Mastering
Bash

Automate daily tasks with Bash

Mastering Bash

Automate daily tasks with Bash

Giorgio Zarrelli

Packt

BIRMINGHAM - MUMBAI

Mastering Bash

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017

Production reference: 1190617

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78439-687-9

www . packtpub.com

http://www.packtpub.com

Author
Giorgio Zarrelli

Reviewer
Sebastian F. Colomar

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Rahul Nair

Content Development Editor
Abhishek Jadhav

Technical Editor
Aditya Khadye

Copy Editors
Dipti Mankame
Yesha Gangani

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Kirk D'Penha

Credits

Production Coordinator

Melwyn Dsa

About the Author

Giorgio Zarrelli is a passionate GNU/Linux system administrator and Debian user, but has
worked over the years with Windows, Mac, and OpenBSD, writing scripts, programming,
installing and configuring services--whatever is required from an IT guy. He started
tinkering seriously with servers back in his university days, when he took part in the
Computational Philosophy Laboratory and was introduced to the Prolog language. As a
young guy, he had fun being paid for playing games and write about them in video game
magazines. Then he grew up and worked as an IT journalist and Nagios architect, and
recently moved over to the threat intelligence field, where a lot of interesting stuff is
happening nowadays.

Over the years, he has worked for start-ups and well-established companies, among them
In3 incubator and Onebip as a database and systems administrator, IBM as QRadar support,
and Anomali as CSO, trying to find the best ways to help companies make the best out of
IT.

Giorgio has written several books in Italian on different topics related to IT, from Windows
security to Linux system administration, covering MySQL DB administration and Bash
scripting.

At last, some acknowledgments since we cannot do much without the help of the people
who make our lives better. Firstly, Ilaria, who had to go through all the weekends and the
mornings I spent writing instead of strolling downtown. Then, mum and dad and my
brother, Maurizio. Being Italian, my mum would kill me if I did not acknowledge her--and,
by the way, they are such an important part of my life. Let’s keep it short, since I cannot
thank all the people who enrich my life and have put some flourishes into this book. So let
me thank my bosses at Anomali, Gabe and Mitul, for supporting me and letting me use a
Mac (I do whatever needed to write a book, even if it is crazy) when my laptop broke and
the replacement was stuck somewhere around the globe. Thanks to my editor, Abhishek, for
being supportive, professional, and patient during the writing of this book. Finally, thank
you, dear reader, for having a look at this book--sometimes IT can be boring; 1've tried to
make it fun.

About the Reviewer

Sebastian F. Colomar is a GNU/Linux system engineer specializing in the scripting,
installation, configuration, and maintenance of Linux servers for better security and
performance.

He is currently an infrastructure architect at Hanscan, having been a consultant for scripting
and Linux administration for many companies, such as IBM, Indra, Thales, Accelya,
Accenture, AXA, Cetelem, RTVCM, EMT, and ESA.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1784396877.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877
https://www.amazon.com/dp/1784396877

Table of Contents

Preface 1
Chapter 1: Let's Start Programming 8
1/0O redirection 12
Messing around with stdin, stdout, and stderr 17
Time for the interpreter: the sha-bang 20
Calling your script 22
Something went wrong, let's trace it 28
Variables 31
Assigning a variable 32
Keep the variable name safe 33
Variables with limited scope 34
Environment variables 36
Variable expansion 44
Pattern matching against variables 49
Special variables 54
Summary 59
Chapter 2: Operators 60
Arithmetic operators 60
The + operator 61
The - operator 62
The * operator 62
The / operator 62
The % operator 62
The ** operator 63
Assignment operators 63
The += operator 63
The -= operator 64
The *= operator 64
The /= operator 65
The %= operator 65
The ++ or -- operators 66
Bitwise operators 67
Left shift (<>) 69

Bitwise AND (&) 70

Bitwise OR (|) 71
Bitwise XOR (") 71
Bitwise NOT (~) 71
Logical operators 73
Logical NOT (1) 73
Logical AND (&&) 74
Logical OR (||) 75
Comma operator (,) 76
Operators evaluation order and precedence in decreasing relevance 77
Exit codes 77
Exiting a script 80
Summary 83
Chapter 3: Testing 84
What if...else 84
Test command recap 92
Testing files 93
Testing integers 111
Testing strings 118
More on tests 124
Summary 126
Chapter 4: Quoting and Escaping 127
Special characters 128
The hash character (#) 128
The semicolon character (;) 129
The double semicolon character (;;) 130
The case terminator (;;&) and (;&)) 131
The dot character (.) 131
The double quotes ("..") 137
The single quotes ('...") 137
The comma character (,) 137
The ,, and , () case modificators 138
The M and * () case modificators 138
The backslash (\) 140
The forward slash (/) 140
140
The colon character (:) 140

The exclamation (!)
Keywords

141
141

[ii]

The asterisk (*)

The double asterisk (**)
Test operators (?)

The substitution ($)

The parameter substitution (${})
The quoted string expansion ($'...")

The exit status ($7?)
The process ID ($$)

Grouping the command (command1 ; command2 ; commandn)

Braces ({})

The full path ({} \;)

Expression ([])

Expression ([[]])

The array index ([])

Characters range ([])

Integer expansion ($]...])

Integer expansion (((..)))

> &>, >&, >>, < and <>
The here document (<)

The pipe character (])

The force redirection (>|)

The logical OR (]])

&

Logical AND (&&)

The dash character (-)

The double dash (--)

Operator =

Operator +

The modulo operator (%)

Operator ~

Operator ~+

Operator ~-

Operator ~=

Operator *

The control characters (* and)

Quoting and escaping
The backslash (\)
Double quotes (")
Single quotes (')

[iii]

142
144
144
146
147
147
148
148
148
151
151
151
152
152
152
153
153

153
155

155
156
157
157
158
158
159
159
160
160
160
160
161
161
161
161
163
163
164
165

Summary 166

Chapter 5: Menus, Arrays, and Functions 167
The case statement 167
Arrays 183
Functions 198
Summary 206

Chapter 6: Iterations 207
The for loop 207
Let's do something while, until... 212
Exiting the loop with break and continue 214
Time to give our client a menu 216
CLlI, passing the arguments to the command line 221
Summary 233

Chapter 7: Plug into the Real World 235
What is Nagios? 235
Active and passive checks 236

Active checks 236
Passive checks 236
Returning code and thresholds 239
Command and service definitions 241
Our first Nagios plugin 259
Summary 283

Chapter 8: We Want to Chat 284
The Slack messaging service 284
Slack WebHooks 287
What is a JSON? 290
Do you like cURLing? 291
Formatting our messages 294
Message attachments 303
Our wee chatty script for Slack 307
Summary 323

Chapter 9: Subshells, Signals, and Job Controls 324
What is a subshell? 325
Background processes 325
Signals 326
Job controls 328

Subshells and parallel processing 332

[iv]

Summary 339

Chapter 10: Let's Make a Process Chat 340
Pipes 340
Redirection to a file 343
The command substitution 344
The process substitution 345
Environment variables 347
Coprocesses 349
Idev/tcp and /dev/udp 352
Netcat 354
Summary 362

Chapter 11: Living as a Daemon 363
What is a daemon? 363
nohup and & 364

nohup 368
disown 370
Double fork and setsid 371
Becoming a daemon 374
Trapping a daemon 374
Going dark with the daemon 380
Summary 384

Chapter 12: Remote Connections over SSH 385
What is SSH? 385
Configuration files 388
The sshd_config file 392
ssh_config 398
Passwordless connections 405

Configuring the server 405

Preparing the remote account 412

Configuring the client 414
Proxies and tunnels 419
Summary 424

Chapter 13: It's Time for a Timer 425
One shot at it 425
The cron scheduler 435

cron 436

Summary 447

[v]

Chapter 14: Time for Safety 448
The restricted shell 448
Restricted shells for OpenSSH 453
Restricted sftp sessions with OpenSSH 459
Summary 477

Index 478

[vil

Preface

Bash is a common tool for everyday tasks that almost every Linux user relies on. Whatever
you want to do, you have to log in to a shell, and most of the time, it will be Bash. This book
aims to explain how to use this tool to get the most out of it, whether it be programming a
plugin or network client or simply explaining why a double dot means what it means, we
will dig a bit deeper than usual to become fully confident with our shell. Starting from the
basics but with a different point of view, we will climb up step by step, focusing on the
programming side of our environment, looking at how to prevent any issues in setting up
our recurring tasks and ensure that everything works fine. Make it once, take your time,
debug, improve, and then fire and forget; as in old Linux saying states, "If it works, why
change it?" So, since we are dealing with sayings, we could stick to the other two
cornerstones: "KISS: Keep it simple, stupid" and "Do only one thing, but do it well." These
are three principles around which Linux revolves: making something, not everything, and
making it simple and reliable and taking your time to make it work well so you do not have
to modify it too often over time. When something is focused and simple, it is easy to
understand, well maintained, and safe. And that is our approach, since Bash is not only a
tool but also the environment we spend a lot of time in, and so understanding it, making
the best use of it, and keeping everything clean and tidy should be our daily aim.

What this book covers

Chapter 1, Let’s Start Programming, is our first brush with the magic of Bash. We will use
basic shell programming bits to write easy code that will forecast all the benefits of more
advanced scripts.

Chapter 2, Operators, is where we perform some simple operations, such as checking
whether something is greater, equal to, or less than something else and how to add,
subtract, and fiddle with numbers. This is the first step toward imposing conditions
on events dealt with in our scripts.

Chapter 3, Testing, explains how checking whether something fits into boundaries and
certain conditions are met or not is fundamental to making our scripts able to react to
events and to decide what to do based on real-time indicators coming from the system or
from other programs.

Preface

Chapter 4, Quoting and Escaping, tells you how the shell has its own reserved words, which
cannot be used without knowing exactly what they do. Furthermore, the variables hold
values that must be preserved while we are working on them. This is where we'll learn to be
cautions about what we are going to write.

Chapter 5, Menus, Arrays, and Functions, explores how to make the script interact with the
user, for example, giving the user the chance to answer some questions and deal with the
options highlighted. This involves the ability to create a command-line interface for the
program itself and a way to store the data in a structure that will make it easy to retrieve
that data. And that is what arrays are all about.

Chapter 6, Iterations, explains how iterations are fundamental to going over data and
extracting and processing them based on some conditions while they last, for instance, or
for some values we use as counters. We will learn how to use while and for loops.

Chapter 7, Plug into the Real World, introduces one of the most famous open source
monitoring system, Nagios, which is all about plugins. You can write complex programs in
any language to perform whichever checks you want on your sites and applications. But
some of the most tricky plugins I have used have been written using Bash, and nothing else.

Chapter 8, We Want to Chat, is about Slack, currently one of the most widely used
messaging systems. Why not write a small fragment of code to send our thoughts over a
Slack channel and, maybe, make a communication plugin out of it, enabling other scripts to
send messages through the messaging system?

Chapter 9, Subshells, Signals, and Job Controls, discusses how sometimes a single process is
not enough. Our script has to do many things at once, using a sort of raw parallelism to get
to the desired outcome. Well, it's time to see what we can spawn inside a shell, how to
control our jobs, and send signals.

Chapter 10, Let’s Make a Process Chat, explores the topic of processes talking to each other,
feeding each other data and sharing the burden of data elaboration. Pipes, redirections,
process substitution, and a bit of netcat--this could open up new scenarios, and we'll see
how.

Chapter 11, Living as a Daemon, explains how sometimes sending a script into the
background is not enough. It will not survive long, but you can use some tricks such as
double forking, setsid, and disowning to make it a bit devilish and survive until process
death. Make it a daemon and let it wait for your orders.

[2]

Preface

Chapter 12, Remote Connections over SSH, tells you how scripts can be run locally, but they
can do much more for you. They can log in remotely over a secure channel and issue
commands on your behalf without you inputting any further instructions. Everything is
stored in a key, which unlocks a whole bunch of new possibilities.

Chapter 13, It's Time for a Timer, discusses how to fully automate routine tasks. We have to
have a method to run our scripts based on some conditions. The most common is based on
time, such as hourly, daily, weekly, or monthly repetitions. Just think about a simple log
rotation triggered on certain conditions, the most common being on a daily schedule.

Chapter 14, Time for Safety, explains how safety is a must in your working environment.
Scripting often means access to remote servers and interacting with them, so learning some
tricks to keep your server more secure will help you prevent intrusions and keep your job
away from unwanted eyes.

What you need for this book

This book assumes a good level of experience with Linux operating systems and an
intermediate knowledge of the Bash shell, and since there will be some chapters dealing
with Nagios monitoring and Slack messaging, basic understanding of networking concepts
is required.

A simple Linux installation is required with really low specifications, as even the Nagios
plugin can be tested without requiring the actual installation of the monitoring system. So,
this is the minimum configuration required:

¢ CPU: single-core
e Memory: 2 GB
e Disk space: 20 GB

For this book, you will need the following software:

¢ Linux operating system: Debian 8
¢ Nagios Core 3.5.1

e OpenSSH 6.7p1

e rssh2.3.4

Internet connectivity is required to install the necessary service packages and to try out
some of the examples.

[3]

Preface

Who this book is for

This book is intended for advanced users who are engaged in complex daily tasks. Starting
from the basics, this book aims to serve as a reference manual where one can find handy
solutions and advice to make their scripts flexible and powerful.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "What is
interesting here is that the value of real is slightly different between the two commands."

A block of code is set as follows:

#!/bin/bash

set -x

echo "The total disk allocation for this system is: "
echo —e "\n"

df -h

echo -e "\n"

set +x

df -h | grep /dm-0 | awk '{print "Space left on root partition: " $4}'

Any command-line input or output is written as follows:

gzarrelli:~$ time echo $0
/bin/bash

real Om0.000s

user Om0.000s

sys O0m0.000s

gzarrelli:~$

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

[4]

Preface

8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSk »N =

[5]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Mastering-Bash. We also have other code bundles from our rich catalog of books
and videos available at https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/down
loads/MasteringBash_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/support and enter the name of the book in the search field. The required information
will appear under the Errata section.

[6]

https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/Mastering-Bash
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringBash_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[7]

Let's Start Programming

Mastering Bash is the art of taking advantage of your environment to make the best out of
it. It is not just a matter of dealing with boring routine tasks that can be automated. It is
crafting your working space so that it becomes more efficient for your goals. Thus, even
though Bash scripting is not as expressive as other more complex languages, such as Python
or JavaScript, it is simple enough to be grabbed in a short time, and so flexible that it will
suffice for most of your everyday tasks, even the trickiest ones.

But is Bash so plain and easy? Let's have a look at our first lines in Bash. Let's begin with
something easy:

gzarrelli:~$ time echo $0
/bin/bash

real Om0.000s

user Om0.000s

sys 0m0.000s

gzarrelli:~$

Now, let us do it again in a slightly different way:

gzarrelli:~$ time /bin/echo $0/bin/bash
real Om0.001ls

user Om0.000s

sys O0m0.000s

What is interesting here is that the value of real is slightly different between the two
commands. OK, but why? Let's dig a bit further with the following commands:

gzarrelli:~$ type echo
echo is a shell builtin
gzarrelli:~$ type /bin/echo
/bin/echo is /bin/echo

Let’s Start Programming

Interestingly enough, the first seems to be a shell builtin, the second simply a system
program, an external utility, and it is here that lies the difference. builtin is a command
that is built into the shell, the opposite of a system program, which is invoked by the shell.
An internal command, the opposite to an external command.

To understand the difference between internal and external shell commands that lead to
such different timing, we have to understand how an external program is invoked by the
shell. When an external program is to be executed, Bash creates a copy of itself with the
same environment of the parent shell, giving birth to a new process with a different process
ID number. So to speak, we just saw how forking is carried out. Inside the new address
space, a system exec is called to load the new process data.

For the builtin commands, it is a different story, Bash executes them without any forks,
and this leads to a couple of the following interesting outcomes:

e The builtin execution is faster because there are no copies and no executables
invoked. One side note is that this advantage is more evident with short-running
programs because the overhead is before any executable is called: once the
external program is invoked, the difference in the pure execution time between
the builtin command and the program is negligible.

