (MBR) 286
memory testing 260, 261, 262
Memtest86+
 reference 258
memtester 260
message broker for communication
 problem 372
message of the day (MOTD) 328
messaging broker 700
messaging queue 700
Mir 10
MongoDB
 example 690, 691, 692, 693

monitoring 398, 475
mount points
 listing, with df 271
multiple SSH servers
 executing 128, 129, 131

N
namespaces 525
network configuration
 determining 136, 137, 141
network connectivity
 checking 142
 route, determining 142, 143
network interfaces
 adding 149, 151
 configuring 149, 151
network time protocol (NTP)
 checking, for execution 161
 configuring 159, 160
 working 165, 166
Nginx
 installing, on Debian 643
NoSQL documents 689
NoSQL KV 696
NTP client
 enabling 163
NTP server
 enabling 164
NTP traffic
 confirming 161, 162, 163

O
OpenBSD 763, 765
OpenSSL
 reference 353
 used, for troubleshooting of remote web issue

723, 729, 731, 734
OpenStack
 cons 574
 pros 573
 reference 574
operating system (OS) 7
Ops
 versus DevOps Wars 774, 775
Oracle Solaris 767

[788]

OS version
 checking 323, 330, 331
 checking, for CentOS 323, 324, 325
 checking, for Debian 326, 327
 checking, for Ubuntu 327, 329
Out Of Memory (OOM) killer 260

P
package changelogs
 checking 349, 350, 351
package management 396, 397
package manager 373
package versions
 CentOS 313, 316
 checking 312, 313, 322
 Debian 317, 320
Packer
 using 628, 630, 632, 633, 634
paravirtualization 551
PCI ID repository
 reference 244
permission 477, 518
Personal Package Archives (PPAs)
 adding, in Ubuntu 395
 reference 395
physical disks
 listing 273
ping command
 using, for network issues 717, 719
Pip installs packages (Pip)
 about 366
 using 366
 version, checking 367, 368
Platform as a Service (PaaS)
 about 757, 772, 777
 features 773, 774
 providers 773, 774
ports
 determining, in use 182, 185, 186
Postfix
 /etc/aliases 678
 about 675
 main.cf 678
PostgreSQL
 databases, creating 672

 databases, listing 671
 databases, selecting 672
 tables, creating 672
 tables, listing 671
 tables, selecting 672
private branch exchange (PBX) 639
problem copy
 creating, for debugging 745, 747
process information pseudo-filesystem 249
programming-language package managers
 using 371, 372
Proxmox Virtual Environment
 cons 572
 pros 572
 reference 573
ProxyJump
 about 109, 110
 on multiple hosts 113
 ProxyCommand 114
 SSH config file, using 110
 using 110, 111, 113
ps
 used, for troubleshooting service issue 740,

741

PuTTY 36
Python package index (PyPI) 368
Python virtualenv 372

Q
QEMU machine
 starting, with virtual machine 551, 553, 555

R
RabbitMQ
 example 700, 701, 702, 703, 704, 705
real issue
 isolating 711, 712
Red Hat Enterprise Linux
 about 13, 14
 reference 14
Red Hat
 reference 351
Redis
 example 696, 697, 698, 699
release notes page, CentOS

[789]

 reference 21
remote forwarding
 on command line 105, 106
 SSH config file, using 106
 using 105, 107, 108
remote monitoring tools
 about 440, 441, 465
 Icinga2, using 446, 450, 453, 455, 459, 463
 Nagios, using 441, 443, 446
 working 464
Repos 12
repositories, Debian
 reference 393
repositories
 adding 388, 396
 adding, in Debian 393, 394, 395
 ELRepo repository, adding by file 390, 391
 EPEL repository, adding with epel-release

389

 Personal Package Archives (PPAs), adding in
Ubuntu 395

Request for Comments (RFC) 644
Rivest-Shamir-Adleman (RSA) key 60
route
 adding, to routing table 146
RPM Hell 373
RPM Package Manager (RPM) 313
RubyGems
 using 366
 version, checking 369, 371
running services
 determining 197, 200
 determining, in use 182, 185, 186
 testing 221, 223