¢ Being internal to Bash, the builtin commands can affect its internal state, and
this is not possible with the external program. Let's take into account a classic
example using builtincd. If cd were an external program, once invoked from
shell as:

cd /this_dir

e The first operation would be our shell forking a process for cd, and this
latter would change the current directory for its own process, not for
the one we are inside and that was forked to give birth to the cd
process. The parent shell would remain unaffected. So, we would not
go anywhere.

Curious about which bulitins are available? You have some options, to either execute the
following builtin:

compgen -b
Or this other builtin:

enable —a | awk '{ print $2 }'

[9]

Let’s Start Programming

To better understand why there is a difference between the execution of a builtin and an
external program, we must see what happens when we invoke a command.

e First, remember that the shell works from left to right and takes all the variable
assignments and redirections and saves them in order to process later.

e If nothing else is left, the shell takes the first word from the command line as the
name of the command itself, while all the rest is considered as its arguments.

¢ The next step is dealing with the required input and output redirection.

e Finally, before being assigned to a variable, all the text following the sign = is
subject to tilde expansion, parameter expansion, command substitution,
arithmetic expansion, and quote removal.

e If no command name comes out as a result of the last operation, the variable can
then affect the environment. If an assignment fails, an error is raised and the
command invoked exits with a non-zero status.

¢ If no command name is the outcome of the operation seen before, all the
redirections are applied, but differently from variables, they do not affect the
current environment. Again, if any error occurs, there is a non-zero status exit.

Once the preceding operations are performed, the command is then executed and exited
with a status, depending on whether one or more expansions contain command
substitutions. The overall exit status will be the one from the last command substitution,
and if no command substitution were performed, the exit status will be zero.

At this point, we are finally left with a command name and some optional arguments. It is
at this point the roads of builtins and external programs divert.

o At first, the shell looks at the command name, and if there are no slashes, it
searches for its location

o If there are no slashes, the shell tries to see if there is a function with that name
and executes it

e If no functions are found, the shell tries to hit builtin, and if there is anyone
with that name, it is executed

OK, now if there is any builtin, it already got invoked. What about an external program?

¢ Our Bash goes on, and if it finds no builtins by that name on the command
line, there are three chances:

e The full path of the command to execute is already contained into its
internal hash table, which is a structure used to speed up the search

[10]

Let’s Start Programming

e If the full path is not in the hash, the shell looks for it into the content of
the environmental PATH variable, and if it finds it, it is added to the
hash table

¢ The full path is not available in the PATH variable, so the shell returns
with an exit status of 127

Hash can even be invoked as follows:

gzarrelli:~$ hash

hits command

1 /usr/bin/which

1 /usr/bin/1ld

4 /bin/sh
/bin/ps
/usr/bin/who
/usr/bin/man
/bin/ls
/usr/bin/top

PR RPRRPRRN

The second column will then tell you not only which commands have been hashed, but also
how many times each of them has been executed during the current session (hits).

Let's say that the search found the full path to the command we want to execute; now we
have a full path, and we are in the same situation as if the Bash found one or more slashes
into the command name. In either case, the shell thinks that it has a good path to invoke a
command and executes the latter in a forked environment.

This is when we are lucky, but it can happen that the file invoked is not an executable, and
in this case, given that our path does not point to a directory instead of a file, the Bash
makes an educated guess and thinks to run a shell script. In this case, the script is executed
in a subshell that is at all a new environment, which inherits the content of the hash table of
the parent shell.

Before doing anything else, the shell looks at the first line of the script for an optional sha-
bang (we will see later what this is) - after the sha-bang, there is the path to the interpreter
used to manage the script and some optional arguments.

At this point, and only at this point, your external command, if it is a script, is executed. If it
is an executable, it is invoked a bit before, but way after any builtin.

[11]

Let’s Start Programming

During these first paragraphs, we saw some commands and concepts that should sound
familiar to you. The next paragraphs of this chapter will quickly deal with some basic
elements of Bash, such as variables, expansions, and redirections. If you already know
them, you will be able to use the next pages as a reference while working on your scripts. If,
on the contrary, you are not so familiar with them, have a look at what comes next because
all you will read will be fundamental in understanding what you can do in and with the
shell.

/O redirection

As we saw in the previous pages, redirection is one of the last operations undertaken by
Bash to parse and prepare the command line that will lead to the execution of a command.
But what is a redirection? You can easily guess from your everyday experience. It means
taking a stream that goes from one point to another and making it go somewhere else, like
changing the flow of a river and making it go somewhere else. In Linux and Unix, it is quite
the same, just keep in mind the following two principles:

e In Unix, each process, except for daemons, is supposed to be connected to a
standard input, standard output, and standard error device

e Every device in Unix is represented by a file

You can also think of these devices as streams:

e Standard input, named stdin, is the intaking stream from which the process
receives input data

e Standard output, named stdout, is the outbound stream where the process
writes its output data

e Standard error, named stderr, is the stream where the process writes its error
messages

These streams are also identified by a standard POSIX file descriptor, which is an integer
used by the kernel as a handler to refer to them, as you can see in the following table:

Device | Mode | File descriptor

stdin [read |0

stdout [write |1

stderr | write |2

[12]

Let’s Start Programming

So, tinkering with the file descriptors for the three main streams means that we can redirect
the flows between stdin and stdout, but also stderr, from one process to the other. So,
we can make different processes communicate with each other, and this is actually a form of
IPC, inter-process communication, which we will look at it in more detail later in this book.

How do we redirect the Input/Output (I/O), from one process to another? We can get to
this goal making use of some special characters:

>

Let's start stating that the default output of a process, usually, is the stdout. Whatever it
returns is returned on the stdout which, again usually, is the monitor or the terminal.
Using the > character, we can divert this flow and make it go to a file. If the file does not
exist, it is created, and if it exists, it is flattened and its content is overwritten with the
output stream of the process.

A simple example will clarify how the redirection to a file works:

gzarrelli:~$ echo "This is some content"
This is some content

We used the command echo to print a message on the stdout, and so we see the message
written, in our case, to the text terminal that is usually connected to the shell:

gzarrelli:~$ 1ls -lah

total 0

drwxr—-xr-x 2 zarrelli gzarrelli 68B 20 Jan 07:43 .
drwxr-xr-x+ 47 zarrelli gzarrelli 1.6K 20 Jan 07:43 ..

There is nothing on the filesystem, so the output went straight to the terminal, but the
underlying directory was not affected. Now, time for a redirection:

gzarrelli:~$ echo "This is some content" > output_file.txt

Well, nothing to the screen; no output at all:

gzarrelli:~$ 1ls -lah

total 8

drwxr-xr—x 3 gzarrelli gzarrelli 102B 20 Jan 07:44
drwxr-xr—-x+ 47 gzarrelli gzarrelli 1.6K 20 Jan 07:43
-rw-r——-r—-— 1 gzarrelli gzarrelli 21B 20 Jan 07:44
output_file.txt

[13]

Let’s Start Programming

Actually, as you can see, the output did not vanish; it was simply redirected to a file on the
current directory which got created and filled in:

gzarrelli:~$ cat output_file.txt
This is some content

Here we have something interesting. The cat command takes the content of the
output_file.txt and sends it on the stdout . What we can see is that the output from
the former command was redirected from the terminal and written to a file.

>>

This double mark answers a requirement we often face: How can we add more content coming
from a process to a file without overwriting anything? Using this double character, which means
no file is already in place, create a new one; if it already exists, just append the new data.
Let's take the previous file and add some content to it:

gzarrelli:~$ echo "This is some other content" >> output_file.txt
gzarrelli:~$ cat output_file.txt

This is some content

This is some other content

Bingo, the file was not overwritten and the new content from the echo command was
added to the old. Now, we know how to write to a file, but what about reading from
somewhere else other than the stdin?

<

If the text terminal is the stdin, the keyboard is the standard input for a process, where it
expects some data from. Again, we can divert the flow or data reading and get the process
read from a file. For our example, we start creating a file containing a set of unordered
numbers:

gzarrelli:~$ echo —-e '5\n9\n4\nl\n0\né6\n2' > to_sort

And let us verify its content, as follows:

gzarrelli:~$ cat to_sort

Noors~dsuvWnm

[14]

Let’s Start Programming

Now we can have the sort command read this file into its stdin, as follows:

gzarrelli:~$ sort < to_sort

oo DNPEFRO

Nice, our numbers are now in sequence, but we can do something more interesting:

gzarrelli:~$ sort < to_sort > sorted

What did we do? We simply gave the file to_sort to the command sort into its standard
input, and at the same time, we concatenated a second redirection so that the output of
sort is written into the file sorted:

gzarrelli:~$ cat sorted

WOk DNPEFRO

So, we can concatenate multiple redirections and have some interesting results, but we can
do something even trickier, that is, chaining together inputs and outputs, not on files but on
processes, as we will see now.

The pipe character does exactly what its name suggests, pipes the stream; could be the
stdout or stderr, from one process to another, creating a simple interprocess
communication facility:

gzarrelli:~$

ps aux | awk '{print $2, $3, $4}' | grep -v [A-Z] | sort -r -k 2
-g | head —n 3

95 0.0 0.0

94 0.0 0.0

93 0.0 0.0

[15]

Let’s Start Programming

In this example, we had a bit of fun, first getting a list of processes, then piping the output
to the awk utility, which printed only the first, eleventh, and twelfth fields of the output of
the first command, giving us the process ID, CPU percentage, and memory percentage
columns. Then, we got rid of the heading PID %CPU $MEM, piping the awk output to the
input of grep, which performed a reverse pattern matching on any strings containing a
character, not a number. In the next stage, we piped the output to the sort command,
which reverse-ordered the data based on the values in the second column. Finally, we
wanted only the three lines, and so we got the PID of the first three heaviest processes
relying on CPU occupation.

Redirection can also be used for some kind of fun or useful stuff, as you can see in the
following screenshot:

13:11:57-root:/tmp$ who

gzarrelli console Jan 20 06:49

gzarrelli ttys@@@ Jan 20 06:49

gzarrelli ttys@@92 Jan 20 06:49

gzarrelli ttys@03 Jan 20 13:10

13:12:00-root: /tmp$ echo "Hello, how are you doing?" > /dev/ttys003
13:12:03-root:/tmp$ Fine, thanks

p13:11:53-gzarrelli:~$ Hello, how are you doing?

p13:12:06-gzarrelli:~$ echo "Fine, thanks" > /dev/ttys@02
$13:12:08-gzarrelli:~$ ||

[16]

Let’s Start Programming

As you can see, there are two users on the same machine on different terminals, and
remember that each user has to be connected to a terminal. To be able to write to any user's
terminal, you must be root or, as in this example, the same user on two different terminals.
With the who command we can identify which terminal (ttys) the user is connected to, also
known as reads from, and we simply redirect the output from an echo command to his
terminal. Because its session is connected to the terminal, he will read what we send to the
stdin of his terminal device (hence, /dev/ttysxxx).

Everything in Unix is represented by a file, be it a device, a terminal, or anything we need
access to. We also have some special files, such as /dev/null, which is a sinkhole -
whatever you send to it gets lost:

gzarrelli:~$ echo "Hello" > /dev/null
gzarrelli:~$

And have a look at the following example too:

root:~$ 1ls
output_file.txtsortedto_sort

root:~$ mv output_file.txt /dev/null
root:~$ 1ls

to_sort

Great, there is enough to have fun, but it is just the beginning. There is a whole lot more to
do with the file descriptors.

Messing around with stdin, stdout, and
stderr

Well, if we tinker a little bit with the file descriptors and special characters we can have
some nice, really nice, outcomes; let's see what we can do.

e x < filename: This opens a file in read mode and assigns the descriptor named
a, whose value falls between 3 and 9. We can choose any name by the means of
which we can easily access the file content through the stdin.

e 1 > filename: This redirects the standard output to filename. If it does not
exist, it gets created; if it exists, the pre-existing data is overwritten.

e 1 >> filename: This redirects the standard output to filename. If it does not
exist, it is created; otherwise, the contents get appended to the pre-existing data.

[17]

Let’s Start Programming

e 2 > filename: This redirects the standard error to filename. If it does not exist,
it gets created; if it exists, the pre-existing data is overwritten.

e 2 >> filename: This redirects the standard error to filename. If it does not exist,
it is created; otherwise, the contents get appended to the pre-existing data.

e &> filename: This redirects both the stdout and the stderr to filename. This
redirects the standard error to filename. If it does not exist, it gets created; if it
exists, the pre-existing data is overwritten.

e 2>51: This redirects the stderr to the stdout. If you use this with a program, its
error messages will be redirected to the stdout, that is, usually, the monitor.

e y>&x: This redirects the file descriptor for y to x so that the output from the file
pointed by descriptor y will be redirected to the file pointed by descriptor x.

e >sx: This redirects the file descriptor 1 that is associated with the stdout to the
file pointed by the descriptor x, so whatever hits the standard output will be
written in the file pointed by x.

e x<> filename: This opens a file in read/write mode and assigns the descriptor x
to it. If the file does not exist, it is created, and if the descriptor is omitted, it
defaults to 0, the stdin.

e x<&-: This closes the file opened in read mode and associated with the descriptor
X.

e 0<&— or <&-:This closes the file opened in read mode and associated with the
descriptor 0, the stdin , which is then closed.

e x>g&—: This closes the file opened in write mode and associated with the
descriptor x.

e 1>5- or >&-: This closes the file opened in write mode and associated with the
descriptor 1, the stdout, which is then closed.

If you want to see which file descriptors are associated with a process, you can explore the
/proc directory and point to the following:

/proc/pid/fd

Under that path, change p1D with the ID of the process you want to explore; you will find
all the file descriptors associated with it, as in the following example:

gzarrelli:~$ 1ls -lah /proc/15820/fd

total 0

dr-x—————— 2 postgres postgres 0 Jan 20 17:59 .

dr-xr-xr-x 9 postgres postgres 0 Jan 20 09:59 ..

lr—-x—————o 1 postgres postgres 64 Jan 20 17:59 0 -> /dev/null
(deleted)

[18]

Let’s Start Programming

postgres 64 Jan 20 17:59

/var/log/postgresql/postgresql-9.4-main.log

postgres 64 Jan 20 17:59
4/main/base/16385/16587
postgres 64 Jan 20 17:59
postgres 64 Jan 20 17:59
postgres 64 Jan 20 17:59
4/main/base/16385/16591
postgres 64 Jan 20 17:59
4/main/base/16385/16593
postgres 64 Jan 20 17:59
4/main/base/16385/16634
postgres 64 Jan 20 17:59
4/main/base/16385/16399
postgres 64 Jan 20 17:59
4/main/base/16385/16406
postgres 64 Jan 20 17:59
4/main/base/16385/16408
postgres 64 Jan 20 17:59

/var/log/postgresql/postgresql-9.4-main.log

l-wx————- 1 postgres
lrwx—————-— 1 postgres
/var/lib/postgresql/9.
lrwx—————-— 1 postgres
lrwx————-— 1 postgres
lrwx————-— 1 postgres
/var/lib/postgresql/9.
lrwx—————-— 1 postgres
/var/lib/postgresql/9.
lrwx————-— 1 postgres
/var/lib/postgresql/9.
lrwx—————-— 1 postgres
/var/lib/postgresql/9.
lrwx—————-— 1 postgres
/var/lib/postgresql/9.
lrwx—————-— 1 postgres
/var/lib/postgresql/9.
l-wx—————- 1 postgres
lr—x——-——— 1 postgres
l-wx—————-— 1 postgres
(deleted)

l-wx————-— 1 postgres
(deleted)

lr—x——-——- 1 postgres
l-wx—————- 1 postgres
lrwx—————-— 1 postgres

/var/lib/postgresql/9.

lr—x——-——— 1 postgres

64
64

20
20

17:
17:

59
59

Jan
Jan

postgres
postgres

postgres 64 Jan 20 17:59

postgres 64 Jan 20 17:59

postgres 64 Jan 20 17:59
postgres 64 Jan 20 17:59
4/main/base/16385/11943
postgres 64 Jan 20 17:59

Nice, isn't it? So, let us do something that is absolute fun:

1

10

11

12

13

14

15

16

17

18

w

<N o

->

->
->

->

->

->

->

->

socket:[13135]
socket:[1502010]

/dev/urandom
/dev/null

/dev/null
pipe:[1502013]

pipe:[1502013]

pipe: [13125]

First, let's open a socket in read/write mode to the web server of a virtual machine created
for this book and assign the descriptor 9:

gzarrelli:~$ exec 9<> /dev/tcp/172.16.210.128/80

Then, let us write something to it; nothing complex:

exit 1

gzarrelli:~$ printf 'GET /index2.html HTTP/1.1\nHost:

172.16.210.128\nConnection:

close\n\n' >&9

We just requested a simple HTML file created for this example.

[19]

Let’s Start Programming

And now let us read the file descriptor 9:

gzarrelli:~$ cat <&9
HTTP/1.1 200 OK
Date: Sat, 21 Jan 2017 17:57:33 GMT
Server: Apache/2.4.10 (Debian)
Last-Modified: Sat, 21 Jan 2017 17:57:12 GMT
ETag: "f3-5469e7ef9%e35f"
Accept—-Ranges: bytes
Content-Length: 243
Vary: Accept-Encoding
Connection: close
Content-Type: text/html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0org/TR/html4/strict.dtd">
<HTML>
<HEAD>
<TITLE>This is a test file</TITLE>
</HEAD>
<BODY>
<P>And we grabbed it through our descriptor!
</BODY>
</HTML>

That's it! We connected the file descriptor to a remote server through a socket, we could
write to it and read the response, redirecting the streams over the network.

For dealing just with the command line, we have done a lot so far, but if we want to go
further, we have to see how to script all these commands and make the most out of them. It
is time for our first script!

Time for the interpreter: the sha-bang

When the game gets tougher, a few concatenations on the command line cannot be enough
to perform the tasks we are meant to accomplish. Too many bits on single lines are too
messy, and we lack clarity, so better to store our commands or builtins in a file and have
it executed.

When a script is executed, the system loader parses the first line looking for what is named
the sha-bang or shebang, a sequence of characters.

#!

[20]

Let’s Start Programming

This will force the loader to treat the following characters as a path to the interpreter and its
optional arguments to be used to further parse the script, which will then be passed as
another argument to the interpreter itself. So, at the end, the interpreter will parse the script
and, this time, we will ignore the sha-bang, since its first character is a hash, usually
indicating a comment inside a script and comments do not get executed. To go a little
further, the sha-bang is what we call a 2-bit magic number, a constant sequence of
numbers or text values used in Unix to identify file or protocol types. So, 0x23 0x21 is
actually the ASCII representation of #!.

So, let's make a little experiment and create a tiny one line script:

gzarrelli:~$ echo "echo \"This should go under the sha-bang\"" > test.sh

Just one line. Let's have a look:

gzarrelli:~$ cat test.sh
echo "This should go under the sha-bang"

Nice, everything is as we expected. Has Linux something to say about our script? Let's ask:

gzarrelli:~$ file test.sh
test.sh: ASCII text

Well, the file utility says that it is a plain file, and this is a simple text file indeed. Time for a
nice trick:

gzarrelli:~$ sed -i 'ls/~/#!\/bin\/sh\n/' test.sh
Nothing special; we just added a sha-bang pointing to /bin/sh:

gzarrelli:~$ cat test.sh
#!/bin/sh
echo "This should go under the sha-bang"

As expected, the sha-bang is there at the beginning of our file:

gzarrelli:~$ file test.sh
test.sh: POSIX shell script, ASCII text executable

No way, now it is a script! The file utility makes three different tests to identify the type of
file it is dealing with. In order: file system tests, magic number tests, and language tests. In
our case, it identified the magic numbers that represent the sha-bang, and thus a script,
and this is what it told us: it is a script.

[21]

Let’s Start Programming

Now, a couple of final notes before moving on.

* You can omit the sha-bang if your script is not using a shell builtins or shell
internals
e Pay attention to /bin/sh, not everything that looks like an
innocent executable is what it seems:

gzarrelli:~$ 1ls -lah /bin/sh
lrwxrwxrwx 1 root root 4 Nov 8 2014 /bin/sh -> dash

In some systems, /bin/sh is a symbolic link to a different kind of interpreter, and if you are
using some internals or builtins of Bash, your script could have unwanted or unexpected
outcomes.

Calling your script
Well, we have our two-line script; time to see if it really does what we want it to do:

gzarrelli:~$./test.sh
-bash: ./test.sh: Permission denied

No way! It is not executing, and from the error message, it seems related to the file
permissions:

gzarrelli:~$ 1ls -lah test.sh
-rw-r—-—-r—— 1 gzarrelli gzarrelli 41 Jan 21 18:56 test.sh

Interesting. Let us recap what the file permissions are. As you can see, the line describing
the properties of a file starts with a series of letters and lines.

Type | User | Group | Others

- rw— r—— r——

For type, we can have two main values, d - this is actually a directory, or - and means this is
a regular file. Then, we can see what permissions are set for the user owning the file, for the
group owning the file, and for all other users. As you may guess, r stands for permission to
read; w stands for being able to write; x stands for permission to execute; and - means no
right. These are all in the same order, first r, then w, then x. So wherever you see a - instead
of an r, w, or x, it means that particular right is not granted.

[22]

Let’s Start Programming

The same works for directory permission, except that x means you can traverse the
directory; r means that you can enumerate the content of it; w means that you can modify
the attributes of the directory and removes the entries that are eventually in it.

Indicator | File type

- Regular file

b Block file (disk or partition)

c Character file, like the terminal under /dev
d Directory

1 Symbolic link

p Named pipe (FIFO)

s Socket

So, going back to our file, we do not see any execution bit set. Why? Here, a shell builtin
can help us:

gzarrelli:~$ umask
0022

Does it make any sense to you? Well, it should, once we see how the permissions on files
can be represented in numeric form. Think of permissions as bits of metadata pertaining to
a file, one bit for each grant; no grant is 0:

100
010
001

r——
-

—-—x

Now, let's convert from binary to decimal:

Permission | Binary | Decimal

r 100 4
w 010 2
X 001 1

[23]

Let’s Start Programming

Now, just combine the decimal values to obtain the final permission, but remember that you
have to calculate read, write, and execution grants in triplets - one set for the user owning
the file, one for the group, and one for the others.

Back again to our file, we can change its permissions in a couple of ways. Let's say we want
it to be readable, writable, and executable by the user; readable and writable by the group;
and only readable by the others. We can use the command chmod to accomplish this goal:

chmod u+rwx filename
chmod g+wfilename

So, + or - add or subtract the permissions to the file or directory pointed and u, g, w to
define which of the three sets of attributes we are referring to.

But we can speed things up using the numeric values:
User - rwx: 4+42+1 =7

Group — rw: 442 = 6
Other - r = 4

So, the following command should do the trick in one line:
chmod 764 test.sh

Time to verify:

gzarrelli:~$ 1ls -lah test.sh
—-rwxrw—-r—— 1 gzarrelli gzarrelli 41 Jan 21 18:56 test.sh

Here we are. So we just need to see whether our user can execute the file, as the permissions
granted suggest:

gzarrelli:~$./test.sh
This should go under the sha-bang.

Great, it works. Well, the script is not that complex, but served our purposes. But we left
one question behind: Why was the file created with that set of permissions? As a preliminary
explanation, I ran the command umask, and the result was 0022 but did not go further.

[24]

Let’s Start Programming

Count the digits in umask, and those in the numeric modes for chmod. Four against three.
What does that leading digit means? We have to introduce some special permission modes
that enable some interesting features:

e Sticky bit. Think of it as a user right assertion on a file or directory. If a sticky bit
is set on a directory, the files inside it can be deleted or renamed only by the file
owner, the owner of the directory the file is in, or by root. Really useful in a
shared directory to prevent one user from deleting or renaming some other user's
file. The sticky bit is represented by the t letter at the end of the of the list of
permissions or by the octal digit 1 at the beginning. Let's see how it works:

gzarrelli:~$ chmod +t test.sh
gzarrelli:~$ 1ls -lah test.sh
-rwxrw—-r-T 1 gzarrelli gzarrelli 41 Jan 22 09:05 test.sh

e Interestingly, the t is capital, not lower, as we were talking about. Maybe this
sequence of commands will make everything clearer:

gzarrelli:~$ chmod +t test.sh

gzarrelli:~$ 1ls -lah test.sh

—rwxrw—-r—-T 1 gzarrelli gzarrelli 41 Jan 22 09:05 test.sh
gzarrelli:~$ chmod o+x test.sh

gzarrelli:~$ 1ls -lah test.sh

—-rwxrw—-r—t 1 gzarrelli gzarrelli 41 Jan 22 09:05 test.sh

* You probably got it: the t attribute is a capital when, on the file or directory, the
execution bix (x) is not set for the others (0).

¢ And now, back to the origins:

gzarrelli:~$ chmod 0764 test.sh
gzarrelli:~$ 1ls -lah test.sh
—rwxrw-r—— 1 gzarrelli gzarrelli 41 Jan 22 09:05 test.sh

e We used the four-digit notations, and the leading 0 cleared out the 1 which
referred to the sticky bit. Obviously, we could also use chmod -t to accomplish
the same goal. One final note, if sticky bit and GUID are in conflicts, the sticky bit
prevails in granting permissions.

[25]

Let’s Start Programming

Set UID: The Set User ID (SUID upon execution) marks an executable,
so that when it runs, it will do so as the file owner, with his privileges,
and not as the user invoking it. Another tricky use is that, if assigned to
a directory, all the files created or moved to that directory will have the
ownership changed to the owner of the directory and not to the user
actually performing the operation. Visually, it is represented by an s in
the position of the user execution rights. The octal number referring to
itis 4:

gzarrelli:~$ chmod u+s test.sh
gzarrelli:~$ 1ls -lah test.sh
-rwsrw—-r—— 1 gzarrelli gzarrelli 41 Jan 22 09:05 test.sh

Set GID: The SGID (Set Group ID upon execution) marks an
executable, so that when it is run, it does as the user invoking it was in
the group that owns the file. If applied to a directory, every file created
or moved to the directory will have the group set to the group owning
the directory rather than the one the user performing the operation
belongs to. Visually, it is represented by an s in the position of the
group execution rights. The octal number referring to it is 2.

e Let's reset the permissions on our test file:

gzarrelli:~$ chmod 0764 test.sh
gzarrelli:~$ 1ls -lah test.sh
—rwxrw-r—— 1 gzarrelli gzarrelli 41 Jan 22 09:05 test.sh

e Now we apply SGID using the octal digit referring to it:

gzarrelli:~$ chmod 2764 test.sh
gzarrelli:~$ 1ls -lah test.sh
—rwxrwSr—— 1 gzarrelli gzarrelli 41 Jan 22 09:05 test.sh

In this example, the s is capital because we do not have the execution permission granted on
the group; the same applies for SUID.

So, now we can go back again to our umask, and at this point you probably already know
what is the meaning of the four-digit notation is. It is a command that modifies the
permissions on a file creation, denying the permission bits. Taking our default creation

mask for directory:

0777

[26]

Let’s Start Programming

We can think of umask of 0022 as:

0777 -
0022

Do not pay attention to the first 0; it is the sticky bit and simply subtracts from the default
grant mask for a directory, rwx for user, group, and others, the value of the umask. The
remaining value is the current permission mask for file creation. If you are not comfortable
with the numeric notation, you can see the umask values in the familiar rwx notation using;

gzarrelli:~$ umask -S
U=rwx, g=rx, o=rx

For the files, the default mask is 666, so:

0666 -
0022

It is actually a tad more complicated than this, but this rule of thumb will let you calculate
the masks quickly. Let us try to create a new umask. First, let's reset the umask value:

gzarrelli:~$ umask
0000

gzarrelli:~$ umask -S
U=Irwx, g=rwX, O=Srwx

As we can see, nothing gets subtracted:

zarrelli:~$ touch test-file
gzarrelli:~$ mkdir test-dir
gzarrelli:~$ 1ls -lah test-*
-rw-rw-rw— 1 gzarrelli gzarrelli 0 Jan 22 18:01 test-file

test-dir:

total 8.0K

drwxrwxrwx 2 gzarrelli gzarrelli 4.0K Jan 22 18:01
drwxr-xr-x 4 gzarrelli gzarrelli 4.0K Jan 22 18:01

The test file has 666 access rights and the directory 777. This is really way too much:

zarrelli:~$ umask o-rwx,g-w
gzarrelli:~$ umask -S
U=rwx, g=rx, o=

[27]

Let’s Start Programming

gzarrelli:~$ touch 2-test-file
gzarrelli:~$ mkdir 2-test-dir
gzarrelli:~$ 1ls -lah 2-test-*

-rw-r———-—— 1 gzarrelli gzarrelli 0 Jan 22 18:03 2-test-file
2-test-dir:

total 8.0K

drwxr-x——-— 2 gzarrelli gzarrelli 4.0K Jan 22 18:03

drwxr-xr-x 5 gzarrelli gzarrelli 4.0K Jan 22 18:03

As you can see, the permissions are 750 for directories and 640 for files. A bit of math will
help:

0777 -
0750

You would get the same result from the umask command:

gzarrelli:~$ umask
0027

All these settings last as long as you are logged in to the session, so if you want to make
them permanent, just add the umask call with the appropriate argument
to/etc/bash.bashrc, or /etc/profile for a system-wide effect or, for a single user
mask, add it to the .bashrc file inside the user home directory.

Something went wrong, let's trace it

So, we have a new tiny script named disk. sh:

gzarrelli:~$ cat disk.sh

#!/bin/bash

echo "The total disk allocation for this system is: "
echo -e "\n"

df -h
echo -e "\n
df -h | grep /$ | awk '{print "Space left on root partition: " $4}'

Nothing special, a shebang, a couple of echoes on a new line just to have some vertical
spacing, the output of df -h and the same command but parsed by awk to give us a
meaningful message. Let's run it:

zarrelli:~$./disk.sh

[28]

Let’s Start Programming

The total disk allocation for this system is:

Filesystem Size Used Avail Use% Mounted on
/dev/dm-0 19¢ 156G 3.0G 84% /

udev ioM 0 ioM 0% /dev

tmpfs 99M 9.1M 90M 10% /run

tmpfs 248M 80K 248M 1% /dev/shm
tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpfs 248M 0 248M 0% /sys/fs/cgroup
/dev/sdal 236M 33M 191M 15% /boot

tmpfs 50M 12K 50M 1% /run/user/1000
tmpfs 50M 0 50M 0% /run/user/0

Space left on root partition: 3.0G

Nothing too complicated, a bunch of easy commands, which in case of failure print an error
message on the standard output. However, let's think for a moment that we have a more
flexible script, more lines, some variable assignments, loops, and other constructs, and
something goes wrong, but the output does not tell us anything. In this case, be handy to
see a method that is actually running inside our script so that we can see the output of the
commands, the variable assignments, and so forth. In Bash, this is possible; thanks to the
set command associated with the -x argument, which shows all the commands and
arguments in the script printed to the stdout, after the commands have been expanded
and before they are actually invoked. The same behavior can be obtained running a subshell
with the —x argument. Let's see what would happen if it was used with our script:

gzarrelli:~$ bash -x disk.sh

+ echo 'The total disk allocation for this system is: '
The total disk allocation for this system is:

+ echo -e '\n'

+ df -h

Filesystem Size Used Avail Use% Mounted on
/dev/dm-0 19G 156 3.0G 84% /

udev 10M 0 10M 0% /dev

tmpfs 99M 9.1M 90M 10% /run

tmpfs 248M 80K 248M 1% /dev/shm
tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpfs 248M 0 248M 0% /sys/fs/cgroup
/dev/sdal 236M 33M 191M 15% /boot

tmpfs 50M 12K 50M 1% /run/user/1000
tmpfs 50M 0 50M 0% /run/user/0

+ echo -e '\n'

+ awk '{print "Space left on root partition: " $4}'
+ grep /dm-0

+ df -h

Space left on root partition: 3.0G

[29]

Let’s Start Programming

Now it is quite easy to understand how the stream of data flows inside the script: all the
lines beginning with a + sign are commands, and the following lines are outputs.