S
Secure Shell (SSH) 35
Secure Sockets Layer (SSL) 662
Security-Enhanced Linux (SELinux)
 about 501, 507, 518
 checking 508
 executing, on system 508, 509, 512, 514,

515

 modification 501, 504, 505, 507, 508
 permissions, resetting 515, 517, 518

 permissions, setting 515, 516, 518
security
 managing 396, 397
self-monitoring, analysis, and reporting

technology (SMART) 258, 259
server-side SSH configuration file
 AllowUsers, setting 92
 daemon logging level, modifying 88
 default port, modifying 85, 86, 87
 listen address, modifying 87, 88
 message, setting 91
 modifying 84, 85, 92, 93
 passwords, disabling 90
 root login, disallowing 89
 UseDNS, setting 91
services
 about 238
 auditd.service 211
 chronyd.service 212
 crond.service 212
 disabling 210
 enabling 208, 209
 expecting, for watch 211
 lvm2-*.service 212
 NetworkManager.service 212
 nfs.service 212
 postfix.service 212
 rsyslog.service 213
 sshd.service 213
 starting 205, 206
 stopping 205, 206
 systemd-journald.service 213
 systemd-logind.service 213
 unit files 214, 216, 217
 VM, rebooting 208
skirmish 776, 777
snapcraft.io
 reference 353, 359
snaps
 about 10, 353
 daemon snaps, interacting with 355, 356
 installing 355
 listing 355
 reference 353
 removing 356

[790]

 searching 354
 using 353, 354, 357, 358, 360
socket statistics (ss) 183
SOCKS Proxy
 creating, with SSH 116, 117, 119, 120, 121
 on command line 117
 SSH config file, using 118
Solaris
 about 765, 766, 777
 Oracle Solaris 767
 versus illumos 765, 766
source code
 compiling 380, 381, 382, 383, 384, 385,

386, 387
 for compiling 378, 379
 reference 379
ss
 using, for network issues 716, 719, 720
SSH agents
 about 121
 AddKeysToAgent 127
 ssh-add 126
 using 121, 122, 124, 125, 126, 127
SSH client
 arguments 71
 connecting, before executing command 74
 connecting, to different port 72
 connecting, to different user 72
 connecting, to IPv6 address 73
 escape characters 75, 76
 hostnames, using instead of IPs 71, 72
 manipulating 75
 options 71
 X11 forwarding 74
ssh-keygen
 key pairs, generating 58, 59, 60
 key pairs, using 58, 59
strace
 used, for troubleshooting service issue 740,

743

Structured Query Language (SQL) 689
Subject Alternative Names (SANs) 734
sudo 46, 47
swap
 listing 276

system boot 263
system type determination
 about 757, 760
 filesystem check 758, 759
 uname 758
systemd systems
 journalctl, using 408, 409, 412, 414, 416
systemd timers
 working with 227, 228, 231
systemd unit files
 customizing 218, 220
systemd-mount
 using 293, 295
systems administrators (sysadmins) 8
SysV init 236

T
tcpdump
 using, for network issues 716, 722
temporary solutions
 finding 747, 748
 invoking 747, 748
Terraform
 built-in command 634
 using 624, 625, 626, 628, 631, 632
top
 used, for troubleshooting local resource

issues 734, 738
Transport Layer Security (TLS) 662
troubleshooting
 about 710
 estimates, deciding 714, 715, 716
 estimates, providing 714, 715, 716
 overview 709
 steps 710
 used, for troubleshooting service issues 740

U
Ubuntu
 about 9, 10
 OS version, checking 327, 329
 Personal Package Archives (PPAs), adding

395

 VirtualBox, command-line installation 15, 16
 VirtualBox, graphical installation 16, 17

[791]