Let's think for a moment that we have longer scripts; for most parts, we are sure that things
work fine. For some lines, we are not completely sure of the outcome. Debugging
everything would be noisy. In this case, we can use set-x to enable the logging only for
those lines we need to inspect, turning it off with set+x when it is no longer needed. Time
to modify the script, as follows:

#!/bin/bash

set -x

echo "The total disk allocation for this system is: "
echo -e "\n"

df -h

echo -e "\n"

set +x

df -h | grep /dm-0 | awk '{print "Space left on root partition: " $4}'

And now, time to run it again, as follows:

gzarrelli:~$./disk.sh

+ echo 'The total disk allocation for this system is: '
The total disk allocation for this system is:

+ echo -e '\n'

+ df -h

Filesystem Size Used Avail Use% Mounted on
/dev/dm-0 19G 15¢ 3.0G 84% /

udev 10M 0 10M 0% /dev

tmpfs 99M 9.1M 90M 10% /run

tmpfs 248M 80K 248M 1% /dev/shm
tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpfs 248M 0 248M 0% /sys/fs/cgroup
/dev/sdal 236M 33M 191M 15% /boot

tmpfs 50M 12K 50M 1% /run/user/1000
tmpfs 50M 0 50M 0% /run/user/0

+ echo -e '\n'

+ set +x

Space left on root partition: 3.0G

As you can see, we see the instructions given in the block marked by set-x, and we also
see the set+x instruction given, but then, after this, the line with awk disappears and we see
only its output, filtering out what was not so interesting for us and leaving only the part we
want to focus on.

[30]

Let’s Start Programming

This is not a powerful debugging system typical of more complex programming languages,
but it can be really helpful in scripts of hundreds of lines where we can lose track of
sophisticated structures, such as evaluations, cycles, or variable assignments, which make
the scripts more expressive but even more difficult to get hold of and master. So, now that
we are clear on how to debug a file, which permissions are needed to make it safely
executable, and how to shell parse the command line, we are ready to spice things up
looking at how we can use variables to add more flexibility to our hand-crafted tools.

Variables

What is a variable? We could answer that it is something not constant; nice joke, but it
would not help us so much. Better to think of it as a bucket where we can store some
information for later processing: at a certain point of your script you get a value, a piece of
info that you do not want to process at that very moment, so you fit it into a variable that
you will recall later in the script. This is, in an intuitive way, the use of a variable, a way to
allocate a part of the system memory to hold your data.

So far, we have seen that our scripts could retrieve some pieces of information from the
system and had to process them straight away, since, without the use of a variable, we had
no way to further process the information except for concatenating or redirecting the output
to another program. This forced us to have a linear execution, no flexibility, no complexity:
once you get some data, you process it straight away redirecting the file descriptors, one
link in the chain after the other.

A variable is nothing really new; a lot of programming languages use them to store
different types of data, integers, floating, strings, and you can see many different kinds of
variables related to different kinds of data they hold. So, you have probably heard about
casting a variable, which means, roughly, changing its type: you get a value as a string of
numbers and you want to use it as an integer, so you cast it as an int and proceed
processing it using some math functions.

Our shell is not so sophisticated, and it has only one type of variable or, better, it has none:
whatever you store in it can be later processed without any casting. This can be nice because
you do not have to pay attention to what type of data you are holding; you get a number as
a string and can process it straight away as an integer. Nice and easy, but we must
remember that restrictions are in place not just to prevent us from doing something, but
also to help us not do something that would be unhealthy for our code, and this is exactly
the risk in having flat variables, to write some piece of code that simply does not work,
cannot work.

[31]

Let’s Start Programming

Assigning a variable

As we just saw, a variable is a way to store a value: we get a value, assign it to a variable
and refer to the latter to access the former. The operation of retrieving the content of a
variable is named variable substitution. A bit like, if you think about descriptors, the way
that you use them to access files. The way you assign a variable is quite straightforward:

LABEL=value

LABEL can be any string, can have upper and lowercase, start with or contain numbers and
underscores, and it is case sensitive.

The assignment is performed by the = character, which, be wary, is not the same as the equal
to == sign; they are two different things and are used in different contexts. Finally, whatever
you put at the right of the assignment operator becomes the value of the variable. So, let's
assign some value to our first variable:

gzarrelli:~$ FIRST VARIABLE=amazing

Now we can try to access the value trying to perform an action on the variable itself:

gzarrelli:~$ echo FIRST VARIABLE
FIRST_VARIABLE

Not exactly what we expected. We want the content, not the name of the variable. Have a
look at this:

gzarrelli:~$ echo $FIRST_VARIABLE
amazing

This is better. Using the s character at the beginning of the variable name identified this as a
variable and not a plain string, so we had access to the content. This means that, from now
on, we can just use the variable with any commands instead of referring to the whole
content of it. So, let us try again:

gzarrelli:~$ echo $first_variable
gzarrelli:~$

The output is null, and not 0; we will see later on that zero is not the same as null, since null
is no value but zero is indeed a value, an integer. What does the previous output mean?
Simply that our labels are case sensitive, change one character from upper to lower or vice
versa, and you will have a new variable which, since you did not assign any value to it,
does not hold any value, hence the null you receive once you try to access it.

[32]

Let’s Start Programming

Keep the variable name safe

We just saw that $1abel is the way we reference the content of a variable, but if you have a
look at some scripts, you can find another way of retrieving variable content:

${label}

The two ways of referencing the content of a variable are both valid, and you can use the
first, more compact, in any case except when concatenating the variable name to any
characters, which could change the variable name itself. In this case, it becomes mandatory
to use the extended version of the variable substitution, as the following example will make
clear.

Let's start printing our variable again:

gzarrelli:~$ echo $FIRST_VARIABLE
amazing

Now, let's do it again using the extended version of substitution:

gzarrelli:~$ echo ${FIRST_VARIABLE}
amazing

Exactly the same output since, as we said, these two methods are equivalent. Now, let us
add a string to our variable name:

gzarrelli:~$ echo $FIRST_VARIABLEngly
gzarrelli:~$

Nothing, and we can understand why the name of the variable changed; so we have no
content to access to. But now, let us try the extended way:

gzarrelli:~$ echo ${FIRST_VARIABLE}ly
amazingly

Bingo! The name of the variable has been preserved so that the shell was able to reference
its value and then concatenated it to the 1y string we added to the name.

Keep this difference in mind, because the graphs will be a handy way to concatenate strings
to a variable to spice your scripts up and, as a good rule of thumb, refer to variables using
the graphs. This will help you avoid unwanted hindrances.

[33]

Let’s Start Programming

Variables with limited scope

As we said before, variables have no type in shell, and this makes them somehow easy to
use, but we must pay attention to some sorts of limits to their use.

e First, the content of a variable is accessible only after the value has been assigned
¢ An example will make everything clearer:

gzarrelli:~$ cat disk-space.sh

#!/bin/bash

echo -e "\n"

echo "The space left is ${disk_space}"
disk_space='df -h | grep /$ | awk '{print $4}'’
echo "The space left is ${disk_space}

We used the variable disk space to store the result of the df command and try to reference
its value on the preceding and following lines. Let us run it in debug mode:

gzarrelli:~$ sh -x disk-space.sh
+ echo -e \n

-e

+ echo The space left is

The space left is

+ awk {print $4}

+ grep /dm-0

+ df -h

+ disk_space=3.0G

+ echo The space left is 3.0G
The space left is 3.0G

As we can see, the flow of execution is sequential: you access the value of the variable only
after it is instanced, not before. And bear in mind that the first line actually printed
something: a null value. Well, now let us print the variable on the command line:

gzarrelli:~$ echo ${disk_space}
gzarrelli:~$

The variable is instanced inside the script, and it is confined there, inside the shell spawned
to invoke the command and nothing passed to our main shell.

[34]

Let’s Start Programming

We can ourselves impose some restrictions to a variable, as we will see with the next
example. In this new case, we will introduce the use of a function, something that we are
going to look at in more detail further in this book and the keyword local:

gzarrelli:~$ cat disk-space-function.sh

#!/bin/bash

echo -e "\n"

echo "The space left is ${disk_space}"

disk_space='df -h | grep /dm-0 | awk '{print $4}'"

print () {

echo "The space left inside the function is ${disk_space}"

local available=yes

last=yes

echo "Is the available variable available inside the function?
${available}"

}

echo "Is the last variable available outside the function before it is
invoked? ${last}"

print

echo "The space left outside is ${disk_space}"

echo "Is the available variable available outside the function?
${available}"

echo "Is the last variable available outside the function after it is
invoked? ${last}"

Now let us run it:

gzarrelli:~$ cat di./pace-function.sh

The space left is

Is the last variable available outside the function before it is invoked?
The space left inside the function is 3.0G

Is the available variable available inside the function? yes

The space left outside is 3.0G

Is the available variable available outside the function?

Is the last variable available outside the function after it is invoked?
yes

What can we see here?

The content of variable disk_space is not available before the variable itself is instanced.
We already knew this.

The content of a variable instanced inside a function is not available when it is defined in
the function, but when the function itself is invoked.

[35]

Let’s Start Programming

A variable marked by the keyword local and defined inside a function is available only
inside the function and only when the function is invoked. Outside the block of code
defined by the function itself; the local variable is not visible to the rest of the script. So,
using local variables can be handy to write recursive code, even though not recommended.

So, we just saw a few ways to make a variable really limited in its scope, and we also noted
that its content is not available outside the script it was instanced in. Wouldn't it be nice to
have some variables with a broader scope, capable of influencing the execution of each and
every script, something at environment level? It would, and from now on we are going to
explore the environment variables.

Environment variables

As we discussed earlier, the shell comes with an environment, which dictates what it can do
and what not, so let's just have a look at what these variables are using the env command:

zarrelli:~$ env
LA&G=en_GB.utf8
DISPLAY=:0.0
ﬁéﬁR=zarrelli
5ééKTOP_SESSION=xfce
éﬁ5=/home/zarrelli/Documents
ﬁéﬁE=/home/zarrelli
éﬁﬁLL=/bin/bash
LA&GUAGE=en_GB:en
éﬁﬁSESSION=xfce
LééNAME=zarrelli

PATH=/usr/local/bin: /usr/bin: /bin:/usr/local/games: /usr/games
_=/usr/bin/env

[36]

Let’s Start Programming

Some of the variables have been omitted for the sake of clarity; otherwise, the output would

have been too long, but still we can see something interesting. We can have a look at the

PATH variable content, which influences where the shell will look for a program or script to

execute. We can see which shell is being currently used, by which user, what the current
directory is and the previous one.

But environment variables can not only be read; they can be instanced using the export
command:

zarrelli:~$ export TEST_VAR=awesome

Now, let us read it:

zarrelli:~/$ echo ${TEST_VAR}
awesome

That is it, but since this was just a test, it is better to unset the variable so that we do not
leave unwanted values around the shell environment:

zarrelli:~$ unset TEST_VAR

And now, let us try to get the content of the variable:

zarrelli:~/$ echo ${TEST_VAR}
zarrelli:~/$

No way! The variable content is no more, and as you will see now, the environment
variables disappear once their shell is no more. Let's have a look at the following script:

zarrelli:~$ cat setting.sh
#!/bin/bash

export MYTEST=NOWAY

env | grep MYTEST

echo ${MYTEST}

We simply instance a new variable, grep for it in the environment and then print its content

to the stdout. What happens once invoked?

zarrelli@:~$./setting.sh ; echo ${MYTEST}
MYTEST=NOWAY

NOWAY

zarrelli:~$

[371]

Let’s Start Programming

We can easily see that the variable was grepped on the env output, so this means that the
variable is actually instanced at the environment level and we could access its content and
print it. But then we executed the echo of the content of MYTEST outside the script again,
and we could just print a blank line. If you remember, when we execute a script, the shell
forks a new shell and passes to it its full environment, thus the command inside the
program shell can manipulate the environment. But then, once the program is terminated,
the related shell is terminated, and its environment variables are lost; the child shell inherits
the environment from the parent, the parent does not inherit the environment from the
child.

Now, let us go back to our shell, and let us see how we can manipulate the environment to
our advantage. If you remember, when the shell has to invoke a program or a script, it looks
inside the content of the PATH environment variable to see if it can find it in one of the paths
listed. If it is not there, the executable or the script cannot be invoked just with their names,
they have to be called passing the full path to it. But have a look at what this script is
capable of doing:

#!/bin/bash
echo "We are into the directory"”
pwd

We print our current user directory:

echo "What is our PATH?"
echo ${PATH}

And now we print the content of the environment PATH variable:

echo "Now we expand the path for all the shell"
export PATH=${PATH}:~/tmp

This is a little tricky. Using the graphs, we preserve the content of the variable and add a,
which is the delimiter for each path inside the list held by PATH, plus the ~/tmp, which
literally means the tmp directory inside the home directory of the current user:

echo "And now our PATH is..."

echo ${PATH}

echo "We are looking for the setting.sh script!"
which setting.sh

echo "Found it!"

[38]

Let’s Start Programming

And we actually found it. Well, you could also add some evaluation to make the echo
conditional, but we will see such a thing later on. Time for something funny:

echo "Time for magic!"

echo "We are looking for the setting.sh script!"

env PATH=/usr/bin which setting.sh
echo "BOOOO, nothing!"

Pay attention to the line starting with env; this command is able to overrun the PATH
environment variable and to pass its own variable and related value. The same behavior can
be obtained using export instead of env:

echo "Second try..."

env PATH=/usr/sbin which setting.sh

echo "No way..."

This last try is even worse. We modified the content of the $PATH variable which now
points to a directory where we cannot find the script. So, not being in the $PATH, the script
cannot be invoked by just its name:

zarrelli:~$./setenv.sh
We are in the directory:
/home/zarrelli/Documents/My books/Mastering bash/Chapter 1/Scripts
What is our PATH?
/usr/local/bin: /usr/bin: /bin:/usr/local/games: /usr/games
Now we expand the path for all the shell.
And now our PATH is:

/usr/local/bin: /usr/bin:/bin:/usr/local/games: /usr/games: /home
/zarrelli/tmp

We are looking for the setting. sh script!

/home/zarrelli/tmp/setting.sh
Found it!
Time for magic!
We are looking for the setting. sh script!

BOOOO, nothing!