 VirtualBox, installing 15
ufw
 enabling 173
 firewall, adjusting 178
unit file
 writing 223, 225, 227
universal time coordinated (UTC) 161
Unix file system (UFS) 759
upcoming filesystem formats 307, 308
updates
 automatic provisioning 347, 348
 automating 339, 345, 346, 347
 automating, on CentOS 339, 340, 341, 342,

343

 automating, on Debian 343, 344, 345
 checking 331
 checking, for CentOS 332, 334, 335
 checking, for Debian 335, 337, 338, 339
 managing 396, 397
Upstart 10, 234
UseKeychain
 reference 122
users
 and groups 491
 displaying, on system 492
 whoami 492
 with daemons 495
 working 496

V
Vagrant
 about 48
 installing 49
 reference 50
 used, for provisioning VMs automatically 47,

48, 49, 50, 51
version control systems (VCSs) 580
virsh
 using 558, 559, 561, 563
virt-install
 using 558, 559, 563
virtual machine (VM)
 accessing 32
 CentOS, installing 24, 25, 26, 27, 28, 29, 30,

31, 32

 dmidecode 41, 44
 logging in, from host Terminal 35, 36
 logging in, from VirtualBox window 33, 34, 35
 lshw command 44
 Port Forwarding, setting up for VirtualBox 36,

37, 38
 QEMU machine, starting 551, 553, 555
 setting up 22
 sshd, enabling 36
 updating 32, 39
 using 579
 VirtualBox main window 23, 24
virtual private server (VPS) 41
VirtualBox
 installing 14, 15
 installing, on macOS 17
 installing, on Ubuntu 15
 installing, on Windows 18
 reference 17, 18
virtualization options
 comparing 570, 575
 OpenStack 573
 Proxmox Virtual Environment 572
 VMware ESXi 570
virtualization
 about 547, 576
 versus containers 548
VM Nginx install
 cons 568
 pros 568
vmstat
 used, for troubleshooting local resource

issues 734, 739
VMware ESXi
 cons 571
 pros 570
 reference 571
volume groups
 listing 274

W
web server
 about 640, 641
 installing 644
wget

 used, for troubleshooting of remote web issue
723, 727

Windows
 about 768, 770, 777
 VirtualBox, graphical installation 18
 VirtualBox, installing 18
work environment certificates 663
workplace diplomacy

 checking 753, 755

X
XNU 8

Y
Yellowdog Updater Modified (YUM) 315

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction and Environment Setup
	Introduction
	Understanding and choosing a distribution
	Ubuntu
	Debian
	CentOS – the one we'll mostly be using
	Red Hat Enterprise Linux

	Installing VirtualBox
	Installing VirtualBox on Ubuntu
	Command-line installation
	Graphical installation

	Installing VirtualBox on macOS
	Command-line installation
	Graphical installation

	Installing VirtualBox on Windows
	Graphical installation

	Installing our chosen distribution manually
	Obtaining our CentOS installation media
	Checking the checksum

	Setting up our VM
	VirtualBox main window
	CentOS installation

	Accessing and updating our VM
	Logging in from the VirtualBox window
	Logging in from the host Terminal
	Making sure sshd is running
	Making sure that VirtualBox lets us through

	Updating our VM

	Understanding how VMs differ
	dmidecode
	lshw

	Quick sudo explanation
	Using Vagrant to automatically provision VMs
	Kickstart
	Vagrant

	Anecdote – try, try, and try again

	Chapter 2: Remote Administration with SSH
	Introduction
	Technical requirements
	Generating and using key pairs with ssh-keygen
	Getting ready
	How to do it…
	RSA example
	Ed25519 example

	How it works…
	The public and private key files
	The authorized_keys file

	There's more...
	To passphrase or not to passphrase
	Additional flags

	See also

	SSH client arguments and options
	Getting ready
	How to do it…
	SSH using hostnames instead of IPs
	SSHing to a different user
	SSHing to a different port
	SSHing to an IPv6 address
	SSHing before running a command
	SSH and X11 forwarding