[39]

Let’s Start Programming

Second try...

env: 'which'": No such file or directory

No way...
Environment variable [Use
BASH_VERSION The version of the current Bash session
HOME The home directory of the current user
HOSTNAME The name of the host
LANG The locale used to manage the data
PATH The search path for the shell
PsS1 The prompt configuration
PWD The path to the current directory
USER The name of the currently logged in user
LOGNAME Same as user

We can also use env with the —i argument to strip down all the environment variables and
just pass to the process what we want, as we can see in the following examples. Let's start
with something easy:

zarrelli:~$ cat env-test.sh
#!/bin/bash
env PATH=HELLO /usr/bin/env | grep -Al -Bl ~PATH

Nothing too difficult, we modified the PATH variable passing a useless value because HELLO
is not a searchable path, then we had to invoke env using the full path because PATH
became useless. Finally, we piped everything to the input of grep, which will select all the
rows (*) starting with the string PATH, printing that line and one line before and after:

zarrelli:~$./env-test.sh
2705-XDG_CONFIG_DIRS=/etc/xdg

2730 :PATH=HELLO
2741-SESSION_MANAGER=local/moveaway:@/tmp/.ICE-
unix/888,unix/moveaway:/tmp/.ICE-unix/888

[40]

Let’s Start Programming

Now, let's modify the script, adding -1 to the first env:

zarrelli:~$ cat env-test.sh
#!/bin/bash
env —-i PATH=HELLO /usr/bin/env | grep -Al -Bl1 ~PATH

And now let us run it:

zarrelli:~/$./env-test.sh
PATH=HELLO
zarrelli:~/$

Can you guess what happened? Another change will make everything clearer:

env —-i PATH=HELLO /usr/bin/env
No grep; we are able to see the complete output of the second env command:

zarrelli:~$ env -i PATH=HELLO /usr/bin/env
PATH=HELLO
zarrelli:~$

Just PATH=HELLO env with the argument -1 passed to the second env process, a stripped
down environment with only the variables specified on the command line:

zarrelli:~$ env —-i PATH=HELLO LOGNAME=whoami/usr/bin/env
PATH=HELLO

LOGNAME=whoami/usr/bin/env

zarrelli:~$

Because we are engaged in stripping down, let us see how we can make a function
disappear with the well-known unset -f command:

#!/bin/bash

echo -e "\n"

echo "The space left is ${disk_space}"

disk_space='df -h | grep vg-root | awk '{print $4}'°’

print () {

echo "The space left inside the function is ${disk_space}"
local available=yes

last=yes

echo "Is the available variable available inside the function?
${available}"

}

echo "Is the last variable available outside the function before it is
invoked? ${last}"

print

echo "The space left outside is ${disk_space}"

[41]

Let’s Start Programming

echo "Is the available variable available outside the function?
${available}"

echo "Is the last variable available outside the function after it is
invoked? ${last}"

echo "What happens if we unset a variable, like last?"

unset last

echo "Has last a referrable value ${last}"

echo "And what happens if I try to unset a while print functions using
unset -f"

t

print

unset -f print

echo "Unset done, now let us invoke the function"

print

Time to verify what happens with the unset command:

zarrelli:~$./disk-space-function—-unavailable.sh

The space left is:

Is the last variable available outside the function before it is invoked?
The space left inside the function is 202G

Is the available variable available inside the function? yes

The space left outside is 202G

Is the available variable available outside the function?

Is the last variable available outside the function after it is invoked?
yes

What happens if we unset a variable, like last?

Has last a referrable value

And what happens if I try to unset a while print functions using

unset -f

The space left inside the function is 202G

Is the available variable available inside the function? yes

Unset done, now let us invoke the function:
zarrelli:~$

The print function works well, as expected before we unset it, and also the variable
content becomes no longer available. Speaking about variables, we can actually unset some
of them on the same row using the following;:

unset -v variablel variable2 variablen

[42]

Let’s Start Programming

We saw how to modify an environment variable, but what if we want to make it read-only
so to protect its content from an unwanted modification?

zarrelli:~$ cat readonly.sh

#!/bin/bash

echo "What is our PATH?"

echo ${PATH}

echo "Now we make it readonly"

readonly PATH

echo "Now we expand the path for all the shell”
export PATH=${PATH}:~/tmp

Look at the line readonlyPATH, and now let's see what the execution of this script leads us
to:

zarrelli:~$./readonly.sh

What is our PATH?
/usr/local/bin: /usr/bin: /bin: /usr/local/games: /usr/games
Now we make it readonly

Now we expand the path for all the shell

./readonly.sh: line 10: PATH: readonly variable
zarrelli:~$

What happened is that our script tried to modify the PATH variable that was just made
readonly a few lines before and failed. This failure then led us out of the screen with a
failure, and this is confirmed by printing the value of the $? variable, which holds the exit
state of the last command invoked:

zarrelli:~$ echo $°?
1
zarrelli:~$ echo $°?
0

We will see the use of such a kind of variable later, but now what interests us is to know
what that 0 and 1 mean: the first time we issued the echo command, right after invoking
the script, it gave us the exit code 1, which means failure, and this makes sense because the
script exited abruptly with an error. The second time we ran echo, it showed 0, which
means that the last command executed, the previous echo went well, without any errors.

[43]

Let’s Start Programming

Variable expansion

The variable expansion is the method we have to access and actually change the content of a
variable or parameter. The simplest way to access or reference the variable value is as in the
following example:

x=1 ; echo $x
zarrelli:~$ x=1 ; echo $x
1

So, we assigned a value to the variable x and then referenced the value preceding the
variable name with the dollar sign $. So, echo$x prints the content of x, 1, to the standard
output. But we can do something even more subtle:

zarrelli:~$ x=1 ; y=$x; echo "x is $x" ; echo "y is $y"
x is 1
y is 1

So, we gave a value to the variable %, then we instanced the variable y referencing the
content of the variable x. So, y got its assignment referencing the value of x through the $
character, not directly using a number after the = char. So far, we saw two different ways to
reference a variable:

Sx
${x}

The first one is terser, but it would be better to stick to the second way because it preserves
the name of the variable and, as we saw a few pages before, it allows us to concatenate a
string to the variable without losing the possibility of referencing it.

We just saw the simplest among different ways to manipulate the value held by a variable.
What we are going to see now is how to thinker with a variable to have default values and
messages, so we make the interaction with the variable more flexible. Before proceeding,
just bear in mind that we can use two notations for our next example and they are
equivalent:

${variable—-default}
${variable:-default}

So, you could see either of the two in a script, and both are correct:

${variable:-default} ${variable-default}

[44]

Let’s Start Programming

Simply, if a variable is not set, return a default value, as we can see in the following
example:

#!/bin/bash

echo "Setting the wvariable x"

x=10

echo "Printing the value of x using a default fallback value"
echo "${x:-20}"

echo "Unsetting x"

unset -v x

echo "Printing the value of x using a default fallback wvalue"
echo "${x:-20}"

echo "Setting the value of x to null"

X=

echo "Printing the value of x with x to null"

echo "${x:-30}

Now, let's execute it:

zarrelli:~$./variables.sh

Setting the variable x

Printing the value of x using a default fallback value
10

Unsetting x

Printing the value of x using a default fallback value
20

Setting the value of x to null

Printing the value of x with x to null

30

As mentioned before, the two notations, with or without the colon, are quite the same. Let
us see what happens if in the previous script we substitute ${x: -somenumber} with ${x-
somenumber}.

Let's run the modified script:

Setting the variable x

Printing the value of x using a default fallback value
10

Unsetting x

Printing the value of x using a default fallback value
20

Setting the value of x to null

Printing the value of x with x to null

zarrelli:$

[45]

Let’s Start Programming

Everything is fine, but the last line. So what is the difference at play here? Simple:

e *5{x-30}: The notation with a colon forces a check on the existence of a value for
the variable and this value may well be null. In case you have a value, it does
print the value of the variable, ignoring the fallback.

e unset -f x:Itunsets the variable, so it has no value and we have
a fallback value

e x=: It gives a null to x; so the fallback does not come in to play, and
we get back the variable value, for example, null

e ${x:-30}: This forces a fallback value in case the value of a variable is null or
nonexistent
e unset -f x:Itunsets the variable, so it has no value and we have a
fallback value
e x=:It gives a null to %, but the fallback comes in to play and we get a
default value

Default values can be handy if you are writing a script which expects an input or the
customer: if the customer does not provide a value, we can use a fallback default value and
have our variable instanced with something meaningful:

#!/bin/bash

echo "Hello user, please give me a number: "
read user_input

echo "The number is: ${user_input:-99}"

We ask the user for an input. If he gives us a value, we print it; otherwise, we fallback the
value of the variable to 99 and print it:

zarrelli:~$./userinput.sh

Hello user, please give me a number:

10

The number is: 10

zarrelli:~/$

zarrelli$./userinput.sh

Hello user, please give me a number:

The number is: 99

zarrelli:~/$

${variable:=default} ${variable=default}

[46]

Let’s Start Programming

If the variable has a value, it is returned; otherwise, the variable has a default value
assigned. In the previous case, we got back a value if the variable had no value; or null, here
the variable is actually assigned a value. Better to see an example:

#!/bin/bash
#!/bin/bash
echo "Setting the wvariable x"

x=10
echo "Printing the value of x"
echo ${x}

echo "Unsetting x"

unset -v x

echo "Printing the value of x using a default fallback value"
echo "${x:-20}"

echo "Printing the value of x"

echo ${x}

echo "Setting the variable x with assignement"

echo "${x:=30}"

echo "Printing the value of x again"

echo ${x}

We set a variable and then print its value. Then, we unset it and print its value, but because
it is unset, we get back a default value. So we try to print the value of %, but since the
number we got in the preceding operation was not obtained by an assignment, x is still
unset. Finally, we use echo "${x:=30}" and get the value 30 assigned to the variable x,
and indeed, when we print the value of the variable, we get something. Let us see the script
in action:

Setting the variable x

Printing the value of x

10

Unsetting x

Printing the value of x using a default fallback value
20

Printing the value of x

Setting the variable x with assignement
30

Printing the value of x again

30

Notice the blank line in the middle of the output: we just got a value from the preceding
operation, not a real variable assignment:

${variable:+default} ${variable+default}

[47]

Let’s Start Programming

Force a check on the existence of a non null value for a variable. If it exists, it returns the
default value; otherwise it returns null:

#!/bin/bash
#!/bin/bash
echo "Setting the wvariable x"

x=10
echo "Printing the value of x"
echo ${x}

echo "Printing the value of x with a default value on
assigned value"

echo "${x:+100}"

echo "Printing the value of x after default"

echo ${x}

echo "Unsetting x"

unset -v x

echo "Printing the value of x using a default fallback value"
echo "${x:+20}"

echo "Printing the value of x"

echo ${x}

echo "Setting the variable x with assignement”

echo "${x:+30}"

echo "Printing the value of x again"

echo ${x}

Now, let us run it and check, as follows:

Setting the variable x
Printing the value of x

10

Printing the value of x with a default value on assigned value
100

Printing the value of x after default

10

Unsetting x

Printing the value of x using a default fallback value
Printing the value of x

Setting the variable x with assignement

Printing the value of x again

zarrelli:~$

[48]

Let’s Start Programming

As you can see, when the variable is correctly instanced, instead of returning its value, it
returns a default 100 and this is double-checked in the following rows where we print the
value of x and it is still 10: the 100 we saw was not a value assignment but just a default
returned instead of the real value:

${variable:?message} ${variable?message}
#!/bin/bash

x=10

y:

unset -v z

echo ${x:?"Should work"}

echo ${y:?"No way"}

echo ${y:?"Well"}

The results are quite straightforward:

zarrelli:~$./set-message.sh
10
./set-message.sh: line 8: y: No way

As we tried to access a void variable, but for the unset would have been the same, the
script exited with an error and the message we got from the variable expansion. All good
with the first line, x has a value and we printed it but, as you can see, we cannot arrive to
the third line, which remains unparsed: the script exited abruptly with a default message
printed.

Nice stuff, isn't it? Well, there is a lot more, we have to look at the pattern matching against
variables.

Pattern matching against variables

We have a few ways to fiddle with variables, and some of these have a really interesting use
in scripts, as we will see later on in this book. Let's briefly recap what we can do with
variables and how to do it, but remember we are dealing with values that are returned, not
assigned back to the variable:

${#variable)

It gives us the length of the variable, or if it is an array, the length of the first element of an
array. Here is an example:

zarrelli:~$ my_variable=thisisaverylongvalue
zarrelli:~$ echo ${#my_variable}
20

[49]

Let’s Start Programming

And indeed thisisaverylongvalue is made up of 20 characters. Now, let us see an
example with arrays:

zarrelli:~$ fruit=(apple pear banana)

Here, we instantiated an array with three elements apple, pear, and banana. We will see
later in this book how to work with arrays in detail:

zarrelli@moveaway:~$ echo ${fruit[2]}
banana

We printed the third element of the array. Arrays start with an index of 0, so the third
element is at index 2, and it is banana, a 6 characters long word:

zarrelli@moveaway:~$ echo ${fruit[1]}
pear

We print the second element of the array: pear,a 4 characters long word:

zarrelli@moveaway:~$ echo ${fruit[0]}
apple

And now, the first element, that is, apple is 5 characters long. Now, if the example we saw is
true, the following command should return 5.

zarrelli:~$ echo ${#fruit}
5

And indeed, the length of the word apple is 5 characters:

${variable#pattern)

If you need to tear out your variable, for a part of it you can use a pattern and remove the
shortest occurrence of the pattern from the beginning of the variable and return the
resulting value. It is not a variable assignment, not so easy to grasp, but an example will
make it clear:

zarrelli:~$ shortest=1010201010
zarrelli:~$ echo ${shortest#10}
10201010

zarrelli:~$ echo ${shortest}
1010201010

${variable#i#ipattern)

This form is like the preceding one but with a slight difference, the pattern is used to
remove its largest occurrence in the variable:

zarrelli:~$ my_ variable=10102010103

[50]

Let’s Start Programming

We instanced the variable with a series of recurring digits:

zarrelli:~$ echo ${my_variable#l*1}
02010103

Then, we tried to match a pattern, which means any digit between a leading and ending 1,
the shortest occurrence. So it took out 10102010103:

zarrelli:~$ echo ${my_variablet##1*1}
03

Now, we cut away the widest occurrence of the pattern, and so 10102010103, resulting in a
meager 03 as the value returned:

${variable%pattern)

Here, we cut away the shortest occurrence of the pattern but now from the end of the
variable value:

zarrelli:~$ ending=10102010103
zarrelli:~$ echo ${ending%1*3}
10102010

So, the shortest occurrence of the 1*3 pattern counted from the end of the file is
10102010103 so we get 10102010 back:

${variable%%pattern)

Similar to the previous example, with ##, in this case, we cut away the longest occurrence of
the pattern from the end of the variable value:

zarrelli:~$ ending=10102010103
zarrelli:~$ echo ${ending}
10102010103

zarrelli:~$ echo ${ending%1*3}
10102010

zarrelli:~$ echo ${ending%%1*3}
zarrelli:~$

Quite clear, isn't it? The longest occurrence is 1*3is 10102010103, so we tear away
everything and we return nothing, as this example which makes use of the evaluation of -z
(is empty) will show:

zarrelli:~$ my var=${ending%1*3}

zarrelli:~$ [[-z "$my_var"]] && echo "Empty" || echo "Not empty"
Not empty

zarrelli:~$ my var=${ending%%1*3}

zarrelli:~$ [[-z "$my_var"]] && echo "Empty" || echo "Not empty"

[51]

Let’s Start Programming

Empty
${variable/pattern/substitution}

The reader familiar with regular expressions probably already understood what the
outcome is: replace the first occurrence of the pattern in the variable by substitution. If
substitution does not exist, then delete the first occurrence of a pattern in variable:

zarrelli:~$ my_ var="Give me a banana"
zarrelli:~$ echo ${my_var}

Give me a banana

zarrelli:~$ echo ${my_var/banana/pear}
Give me a pear

zarrelli:~$ fruit=${my_var/banana/pear}
zarrelli:~$ echo ${fruit}

Give me a pear

Not so nasty, and we were able to instance a variable with the output of our find and
replace:

${variable//pattern/substitution}

Similar to the preceding, in this case, we are going to replace the occurrences of a pattern in
the variable:

zarrelli@moveaway:~$ fruit="A pear is a pear and is not a banana"
zarrelli@moveaway:~$ echo ${fruit//pear/watermelon}
A watermelon is a watermelon and is not a banana

Like the preceding example, if substitution is omitted, a pattern is deleted from the variable:

${variable/#pattern/substitution}

If the prefix of the variable matches, then replace the pattern with substitution in variable,
so this is similar to the preceding but matches only at the beginning of the variable:

zarrelli:~$ fruit="a pear is a pear and is not a banana"
zarrelli:~$ echo ${fruit/#"a pear"/}

is a pear and is not a banana

zarrelli:~$ echo ${fruit/#"a pear"/"an apple"}

an apple is a pear and is not a banana

As usual, omitting means deleting the occurrence of the pattern from the variable.