	How it works…
	There's more…
	See also

	Using a client-side SSH configuration file
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Modifying the server-side SSH configuration file
	Getting ready
	How to do it…
	Changing the default port
	Changing the listen address
	Changing the daemon logging level
	Disallowing root login
	Disabling passwords (force key use)
	Setting a message of the day (motd)
	The UseDNS setting
	AllowUsers

	How it works…
	There's more…
	See also

	Rotating host keys and updating known_hosts
	Getting ready
	How to do it…
	How it works…
	There's more…

	Technical requirements
	Using local forwarding
	Getting ready
	How to do it…
	On the command line
	Using an SSH config file

	How it works…
	There's more…
	Watching our SSH session
	Connecting to systems beyond the remote host

	See also

	Using remote forwarding
	Getting ready
	How to do it…
	On the command line
	Using an SSH config file

	How it works…
	There's more…
	See also

	ProxyJump and bastion hosts
	Getting ready
	How to do it…
	Using an SSH config file

	How it works…
	There's more…
	Multiple hosts
	ProxyCommand
	Bastion hosts

	Using SSH to create a SOCKS Proxy
	Getting ready
	How to do it…
	On the command line
	Using an SSH config file

	How it works…
	There's more…

	Understanding and using SSH agents
	Getting ready
	How to do it…
	How it works…
	There's more…
	ssh-add
	AddKeysToAgent

	See also

	Running multiple SSH servers on one box
	Getting ready
	How to do it…
	How it works…
	There's more…

	Summary

	Chapter 3: Networking and Firewalls
	Introduction
	Technical requirements
	Determining our network configuration
	Getting ready
	How to do it…
	Discerning the IP
	Discerning the IP (deprecated method)
	Discerning the gateway address
	Discerning the gateway address (deprecated method)

	How it works…
	There's more…
	Checking connectivity
	Checking what route our box will take

	See also

	More examples of using the ip suite
	Getting ready
	How to do it…
	Adding and removing an IP against an interface
	Shutting down and bringing up an interface administratively
	Adding a new route to our routing table

	How it works…
	There's more…
	See also

	Adding and configuring network interfaces
	Getting ready
	How to do it…
	Configuring a new interface

	How it works…
	There's more…
	See also

	Modern domain name resolution on Linux
	Getting ready
	How to do it…
	Querying a domain
	Checking the domain resolution settings
	Changing the domain resolution settings

	How it works…
	There's more…
	See also

	Configuring NTP and the problems we face
	Getting ready
	How to do it…
	Checking if NTP is running
	Checking if NTP traffic is flowing
	Enabling an NTP client
	Enabling an NTP server

	How it works…
	There's more…
	See also

	Listing firewall rules on the command line
	Getting ready
	How to do it…
	iptables
	firewall-cmd
	ufw

	How it works…
	There's more…
	See also

	Adding and removing firewall rules on the command line
	Getting ready
	How to do it…
	firewall-cmd
	iptables
	ufw

	How it works…
	There's more…

	Determining the running services and ports in use
	Getting ready
	How to do it…
	How it works…
	There's more…

	Debugging with iftop
	Getting ready
	How to do it…
	How it works…
	There's more…

	Summary

	Chapter 4: Services and Daemons
	Introduction
	Technical requirements
	Determining running services
	How to do it…
	How it works…
	There's more…
	See also

	Listing installed services
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Starting and stopping services
	How to do it…
	Stopping our service
	Starting our service

	How it works…
	There's more…
	See also

	Changing which services start and stop at boot
	Getting ready
	How to do it…
	Enabling our service
	Disabling our service

	How it works…
	There's more…
	See also

	Common services you might expect to see
	How to do it…
	auditd.service
	chronyd.service
	crond.service
	lvm2-*.service
	NetworkManager.service
	nfs.service
	postfix.service
	rsyslog.service
	sshd.service
	systemd-journald.service
	systemd-logind.service

	How it works…
	There's more…
	See also

	Understanding service unit files
	How to do it…
	How it works…
	There's more…
	See also

	Customizing systemd unit files
	How to do it…
	How it works…
	There's more…
	See also

	Testing running services
	Getting ready
	How to do it…
	How it works…
	There's more…

	Writing a basic unit file
	How to do it…
	How it works…
	There's more…
	See also

	Working with systemd timers (and cron)
	How to do it…
	systemd timers
	cron

	How it works…
	There's more…
	See also

	Other init systems
	Getting ready
	How to do it…
	CentOS 6 and Upstart
	Debian 7 and SysV init

	How it works…
	There's more…
	See also

	Round-up – services and daemons

	Chapter 5: Hardware and Disks
	Introduction
	Technical requirements
	Determining hardware
	Getting ready
	How to do it…
	lspci
	lshw
	/proc
	/sys
	dmesg (and the kernel logs)
	dmidecode
	/dev

	How it works…

	Testing hardware
	Getting ready
	How to do it…
	Self-monitoring, analysis, and reporting technology (SMART)
	hdparm
	Memory testing

	How it works…
	There's more…

	The role of the kernel
	Getting ready
	How to do it…
	How it works…
	There's more…

	Disk configuration on Linux
	Getting ready
	How to do it…
	Listing disks with lsblk
	Listing mount points with df
	Listing filesystems with df
	Listing logical volume manager disks, volume groups, and logical volumes
	Physical disks
	Volume groups
	Logical volumes

	Listing swap

	How it works…
	There's more…

	The filesystem hierarchy
	Getting ready
	How to do it…
	How it works…
	There's more…

	Configuring a blank disk and mounting it
	Getting ready
	How to do it…
	How it works…
	There's more…

	Re-configuring a disk using LVM
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using systemd-mount and fstab
	Getting ready
	How to do it…
	fstab
	systemd-mount

	How it works…
	There's more…
	See also

	Disk encryption and working with encryption at rest
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Current filesystem formats
	Getting ready
	How to do it…
	How it works…

	Upcoming filesystem formats
	Getting ready
	How to do it…
	How it works…

	Round-up – hardware and disks

	Chapter 6: Security, Updating, and Package Management
	Introduction
	Technical requirements
	Checking package versions
	Getting ready
	How to do it…
	CentOS
	Debian

	How it works…
	There's more…

	Checking the OS version
	How to do it…
	CentOS
	Debian
	Ubuntu

	How it works…
	There's more…
	See also...

	Checking for updates
	How to do it…
	CentOS
	Debian

	How it works…
	There's more…

	Automating updates
	How to do it…
	CentOS
	Debian

	How it works…
	There's more…
	Automatic provisioning

	Checking mailing lists and errata pages
	Getting ready
	How to do it…
	Package changelogs
	Official sources and mailing Lists
	Other sources

	How it works…
	There's more…

	Using snaps
	How to do it…
	Searching out snaps
	Installing snaps
	Listing installed snaps
	Interacting with daemon snaps
	Removing snaps

	How it works…
	There's more…
	See also...

	Using Flatpak
	Getting ready
	How to do it…
	Searching for a package
	Installing our package
	Running our package
	Listing installed packages
	User installations
	Removing packages

	How it works…
	There's more…
	See also...

	Using Pip, RubyGems, and other package managers
	Getting ready
	How to do it…
	Pip
	RubyGems

	How it works…
	There's more…
	When to use programming-language package managers
	--user/ --system (pip) and --user-install (gem)
	Python virtualenv

	See also

	Dependency hell (a quick word)
	Getting ready
	How to do it…
	System-installed and third-party installed versions of Pip
	Dependency problems in conflicting Pip packages
	Apt's conflict solution
	Potential solutions

	How it works…

	Compiling from source
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also...