${variable/%pattern/substitution}

[52]

Let’s Start Programming

Once again, a positional replacement, this time at the end of the variable value:

zarrelli:~$ fruit="a pear is not a banana even tough I would
like to eat a banana"

zarrelli:~$ echo ${fruit/%"a banana"/"an apple"}

a pear is not a banana even though I would like to eat an apple

A lot of nonsense, but it makes sense:

${!prefix_variable*}
${!prefix_variable@}

Match the name of the variable names starting with the highlighted prefix:

zarrelli:~$ firstvariable=1

zarrelli:~$ secondvariable=${!first*}
zarrelli@:~$ echo ${secondvariable}
firstvariable

zarrelli:~$ thirdvariable=${secondvariable}
zarrelli:~$ echo ${thirdvariable}
firstvariable

${variable:position}

We can decide from which position we want to start the variable expansion, so determining
what part of its value we want to get back:

zarrelli:~$ picnic="Either I eat an apple or I eat a raspberry"
zarrelli:~$ echo ${picnic:25}
I eat a raspberry

So, we just took a part of the variable, and we decided the starting point, but we can also
define for how long cherry-picking is done:

${variable:position:offset}

zarrelli:~$ wheretogo="I start here, I go there, no further"
zarrelli:~$ echo ${wheretogo:14:10}

I go there

So we do not go further, start at a position and stop at the offset; this way, we can extract
whatever consecutive characters/digits we want from the value of a variable.

So far, we have seen many different ways to access and modify the content of a variable or,
at least, of what we get from a variable. There is a class of very special variables left to look
at, and these will be really handy when writing a script.

[53]

Let’s Start Programming

Special variables

Let's see now some variables which have some spacial uses that we can benefit from:
${1}, ${n}

The first interesting variables we want to explore have a special role in our scripts because
they will let us capture more than an argument on our first command-line execution. Have
a look at this bunch of lines:

! /bin/bash

fistvariable=${1}

secondvariable=${2}

thirdvariable=${3}

echo "The value of the first variable is ${1}, the second
is ${2}, the third is ${3}"

Pay attention to $1, $2, $3:

zarrelli:~$./positional.sh
The value of the first variable is , the second is , the third is

First try, no arguments on the command line, we see nothing printed for the variables:

zarrelli:~$./positional.sh 1 2 3
The value of the first variable is 1, the second is 2,
the third is 3

Second try, we invoke the script and add three digits separated by spaces and, actually, we
can see them printed. The first on the command line corresponds to $1, the second to $2,

and the third to $3:

zarrelli:~$./positional.sh Green Yellow Red
The value of the first variable is Green; the second is Yellow; and the third is Red.

Third try, we use words with the same results. But notice here:

zarrelli:~$./positional.sh "One sentence" "Another one"

A third one
The value of the first variable is One sentence, the second
is Another one, the third is A

[54]

Let’s Start Programming

We used a double quote to prevent the space between one sentence and another

being interpreted as a divider for the command-line bits, and in fact, the first and second
sentences were added as a complete string to the variables, but the third came up just with
an A because the subsequent spaces, not quoted, were considered to be separators and the
following bits taken as $4, $5, and $n. Note that we could also mix the order of assignment,
as follows:

thirdvariable=${3}
fistvariable=${1}
secondvariable=${2}

The result would be the same. What is important is not the position of the variable we
declare, but what positional we associate with it.

As you saw, we used two different methods to represent a positional variable:

${1}
$1

Are they the same? Almost. Look here:

#!/bin/bash

fistvariable=${1}

secondvariable=${2}

thirdvariable=${3}

eleventhvariable=$11

echo "The value of the first variable is ${fistvariable},

the second is ${secondvriable}, the third is ${thirdvariable},
the eleventh is ${eleventhvariable}"

Now, let's execute the script:

zarrelli:~$./positional.sh "One sentence" "Another one" A
third one

The value of the first variable is One sentence, the second
is Another one, the third is A, the eleventh is One sentencel

Interesting, the eleventhvariable has been interpreted as it were the positional $1 and
added a 1. Odd, let's rewrite the echo in the following way:

eleventhvariable=${11}

And run the script again:

zarrelli$./positional.sh "One sentence" "Another one" A third one
The value of the first variable is One sentence, the second is
Another one, the third is A, the eleventh is

[55]

Let’s Start Programming

Now we are correct. We did not pass an eleventh positional value on the command line, so
the eleventhvariable has not been instantiated and we do not see anything printed to
the video. Be cautious, always use ${ }; it will preserve the value of the variable in your
complex scripts when having a grasp of every single detail would be really difficult:

${0}

This expands to the full path to the script; it gives you a way to handle it in your script. So,
let's add the following line at the end of the script and execute it:

echo "The full path to the script is $0"

zarrelli:~$./positional.sh 1 2 3

The value of the first variable is 1, the second is 2, the
third is 3, the eleventh is

The full path to the script is ./positional.sh

In our case, the path is local, since we called the script from inside the directory that is
holding it:

${#}

Expands into the number of the arguments passed to the script, showing us the number of
arguments that have been passed on the command line to the script. So, let's add the
following line to our script and let's see what comes out of it:

echo "We passed ${#} arguments to the script"

zarrelli:~$./positional.sh 1 2 3 4 5 6 7

The value of the first variable is 1, the second is 2, the
third is 3, the eleventh is

The full path to the script is ./positional.sh

We passed 7 arguments to the script

${e}

${*}

Gives us the list of arguments passed on the command line to the script, with one
difference: ${@} preserves the spaces, the second doesn't:

#!/bin/bash

fistvariable=${1}

secondvariable=${2}

thirdvariable=${3}

eleventhvariable=${11}

export IFS=*

echo "The value of the first variable is ${fistvariable},

the second is ${secondvariable}, the third is ${thirdvariable},
the eleventh is ${eleventhvariable}"

echo "The full path to the script is $0"

[56]

Let’s Start Programming

echo "We passed ${#} arguments to the script"
echo "This is the list of the arguments ${@}"
echo "This too is the list of the arguments ${*}"
IFS=

echo "This too is the list of the arguments ${*}"

We changed the characters used by the shell as a delimiter to identify single words. Now,
let us execute the script:

zarrelli:~$./positional.sh 1 2 3

The value of the first variable is 1, the second is 2,
the third is 3, the eleventh is

The full path to the script is ./positional.sh

We passed 3 arguments to the script

This is the list of the arguments 1 2 3

This too is the list of the arguments 1*2*3

This too is the list of the arguments 123

Here, you can see the difference at play:

e *: This expands to the positional parameters, starting from the first and when the
expansion is within double quotes, it expands to a single word and
separates each positional parameter using the first character of IFS. If the latter is
null, a space is used, if it is null the words are concatenated without separators.

e @: This expands to the positional parameter, starting from the first, and if the
expansion occurs within a double quote, each positional parameter is expanded
to a word on its own:

${?}

This special variable expands to the exit value of the last command executed, as we have
already seen:

zarrelli:~$ /bin/ls disk.sh ; echo ${?} ; tt ; echo ${?}

disk.sh

0

bash: tt: command not found
127

The first command was successful, so the exit code is 0 ; the second gave an error
127command not found, since such a command as tt does not exist.

${$} expands to the process number of the current shell and for a script is the shell in
which it is running. Let us add the following line to our positional. sh script:

echo "The process id of this script is ${$}"

[571

Let’s Start Programming

Then let's run it:

zarrelli:~$./positional.sh 1 2 3

The value of the first variable is 1, the second is 2, the
third is 3, the eleventh is

The full path to the script is ./positional.sh

We passed 3 arguments to the script

This is the list of the arguments 1 2 3

This too is the list of the arguments 1*2*3

This too is the list of the arguments 123

The process id of this script is 13081

Step by step, our script is telling us more and more:
${!}

This is tricky; it expands to the process number of the last command executed in the
background. Time to add some other lines to our script:

echo "The background process id of this script is ${!}"
echo "Executing a ps in background"

nohup ps &

echo "The background process id of this script is ${!}"

And now execute it:

zarrelli:~$./positional.sh 1 2 3

The value of the first variable is 1, the second is 2,
the third is 3, the eleventh is

The full path to the script is ./positional.sh

We passed 3 arguments to the script

This is the list of the arguments 1 2 3

This too is the list of the arguments 1*2*3

This too is the list of the arguments 123

The process id of this script is 13129

The background process id of this script is
Executing a ps in background

The background process id of this script is 13130
nohup: appending output to 'nohup.out'

We used nohup ps & to send the ps in the background (&) and detach it from the current
terminal (nohup). We will see later, in more details the use of background commands; it
suffices now to see how, before sending the process in to the background, we had no value
to print for ${ !} ; it was instanced only after we sent ps in to the background.

[581]

Let’s Start Programming

Do you see that?

nohup: appending output to 'nohup.out'

Well, for our purposes, it has no value, so how can we redirect this useless output and get
rid of it during the execution of our script? You know what? It is a tiny exercise for you to
do before you start reading the next chapter, which will deal with the operators and
much more fun.

Summary

In this chapter, we touched on some of the very basics of the shell, such as things that you
should know how to deal with in the correct way. Failing to preserve variable names can,
for instance, lead us to unwanted results and, on a different side, knowing how to access
environment variables will help us create a better environment for our day-to-day tasks. As
we said, basic but important things that a Bash master should know by heart, because
unmasks, file descriptors, and fiddling with variables are what let you play awesome tricks
and are the building blocks to becoming more advanced. So, do not just overlook them; they
will help you.

[591]

Operators

What we have looked at so far is tinkering with values returned from variable expansions
and descriptors used in a tricky way. So, something nice, but we could not do much more,
since we do not have a way to actually relate values, compare or even modify at our will.

Here is where the operators come in to play, and we will see how to modify the value of a
variable so that it will hold a value and, over time, modify to gather new information. So,
let's start from something simple, from basic math then move on to something more
complex.

One last thing we have to bear in mind before proceeding is that the operators follow an
order of precedence:

¢ The compound logical operators -a, —o, and && have a low precedence
¢ The arithmetic operators have the following precedence:

e Multiply

e Divide

e Add

e Subtract
¢ The evaluation of operators with equal precedence is from left to right

Arithmetic operators

Arithmetic operators do what you think they do, that is, add, subtract, divide, and so on. It
is something we are familiar with even without specific programming knowledge. Let's see
each of them and how they can be used to manipulate the value of variables.

Operators

Before proceeding, keep in mind that for a shell script, a number is a decimal unless you
prefix that with a 0 for the octal, a 0x for a hexadecimal number, or a base#number for a
number that evaluates on the base.

The + operator

This is like what we see at primary school; this operator allows us to add an integer to the
value of the variable, as we can see in the following example:

#!/bin/bash

echo "Hello user, please give me a number: "

read user_input

echo "And now another one, please: "

read adding

addition=$ ((user_input+adding))

echo "The number is: ${user_input:-99}"

echo "The number added of ${adding} is: ${addition}"

Now time to invoke the script:

zarrelli:$./useraddition.sh

Hello user, please give me a number:
120

And now another one, please:

30

The number is: 120

The number added of 30 is: 150

As you have probably noted, we used a double parenthesis construct $ (()) to perform
this arithmetic expansion and evaluation: in short, it is as we said, expand and evaluate,
then return the value. It is a common notation in binary operators and also allows us to
quote special characters as if we'd enclosed them into double quotes, so we are not
compelled to escape that. The only exception is the double quote, which still must be
escaped. Do not worry; we will read more about special characters and how to quote them
later on.

Now, just try to run the script and give no numbers:

The number is: 99
The number added of is: 0

The number 99 is not an assignment, just a default value we were returned in case the
variable held no usable values, but the first and second variables have no assignment so
adding one value to the other leads us to 0.

[61]

Operators

The - operator

Well, in this case, we are going to subtract something from the value of the variable with a
little caveat: this is a left-associative operation, with the evaluation order from left to right,
and this means that we are subtracting the value at the right of the minus sign from the
value on the left:

zarrelli:~$ a=20 ; b=5 ; c=$((a-b)) ; echo ${c}
15

The * operator

To multiply, we do not need to care about the order; one value is multiplied for another
one, no matter which direction we take:

zarrelli:~$ a=20 ; b=5 ; c=$((${a}*${b})) ; echo ${c}
100

The / operator

Division is another operation left-associative, so we divide the number on the left of the
division character by the number on the right:

zarrelli:~$ a=20 ; b=5 ; c=$((a/b)) ; echo ${c}
4

The % operator

The modulo operator gives us the remainder of the division between two integers:

zarrelli:~$ a=29 ; b=5 ; c=$((a/b)) ; echo ${c}
5
zarrelli:~$ a=29 ; b=5 ; c=$((a%b)) ; echo ${c}
4

[62]

Operators

The ** operator

As we saw at school, exponentiation is a number multiplied by itself as many times as
imposed by the exponent:

zarrelli:~$ a=4 ; b=5 ; c=$((a**b)) ; echo ${c}
1024
zarrelli:~$ a=4 ; c=$((a*a*a*a*a)) ; echo ${c}
1024

In this case, we are facing a left-associative operation and the order matters. Be aware that,
in any case, the variables are expanded before the evaluation takes place with all the
operators we have seen so far. We are using both $a ands{a} to get you used to what you
will face in real life, looking at the scripts you will find on the Internet.

Assignment operators

We have seen how to manipulate the value assigned to a variable and an integer so far, and
then reassign this value to another variable or the same one. But why use two operations
when you can alter the value of a variable and reassign it at the same time using the
assignment operators?

The += operator

This operator adds a quantity to the value of the variable and assigns the outcome to the
variable itself, but to clarify its use, let's rewrite one of the examples we've seen before:

#!/bin/bash

echo "Hello user, please give me a number: "
read user_input

echo "And now another one, please: "

Adding

echo "The user_input variable value is: ${user_input}"

echo "The adding variable value is: ${adding}"

echo "${user_input} added of ${adding} is: $((user_input+=adding))"
echo "And the user_input variable has now the value of
${user_input}"

echo"But the adding variable has still the value of ${adding}"

[63]

Operators

And now, let's run it, as follows:

zarrelli:~$./userreassign.sh

Hello user, please give me a number:

150

And now another one, please:

50

The user_input variable value is: 150

The adding variable value is: 50

150 added of 50 is: 200

And the user_input variable has now the value of 200
But the adding variable has still the value of 50

Easy! And we did not have to reassign the value of 200 explicitly.

The -= operator

Actually, this is very similar to the the former operator, only in this case, we do a
subtraction and reassign the value. Let's rewrite our last script with the operator and see
what happens:

zarrelli:~$./userreassign-subtract.sh

Hello user, please give me a number:

200

And now another one, please:

50

The user_input variable value is: 200

The adding variable value is: 50

200 subtracted of 50 is: 150

And the user_input variable has now the value of 150
But the adding variable has still the value of 50

The *= operator

In this case, we are multiplying the value of the variable for the given number and
reassigning:

zarrelli:~$./userreassign-multiply.sh
Hello user, please give me a number:

-1

And now another one, please:
9223372036854775808

The user_input variable value is: -1

The adding variable value is: 9223372036854775808

[64]

Operators

-1 multiplied for 9223372036854775808 is:
-9223372036854775808

And the user_input variable has now the value of
-9223372036854775808

But the adding variable has still the value of
9223372036854775808

Nice! Indeed, we reached one of boundaries of the modern Bash: in the past, the value held
by a variable could be represented by a 32-bit signed long, but from version 2.05b onward it
switched to a 64-bit signed integer in the following range of:

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Remember that values containing a comma are interpreted as a character
string.