	Technical requirements
	Adding additional repositories
	Getting ready
	How to do it…
	CentOS – Adding the EPEL repository with epel-release
	CentOS – Adding the ELRepo repository by file
	Debian – Adding additional repositories
	Ubuntu – Adding PPAs

	How it works…

	Roundup – security, updating, and package management

	Chapter 7: Monitoring and Logging
	Introduction
	Technical requirements
	Reading local logs
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using journalctl on systemd systems
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Centralizing logging
	Getting ready
	How to do it…
	Remote logging with rsyslog – UDP example
	Remote logging with rsyslog – TCP example
	Remote logging with journald

	How it works…
	There's more…

	Local resource measuring tools
	Getting ready
	How to do it…
	top
	free
	htop
	NetData

	How it works…
	There's more…

	Local monitoring tools
	Getting ready
	How to do it…
	atop
	sar
	vmstat

	How it works…

	Remote monitoring tools
	Getting ready
	How to do it…
	Nagios
	Icinga2

	How it works…
	There's more…
	See also

	Centralizing logging with the Elastic Stack
	Getting ready
	How to do it…
	centos2
	debian1 and debian2
	Kibana

	How it works…
	There's more…

	Roundup – Monitoring and Logging

	Chapter 8: Permissions, SELinux, and AppArmor
	Introduction
	Technical requirements
	Linux file permissions
	Getting ready
	How to do it…
	How it works…
	exampledir
	examplefile

	There's more…
	Root access to directories and files
	Other execute characters

	Modifying file permissions
	Getting ready
	How to do it…
	chown
	chmod
	chattr

	How it works…
	chown
	chmod
	chattr

	There's more…
	Avoiding octal notation (if you hate it) in chmod
	Hierarchical permissions

	See also

	Technical requirements
	Users and groups
	Getting ready
	How to do it…
	whoami
	Users on a system
	Groups on a system
	Daemons using users

	How it works…
	There's more…

	AppArmor and modification
	Getting ready
	How to do it…
	How it works…
	There's more…

	SELinux and modification
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Checking SELinux is running, and the importance of keeping it running
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Resetting SELinux permissions
	Getting ready
	How to do it…
	How it works…
	There's more…

	Roundup – permissions, SELinux, and AppArmor

	Chapter 9: Containers and Virtualization
	Introduction
	Technical requirements
	What is a container?
	Getting ready
	How to do it…
	How it works…
	cgroups (Linux control groups)
	namespaces
	The breakdown of our creation

	There's more…
	The LXD daemon

	See also

	Installing Docker
	Getting ready
	How to do it…
	How it works…
	There's more…
	Slightly more

	See also

	Running your first Docker container
	Getting ready
	How to do it…
	How it works…
	Creating a container
	Listing our container
	Executing commands in our container
	Stopping our container

	Debugging a container
	Getting ready
	How to do it…
	How it works…
	There's more…

	Searching for containers (and security)
	Getting ready
	How to do it…
	How it works…
	There's more…

	What is virtualization?
	Getting ready
	How to do it…
	How it works…
	There's more…

	Starting a QEMU machine with our VM
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using virsh and virt-install
	Getting ready
	How to do it…
	virt-install
	virsh

	How it works…
	There's more…

	Comparing the benefits of local installs, containers, and VMs
	Getting ready
	How to do it…
	Local Nginx install
	Docker Nginx install
	VM Nginx install

	How it works…

	Brief comparison of virtualization options (VMware, proxmox, and more)
	Getting ready
	How to do it…
	VMware ESXi
	Proxmox Virtual Environment
	OpenStack

	How it works…

	Roundup – containers and virtualization

	Chapter 10: Git, Configuration Management, and Infrastructure as Code
	Introduction
	Technical requirements
	What is Git?
	Getting ready
	How to do it…
	Cloning
	Exploring and making changes

	How it works…
	There's more…

	Setting up a Git server
	Getting ready
	How to do it…
	How it works…
	There's more…

	Committing to our Git repository
	Getting ready
	How to do it…
	How it works…
	Matching versus simple