The /= operator

In this case, we are dividing the value of the variable for a given number and reassigning
the new value to it:

zarrelli@:~$./userreassign-division.sh

Hello user, please give me a number:

10

And now another one, please:

2

The user_input variable value is: 10

The adding variable value is: 2

10 divided for 2 is: 5

And the user_ input variable has now the value of 5
But the adding variable has still the value of 2

The %= operator

With modulo assignment, we divide the value of the variable for a given number and
reassign the remainder. Let's just modify a couple of lines in our script:

echo "The value of ${user_input} divided by ${adding} is:

$ ((user_input/=adding))"

echo "The remainder of ${user_input} divided by ${adding} is:
$ ((user_input%=adding))"

[65]

Operators

And execute it:

zarrelli@:~$./userreassign-modulo.sh

Hello user, please give me a number:

324

And now another one, please:

12

The user_input variable value is: 324

The adding variable value is: 12

The value of 324 divided by 12 is: 27

The remainder of 27 divided by 12 is: 3

And the user_input variable has now the value of 3
But the adding variable has still the value of 12

The ++ or -- operators

This is the unary operator ++ (or —-), which allows us to increase/decrease the value of a
variable of 1 and reassign it, but be careful, the position of the operator matters:

zarrelli:~$ a=15 ; echo $((a++)) ; echo ${a}
15
16
zarrelli:~$ a=15 ; echo $((++a)) ; echo ${a}
16
16

Can you figure out what happened? Simply, in the first case, the first operator returned the
value and, only after, added 1 to it; in the second case, first it added 1 to the value and then
returned it. Pay attention to this operator because it is widely used inside loops to count the
cycles and eventually break out from them:

zarrelli:~$ cat loop.sh
#!/bin/bash

counter=10

while [$counter -gt 0];

do

echo"Loop number: $((counter—--))"
done

[66]

Operators

We instance a variable named counter with a value of 10, then we define a loop, which
while the counter value is greater than 0, it prints the value of the counter and decreases it,
reassigning it. At each cycle, the variable value is printed and then lowered by 1. Once the
counter reaches 0, the while condition is no longer valid and the loop stops:

zarrelli:~$./loop.sh
Loop number: 10

Loop number:
Loop number:
Loop number:
Loop number:
Loop number:
Loop number:
Loop number:
Loop number:
Loop number:

O

PNDWdOUOJO

Bitwise operators

Bitwise operators are useful when dealing with bit masks, but in normal practice, they are
not so easy to use, and so you will not encounter them very often. However, since they are
available in Bash we are going to have a look at them with some examples.

Left shift (<<)

The bitwise left shift operators simply multiplies by 2 a value for each shift position; the
following example will make everything more clear:

zarrelli:~$ x=10 ; echo $((x<<1))
20

zarrelli:~$ x=10 ; echo $((x<<2))
40

zarrelli:~$ x=10 ; echo $((x<<3))
80

zarrelli:~$ x=10 ; echo $((x<<4))
160

What happened? As we said before, the bitwise operators work on a bit mask, so let's start
converting the integer 10 to its binary representation in 16-bit and using a power of 2 table
to check the values.

[67]

Operators

In this case, a simple method to represent a decimal in a binary form is to use the power of
two notations, starting with dividing our integer in a sum of power of two numbers. In our
example, the highest power of two that fits into 10 is 2°, which is 8, plus 2',that is, 2. So,
among the powers of two we select only 23 and 21 and we can represent this in a table like
the following:

27 |20 |2° [2* [2°] 22| 2|2

128|64(32|16(8 |4 |2 |1

0o oo lo|1]o]1lo0
s| |2

If we mark with a 1 the powers of 2, we used to represent the number 10 and with 0 those
unused, the result willbe 1010, or 00001010 if we use 8-bit to represent the number.

What we are going to do now is to shift all the digits to the left by one position, but this
gives us an issue with the right end digit, which has no digit on its right to take over its
place. So, for the last right slot, we will use a 0:

10100

12864 (32]|16(8(4(2|1
0 |0 |0 |1 |0Of1(0]|0O
16| |4

And this number, converted into decimal, is 20. So now, let's see what
echo$ ((x<<2)) turns into:

12864 (32168 (42|11
0 |0 |1 |0 |1|{0(0O]0O
32 8

So, we have 40. Now it is time to go over $ ((x<<3)), moving out the first one on the left,
adding a trailing 0 and adding a sign bit at the beginning:

1010000

[68]

Operators

12864 (32]|16(8(4(2|1
0 |10 |1 |0f0f0O]O
64 16

We reached 80; now, let's go for $ ((x<<4)), same procedure:

10100000

12864 (32]|16(8(4(2|1
1 (0 (1 (0O [0[0O]O]O
128 32

Well, 160 is the result, as you can imagine. So now we know a really fast method to
multiply a number by the power of two, but what if we want to divide?

Right shift (>>)
The bitwise right shift is a great method to divide a number by 2 at each position, so
division by power of 2, shifting the bit to the right. Note that this operation pads on the left

with the most significant bit, that is the sign bit, so everything will be padded by one, but
the following example will make everything easier:

zarrelli:~$ x=160 ; echo $((x>>1))
80
zarrelli:~$ x=160 ; echo $((x>>2))
40
zarrelli:~$ x=160 ; echo $((x>>3))
20
zarrelli:~$ x=160 ; echo $((x>>4))
10

So, let's start with 160:

10100000

12864 (32]|16(8(4(2|1
1 (0 (1 (0O [0f0O]0O]|O
128 32

[69]

Operators

What we will do now is to shift one position to the right:

1010000

12864 (321168 (42|11
0 |10 |1 |0f0(0O]|O
64 1

Now we have 80, but again, one position to the left:

12864 (32]|16(8(4(2|1
0 |0 |1 |0 |1]{0(0O]0O
32 8

Now, as an exercise, calculate by yourself the remaining values.

Bitwise AND (&)

This is the bitwise AND operator; it is similar to a logical AND but works on the bit mask
on the binary representation of the integer. The binary bits are read from left to right and
compared between the two numbers: if, in the same position of each number, we find a 1,
the result will be 1, otherwise it will be 0:

zarrelli:~$ x=50 ; y=20; echo $((x&y))
16

How did we come to such a value? Let's create a matrix with the binary values of 50 and
20:

128|164 (32]|16(8(4(2|1
50{0 0 |1 |1 |0]j0O|1(0O
2010 |0 |0 |1 |0|1|0|0O
& (0 |0 |0 |1 |0f0OfO]|O

The result is the binary 00010000, which in decimal is 16.

[70]

Operators

Bitwise OR (|)

The bitwise OR operator is similar to an inclusive OR and checks two integers using their
binary representation: if there is at least a 1 on the same position for each number, the result
will be 1:

zarrelli:~$ x=50 ; y=20; echo $((x|y))
54

As we can see from the following table:

12864 (32168 (4(2|1
50{0 0 |1 |1 |0]j0O|1(0O
20(0 |0 |0 |1 |0|1|0|0O
l [0 |0 |1 |1 [O]1|1]0

Bitwise XOR (#)

This is what we would call exclusive OR or XOR: the result will be 1 only if at the same slot,
there is only a 1, and if there are two 1, the result will be 0:

zarrelli:~$ x=50 ; y=20; echo $((x"y))
38

So, let's check again with our matrix:

12864 (32168 (42|11
50{0 |0 |1 |1 |0]j0O|1(0O
2010 10 |0 |1 |0]1|0(0O
A0 |0 |1 |0 |0f1(f1]0

And that s, 36.

Bitwise NOT (~)

The bitwise NOT is a unary operator, and this means it is used with just one operator,
flipping the bit used to represent the integer in binary notation:

[71]

Operators

zarrelli:~$ x=50 ; echo $((~x))
=51

Have a look at the following table:

128 (64(32|16(8(4(2(1
50(0 0 (1 (1 (0[0]1]0
~ |1 110 |0 (1]1]0(1

-128 | 64 84| |1

We have to keep in mind that the most significant bit on the left for a signed integer (and
this is a signed integer, even though we do not write +50 because Bash represents integer
with a sign long at 64-bit) holds the sign value. So, flipping the first significant bit actually
inverted the value. As the rule of thumb, the bitwise NOT leads to the same result as of a
two's complement of the number minus 1:

zarrelli:~$ x=30 ; echo $((~x))
-31

128 (64)32(16|8|4|2
30(0 010 |1 (1]1(1
~ |1 11110 (0]0]0
-128 64|32

— | = || m

However, we can also calculate the bitwise by not first converting the integer in binary,
inverting the digits and adding to the result a 1 in binary notation in a so-called two's
complement:

50 0(0|1|1{0(0|1]|0
invert|1|{1{0|0|1|1{0|1
add1|0({0|0|0|0(0]|0]|1
-51 111(0({0|1]|1|0(1

So, as you can see, in the two's complement, binaries with the leftmost bit set to 1 have a
negative value; those starting with 0 are positive integers.

[72]

Operators

Logical operators

Here, we come to something really useful for our scripts, a bunch of operators that will
enable us to perform some tests and react as a consequence. So, we will be able to make our
script react to a some change or user input and be more flexible. Let's see what is available.

Logical NOT (!)
The NOT operator is used to test whether an expression is true and holds true when the
expression is false:

[! expression]

Let's go back to one of our previous scripts and make it more user-friendly:
#!/bin/bash
echo "Hello user, please give me a number between 10 and 12:

read user_input
if [! ${user_input} -eqll]

then

echo "The number ${user_input} is not what we are looking for..."
else

echo "Great! The number ${user_input} is what we were looking for!"
fi

What we are doing here is asking the user for a number between 10 and 12. We read the
value from its input and evaluate it: if the user inputs a value that is not equal to 11, then
we write a boo sentence; otherwise, we have found our number. Do not worry; we will have
alookatif...then...else laterin this book, just take if for what it is a simple
conditional. Let's run the script and see what happens when we input the right answer and
when we fail the input:

zarrelli:~$./userinput-not.sh

Hello user, please give me a number between 10 and 12:
11

Great! The number 11 is what we were looking for!
zarrelli:~$./userinput-not.sh

Hello user, please give me a number between 10 and 12:
12

The number 12 is not what we are looking for...

Great! The script became quite interactive, and its output changes based on the conditions
we imposed and the input we gave.

[73]

Operators

Logical AND (&&)

The AND operator tests the success of two or more expressions and holds true if all the
conditions are true. This comes in handy to make our script a bit more complex so that we
must pass at least a couple of conditions to make something trigger:

#!/bin/bash

echo "Hello user, please give me a number between 10 and 20:
read user_input

if [${user_input} —-ge 10] && [${user_input} -le 20]

then

echo "Great! The number ${user_input} is what we were looking for!"
else

echo "The number ${user_input} is not what we are looking for..."
fi

In this case, we ask for a couple of conditions that must hold true at the same time: the
number given by the user must be equal or greater than 10 and lesser or equal than 20. Let's

see:

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20:

9

The number 9 is not what we are looking for...

The number 9 is not a valid value: it is less than 20 but
not bigger than 10.

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20:

10

Great! The number 10 is what we were looking for!

Yes, 10 is good, since it is equal to 10 and less than 20. Both conditions are true at the same
time. We have the following code:

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20:
11

Great! The number 11 is what we were looking for!

With 11, we are OK, because it is more than 10 but at the same time, less than 20:

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20:
19

Great! The number 19 is what we were looking for!

[74]

Operators

Still a valid answer because it is more than 10 and less than 20:

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20:
20

Great! The number 20 is what we were looking for!

This should be the last valid answer. The value is above 10 and equal to 20, but 20 is our
upper limit, so one more and we are out of our boundaries:

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20:
21

The number 21 is not what we are looking for..

Here we are: above 10 but also above 20, and our second condition holds true only if the
value is less than or equal to 20. So, just one condition is true, the other is false, and 21 is
not the number we were looking for.

Logical OR (||)

The OR operator tests the success of two or more expressions and holds true if at least one
condition is true:

#!/bin/bash

echo "Hello user, please give me a number between 10 and 20
or between 50 and 10: "

read user_input

if [[${user_input} —-ge 10 && ${user_input} -le 20]] ||

[[${user_input} —-ge 50 && ${user_input} -le 100]]

then

echo "Great! The number ${user_input} is what we were looking
for!"

else

echo "The number ${user_input} is not what we are looking for..."
fi

[75]

Operators

What we see here are a few interesting things. First, we used a compound condition test so
that we can now check between four different conditions, grouped by 2. Our test holds true
if the user give us a number that is equal to or higher than 10 and at the same time, lower
than or equal to 20, or if he types a number that is equal to or higher than 50, and at the
same time lower or equal to 100.

Note that we had to use the test command with double brackets [[; this is a Bash
improvement over the single bracket, and it should be preferred over this last one. To be
true, the [is an actual binary, a command you can find into the operating system and [[is
a keyword available only in Bash, Zsh and Korn shell.

There are quite a few interesting improvements with the double bracket. As an example, it
does not suffer from word splitting or glob expansion, so deals better with spaces and
empty strings and you do not have to quote your variables. Other advantages are that you
do not have to escape any parenthesis inside the double brackets, and you can also use !,
&&, and | | inside them to combine different expressions. We used the [] test operator in our
examples just to get used to them, but you will see in most of the scripts, you will encounter
that the brackets are usually adopted for file or string test, whereas for testing numbers, you
will prefer using the arithmetic operations s (()) because the first is deprecated for
arithmetic operations.

Comma operator (,)

One last operator that actually does not fit into any other category is the comma operator,
which is used to chain together arithmetic operations. All the operations are evaluated, but
only the value from the last one is returned:

zarrelli:~$ echo $((x=1, 7-2))
5
zarrelli@moveaway:~$ echo ${x}
1

[76]

Operators

Operators evaluation order and precedence
in decreasing relevance

Operators are evaluated in a precise order and we must keep this in mind when working
with them. It is not so easy to remember what is evaluated before and what after, so the
following table will help us to keep in mind the order and precedence of operators:

Operator Evaluation order

+ - Unary operators for incrementing/decrementing, evaluated from left to
right

+- I~ Unary plus and minus, evaluated from right to left

*/ % Multiplication, division, modulo, are evaluated from left to right and are
evaluated after

+- Addition and subtraction are evaluated from left to right

<> Bitwise shift are evaluated from left to right

<==><> Comparison operators, from left to right

== Equality operators, from left to right

& Bitwise AND, from left to right

A Bitwise XOR, from left to right

| Bitwise OR, from left to right

&& Logic AND, from left to right

I Logic OR, from left to right

=+=-+%//=%= | Assignment operators, from left to right

=N=<<==>>)=

Exit codes

We have already seen that when a program encounters issues it exits, usually with an error
message. What does exits means? Simply that the code execution terminates and the
program, or the script, returns an exit code that informs the system of what happened. This
is very handy for us, since we can trap the exit code of a program and decide what to do

based on its value.

[77]

Operators

0 Success
1 Failure
2 Misuse of builtin

126 | Command not executable

127 | Command not found

128 |Invalid argument

128+x | Fatal error exit with signal x

130 |Execution terminated by Ctrl +C
255 | Exit state out of boundary (0-255)

So, maybe you already guessed, each execution terminates with an exit code, whether
successful or not, with an error message or silently:

zarrelli:~$ date ; echo $?
Thu 2 Feb 19:17:48 GMT 2017
0

As you can see, the exit code is 0 because the command was executed without issues. Now,
let's try this:

zarrelli:~$ asrw ; echo $?
bash: asrw: command not found
127

Itis a command not found as we just typed a meaningless bunch of characters. Now a
while cycle will not terminate until we press Ctrl + C.

while true ; do echo 1 ; done

You will see your screen filling up with a column of infinite 1. Press Ctrl + C and you will
see:

AC
Now, let's check the exit code:

zarrelli:~$ echo $°?
130

[78]

Operators

Now, let's create a never-ending script:

#!/bin/bash
while true; do
echo ${$}

done

Although true is a never-ending cycle, since the condition is always true, it will print to the
stdout the PID of the shell, which the script is running in. Let's open a second terminal and
launch the script from the first; you will see the same PID repeated indefinitely:

1764
1764
1764
1764
1764

Now, from the second terminal, using the same user or root user, issue:

zarrelli:~$ kill -9 1764

Go back to the first terminal, and you see your script terminated:

1764
1764
1764
1764
Killed

Time to check the exit status of the script:

zarrelli:~$ echo $°?
137

Whichis 128 + 9, 9 being the signal we used to kill the process. Let's run the script again:

1778
1778
1778
1778

Now kill it from the second terminal with:

zarrelli:~$ kill -15 1778
1778

1778

1778

1778

Terminated

[79]

Operators

Back to the first terminal to check the exit code of the script:

zarrelli:~$ echo $?
143

And 143 is exactly 128 + 15, as we expected.