	Branching our Git repository and committing changes
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Installing Ansible
	Getting ready
	How to do it…
	How it works…
	There's more…
	The raw module
	The shell and command modules

	See also

	Using Ansible to install Java from a role
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Storing our Ansible configuration in Git
	Getting ready
	How to do it…
	How it works…

	Exploring options for IaC
	Getting ready
	How to do it…
	Terraform
	Packer

	How it works…
	There's more…
	See also

	Roundup – Git, Configuration Management, and Infrastructure as Code

	Chapter 11: Web Servers, Databases, and Mail Servers
	Introduction
	Technical requirements
	Installing and understanding a web server
	Getting ready
	How to do it…
	Installing httpd (Apache) on CentOS
	Installing Nginx on Debian

	How it works…
	There's more…

	Basic Apache configuration
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Basic Nginx configuration
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	SSL, TLS, and LetsEncrypt
	Getting ready
	How to do it…
	How it works…
	There's more…
	Let's Encrypt
	Work environment certificates

	See also

	Basic MySQL or MariaDB Installation
	Getting ready
	How to do it…
	Listing, creating, and selecting databases and tables

	How it works…
	There's more…
	See also

	Basic PostgreSQL installation
	Getting ready
	How to do it…
	Listing, creating, and selecting databases and tables

	How it works…

	Local MTA usage and configuration (Postfix)
	Getting ready
	How to do it…
	main.cf
	/etc/aliases

	How it works…
	There's more…
	See also

	Local MTA usage and configuration (Exim)
	Getting ready
	How to do it…
	How it works…
	There's more…

	NoSQL documents (MongoDB example)
	Getting ready
	How to do it…
	How it works…
	There's more…

	NoSQL KV (Redis example)
	Getting ready
	How to do it…
	How it works…

	Messaging brokers and queues (RabbitMQ example)
	Getting ready
	How to do it…
	How it works…

	Roundup – web servers, databases, and mail servers
	Super personal preference time!

	Chapter 12: Troubleshooting and Workplace Diplomacy
	Introduction
	Technical requirements
	What is troubleshooting?
	How to do it…

	Isolating the real issue
	Getting ready
	How to do it…

	Giving estimates and deciding on next steps
	Getting ready
	How to do it…
	There's more…

	Using ss, iftop, tcpdump, and others for network issues
	Getting ready
	How to do it…
	Ping
	ss
	iftop
	tcpdump

	Using cURL, wget, and OpenSSL for remote web issues
	Getting ready
	How to do it…
	cURL
	Wget
	OpenSSL

	Using iotop, top, and vmstat for local resource issues
	Getting ready
	How to do it…
	iotop
	top
	vmstat

	Using ps, lsof, Strace, and /proc for service issues
	Getting ready
	How to do it…
	ps
	lsof
	Strace
	/proc

	Making a copy of problems for later debugging
	Getting ready
	How to do it…

	Temporary solutions and when to invoke them
	How to do it…

	Handling irate developers
	How to do it…

	Handling irate managers
	How to do it…

	Handling irate business owners
	How to do it…

	Roundup - Troubleshooting and workplace diplomacy
	Don't trust time
	Don't overlook the simple
	On "cloud" deployments
	Learn from my mistakes

	Chapter 13: BSDs, Solaris, Windows, IaaS and PaaS, and DevOps
	Introduction
	Determining the type of system you're on
	How to do it…
	uname
	The filesystem check

	How it works…
	There's more…

	Understanding how the BSDs differ
	The differences
	FreeBSD
	OpenBSD

	Understanding how Solaris and illumos differ
	The differences
	Oracle Solaris
	illumos

	Understanding how Windows differs
	The differences

	IaaS (Infrastructure as a Service)
	IaaS providers and features

	PaaS (Platform as a Service)
	PaaS providers and features

	The Ops versus DevOps Wars
	More of a skirmish, really

	Roundup – BSDs, Solaris, Windows, IaaS and PaaS, DevOps

	Other Books You May Enjoy
	Index