Exiting a script

So far, we have seen how a script terminated with the exit status of the last command
issued, and how a $2 allows us to read the exit value. This is possible because every
command returns an exit code, whether issued on the command line or from inside a script,
and even functions that we can think of as a compound of commands return a value. Now
we are going to see how a script can return an exit code on its own, despite of the result of
the last command issued:

#!/bin/bash
counter=10
while [$counter -gt 0];

do

echo "Loop number: $((counter--))"
done

exit 20

We took one of our previous scripts and added this:

exit 20

As you can see, we used the command exit followed by a positive number to give an exit
code. Remember that you can use any code between:

0-255

With the exclusion of the reserved values, we saw in the previous chapter. Now, let's run
the script:

zarrelli:~$./loop-exit.sh ; echo $?
Loop number: 10

Loop number: 9

Loop number:
Loop number:
Loop number:
Loop number:
Loop number:
Loop number:
Loop number:

NWwbd oo do

[801]

Operators

Loop number: 1
20

Here we are. Instead of having a 0 as the script exit value, since the last instruction was
successful, we have a 20, provided by the exit command.

Let's modify the script a bit so that the exit will be just above our echo command:

#!/bin/bash

counter=10

exit_at=5

while ((counter > 0));

do

echo "Loop number: $((counter—--))"
if (($counter <exit_at)); then
exit 18

fi

done

Note a couple of things:

e We are using both $ (()) and (()). The first is an arithmetic expansion and gives
us a number, the second is a command that gives us an exit status so we can read
if it is true (0) that the value of counter is less than value of exit_at.

e We used a condition to break out of this infinite loop. Once the value of counter is
less than the value of exit_at, we exit the whole script with a code of 18,
regardless of the fact that the last command, the evaluation of the i f condition
got a value of 1, so was a failure.

And now, execute the following script:

zarrelli:~$ /loop-premature-exit.sh ; echo $?
Loop number: 10

Loop number: 9

Loop number:
Loop number:
Loop number:
Loop number:
18

U o J o

Here we are. The script exited once it passed the boundary of 5, so the remaining five echo
commands were not executed at all and we got 18 as the exit value. So, now you have a
handy loop that you can use to iterate over items and stop when a condition is reached.

[81]

Operators

We said that the exit command prevents the further execution of a script and the previous
example gave us a glimpse of it, but let's modify our previous loop script moving the exit
20 command to some lines earlier:

#!/bin/bash

counter=10

while [$counter -gt 0];

do

exit 20

echo"Loop number: $((counter—--))"
done

Now, let's execute it:

zarrelli:$./loop-upper—-exit.sh ; echo $?
20

Well, no output and the exit value is 20. The script had no time to reach the echo line, it was
forced to exit well before. Now, let's see how our exit command masquerades the exit code
from a command not found:

#!/bin/bash

counter=10

while [$counter -gt 0];

do

echo "Loop number: $((counter—-))"
fsaapoiwe

done

exit 20

Have a loop at the line under echo, that is, a bunch of characters without any sense, so it
will throw an error for sure:

zarrelli:~$./loop-error—-exit.sh ; echo §?

Loop number: 10

./loop—error—exit.sh: line 8: fsaapoiwe: command not found
Loop number: 9

./loop—error—exit.sh: line 8: fsaapoiwe: command not found
Loop number: 8

./loop—error—exit.sh: line 8: fsaapoiwe: command not found
Loop number: 7

./loop—error—exit.sh: line 8: fsaapoiwe: command not found
Loop number: 6

./loop—error—exit.sh: line 8: fsaapoiwe: command not found
Loop number: 5

./loop—error—exit.sh: line 8: fsaapoiwe: command not found
Loop number: 4

[82]

Operators

./loop—error—exit.sh: line 8: fsaapoiwe: command not found
Loop number: 3

./loop—error—exit.sh: line 8: fsaapoiwe: command not found
Loop number: 2

./loop—error—exit.sh: line 8: fsaapoiwe: command not found
Loop number: 1

./loop—error—exit.sh: line 8: fsaapoiwe: command not found
20

It did, we had errors at each cycle, but the overall exit code is still 20, since we forced this
using the exit command.

What are the benefits we can get from the usage of the exit command? Well, we just saw a
nice and easy counter that can be useful to iterate over numbers, items, arrays, lists, but in a
broader way, we can use the exit codes to check the result of a function we created, of a
command we invoked and based on the value we get, react accordingly. To do this, though,
we need to a way to verify and react, to check whether a condition is met or not, and based
on that, to do something or something else, we need to have a closer look at the 1 f. . .else
statement and at the tests operators.

Summary

In the previous chapter, we had a look at the variable; now we have just looked at how to
correlate them. Assigning values and being able to perform some math or logic operations
on them gives us more flexibility, since we do not just collect something, but transform it
into something different and new. We also learned that exit codes can sometimes be pitfalls,
trapping us with red herrings, and this tells us something important: never take anything as
a given, always double-check what you are writing in your code, and always try to catch all
the possible outcomes and exceptions. It seems like something obvious, but being such
common sense, we tend to overlook this simple but effective code style advice.

[83]

Testing

We have stressed so far the importance of giving a structure to our scripts, to make them
flexible, and to have them react to some conditions and situations so that they will help us
automate some routine tasks making decisions and performing actions on our behalf. What
we saw in the previous chapters enables us to assign variables, change their values in
different ways, and also to preserve them; but from the examples shown, it is clear that we
need some more and this is what this new chapter is all about. We will see how to test,
make comparisons, and get to react accordingly to the results, and we will give our first
structure to a script having to make a decision if something happens.

What if...else

Let's take one of our previous examples and examine it in more detail:

#!/bin/bash

echo "Hello user, please give me a number between 10 and 20: "
read user_input

if [${user_input} -ge 10] && [${user_input} -le 20]

then

echo "Great! The number ${user_input} is what we were looking for!"
else

echo "The number ${user_input} is not what we are looking for..."
fi

As an exercise to ease its comprehension, let's try to write it in natural language:

1. Print a greeting asking for a number between 10 and 20
2. Read the user input and save it in the user_input variable

3. If the value of user_input is greater or equal to 10 and the value of user_input
is less or equal to 2, then print an OK message to the user

Testing

4. Otherwise (else), if the conditions are not met, print a not OK message
5. Fi, end of condition

These are the basics of a conditional statement and it lets you explore on condition: if it
succeeds, an instruction is executed, if it fails, another block of instructions is invoked. We
can also make it a bit more flexible, introducing an alternative condition to check in case the
first fails (e1if):

o if the exit code of the condition tested is 0

e then

¢ do something

e clif the exit code of this other condition tested is 0
¢ do something

e else if any of the previous conditions returned 0
¢ do something

e fi we exit from the conditional statement

So in this more articulated shape, the condition offers more flexibility and keep in mind that
you can have as many elif blocks as you want and even nest i f into i £, even though it is
not recommended for clarity's sake. Now, let us make a real-life example with return codes,
starting with the creation of three test files:

zarrelli:~$ touch testl test2 test3

Now, let us create a small script that will check for the existence of these three files:

#!/bin/sh

echo "We are going to test for files testl test2 test3"

if 1s testl

then

echo "File testl exists so the 1ls testl execution returns $?"
elif 1s test2

then

echo "File test2 exists so the 1ls test2 execution returns $?"
elif 1s test3

then

echo "File tes3 exists so the 1ls test3 execution returns $?"
else

echo "Neither or testl or test2 or test3 exist so the the exit
code is $°?"

fi

echo "End of the script"

[85]

Testing

Now, let's run it and have a look at what happens:

zarrelli:~$./test-files.sh
We are going to test for files testl test2 test3

testl
File testl exists so the 1ls testl execution returns 0
End of the script

What happened? The first 1s on test1 returned 0, so it was successful and the conditional
did not proceed testing the other options end exited the statement executing the next
instruction outside the conditional and this was:

echo "End of the script"

Now it is time to see what happens if the first condition encountered fails, so we are going
to delete the test1 file:

rm testl

And execute the script again:

zarrelli:~$./test-files.sh
We are going to test for files testl test2 test3
ls: cannot access 'testl': No such file or directory

test2
File test2 exists so the ls test2 execution retuns 0
End of the script

Again, what happened? The first instruction, 1s test1, failed since there isno test1 file
left to show with 1s and so the instruction returned 1. The script then proceeded further
into the conditional statement to the second condition, executing 1s test2. In this case,
since file2 exists, the command returned 0 and the script exited the statement, executing
the first instruction outside the conditional, again:

echo "End of the script"

Let us go on, deleting test2:

rm testl

And now invoke the script:

zarrelli:~$./test-files.sh

We are going to test for files testl test2 test3

ls: cannot access 'testl': No such file or directory
ls: cannot access 'test2': No such file or directory
test3

[86]

Testing

File test3 exists so the 1ls test3 execution retuns 0
End of the script

Since test1 and test2 do not exist, the first two 1s fail and so the first two conditions with
them, but not the third 1s since test 3 still exists. The third 1s then is successful and
returns 0, the script exits the conditional and executes the first instruction outside of it,
again:

echo "End of the script"

Final test, time to remove test3:

rm test3

And execute the script:

zarrelli:$./test-files.sh

We are going to test for files testl test2 test3

ls: cannot access 'testl': No such file or directory

ls: cannot access 'test2': No such file or directory

ls: cannot access 'test3': No such file or directory

Neither or testl or test2 or test3 exist so the the exit code is 2
End of the script

It should be clear now what is going on. All the i f. . . then conditions failed and so the last
resort is the else sections, which report the exit code of the 1stest 3. Once this is done, the
script exits the conditional and executes the first instruction outside of it, which is:

echo "End of the script"

Be aware that the overall exit status of a conditional statement is the one belonging to the
last instruction executed and the overall exit code of the script is the one of the last
instruction executed by the script itself:

zarrelli:~$./test-files.sh ; echo $?

We are going to test for files testl test2 test3

ls: cannot access 'testl': No such file or directory

ls: cannot access 'test2': No such file or directory

ls: cannot access 'test3': No such file or directory

Neither or testl or test2 or test3 exist so the the exit code is 2
End of the script

0

[871]

Testing

What we see here is the script returning a value of 0, and this is correct since the last
instruction executed echo End of the script was successful. Let's now change the last
instruction of the script with the following:

else

The colon actually means do nothing, so let's see:

zarrelli$./test-files.sh ; echo $?

We are going to test for files testl test2 test3

ls: cannot access 'testl': No such file or directory
ls: cannot access 'test2': No such file or directory
ls: cannot access 'test3': No such file or directory
0

Again, 0. Now, let's do an inverse check, modifying the third condition adding an !.

elif !1s test3
then
echo "File test3 exists so the 1ls test3 execution retuns $?"

So, the check is successful if 1s test3 returns 1:

zarrelli:~./test-files-not.sh ; echo $?

We are going to test for files testl test2 test3

ls: cannot access 'testl': No such file or directory
ls: cannot access 'test2': No such file or directory
ls: cannot access 'test3': No such file or directory
File test3 exists so the ls test3 execution retuns 0
0

Well, the message printed is a red herring since the execution of 1s test3 is not successful
and cannot return 0:

zarrelli:~$ 1ls test3 ; echo $?
ls: cannot access 'test3': No such file or directory
2

What returns 0 is actually the check we made on the inverted condition:

elif !1s file3

It can be read as the if condition is verified if 1s file3 is not verified. So, since for us
verified is successful and successful is represented by a return value of 0, the condition is
verified (0) only if the if 1s file3 isnot verified (-ne 0).So, be careful when using such
conditions because you could incur in some unexpected results.

[881]

Testing

We just saw how to check a condition one at a time, but we can combine operators in a
single case check so that we can achieve more interesting results. Have a look at the
following script:

#!/bin/bash

echo "Hello user, please give me a number between 10 and 20,
it must be even: "

read user_input

if [[${user_input} -ge 10 && ${user_input} -le 20 &&

$((Suser_input % 2)) -eq 0 1]

then

echo "Great! The number ${user_input} is what we were looking for!"
else

echo "The number ${user_input} is not what we are looking for..."
fi

What we are doing here is testing three different conditions at the same time so the i f will
be verified only when the user inputs a number between 10 and 20 and it must be even. In
other words, it must be divisible by 2 and we test it checking that the modulo of the value is
0. Let's try some values:

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20, it
must be even:

8

The number 8 is not what we are looking for...

This number satisfied both the third and second conditions since it is even and lower than
20 but it fails the first since it is not equal to or above 10. So, the if condition is not verified
and else action is triggered:

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20, it
must be even:

9

The number 9 is not what we are looking for...

Now the number fails the first and third conditions and satisfies the first, it is not equal or
above 10, it is not even but it is less than 20, so the else action is triggered.

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20, it
must be even:

10

Great! The number 10 is what we were looking for!

[891]

Testing

Number 10 is good. It satisfies the first and second conditions because it is equal to 10 and
less than 20, and it satisfied the third condition because it is even, so the action in the then
block is triggered.

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20, it
must be even:

15

The number 15 is not what we are looking for...

In this case, the first and second conditions are verified, but the third is not. 15 is not even,
so the else block action is triggered:

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20, it
must be even:

20

Great! The number 20 is what we were looking for!

20 is good, it is above 10, equal to 20, and we can divide it by 2, so all three conditions are
verified and the if block action is triggered:

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20, it
must be even:

21

The number 21 is not what we are looking for...

This number satisfies the first condition, being above 10, but fails the other two since it is
not equal to or below 20 and it is not even. So the else block action is triggered:

zarrelli:~$./userinput-and.sh

Hello user, please give me a number between 10 and 20, it
must be even:

22

The number 22 is not what we are looking for...

Not even this number is good. It satisfies the first condition, being above 10, but fails the
second since it is not equal to or below 20. The third condition is satisfied, but this is not
enough. So the else block action is triggered.

[90]

Testing

As we can see, when dealing with multiple conditions, we have to be really careful about
what we write and think about the outcome since sometimes we could get something we
did not actually want. A rule of thumb, try to keep your conditions as simple as you can or
take your time to check them thoroughly. Did we say simple? Look at this:

#!/bin/bash
echo "Hello user, please give me an even number: "
read user_input

if ! ((Suser_input % 2))

then

echo "Great! The number ${user_input} is what we were looking for!"
fi

We are using an arithmetic evaluation compound command and negate it to check whether
a number is even: if it is not true that the modulo operation fails, then the condition is
verified. But, look, we have no else block, we just evaluate the if condition and exit the
conditional because we are not interested in reacting to any other cases. This is typical, for
instance, counter exit conditions, as we saw before: we want to exit the loop if the counter
reaches a specific value, otherwise we let the cycle run. Let's have a look at the results:

zarrelli:~$./userinput-and-simple.sh

Hello user, please give me an even number:

20

Great! The number 2 is what we were looking for!
The modulo of 20 by 2 is O0:

zarrelli:~$ a=$((20 $ 2)) ; echo ${a}

0

The modulo operation does not give a result. Have a look at the return code of this
operation:

zarrelli:~/$ ((20 % 2)) ; echo $?
1

And here we are, the return code is 1, which means it is not OK for us. So if a number
passed through a modulo operation and gives 0, the return code is failure and this means
that dividing the number by two has no reminder. All this means that if a number is
divisible for 2; for example, it does not give us any reminder from the division, and it is
even. Now, let us try an odd number:

zarrelli:~$./userinput-and-simple.shsimple.sh
Hello user, please give me an even number:
25

[91]

Testing

No then block action is triggered, since this is an odd number. Let us verify it:

zarrelli:~$ ((25 % 2)) ; echo $?
0

The operation is successful so we have to get some remainder. Double check:

zarrelli:~$ a=25 ; b=2 ; c=$((a/b)) ; echo ${c}
12

We have 12 as a remainder of the division of 25 by 2. So now the condition we saw in the
previous script is clearer:

if ! ((Suser_input % 2))
The if statement is fulfilled if the modulo by two arithmetic operation fails. So, if a number

is not divisible by 2 it is even, simple. Now it is time to take a look at how we can test our
conditions.

Test command recap

As we have seen in some of our previous examples, we used the shell built-in test to
perform some checks on variables and files along with the conditional i f. . .then so that
we could make our script react to conditions: if the test is successful it returns 0, if it is
not, 1, and these are the values that triggered our reactions so far.

We can use a couple of different notations to execute a test and we already saw them:

[expression]

or

[[expression]]

We already spoke about the differences between the two, but let us quickly recap them
before proceeding:

¢ The single bracket implements the standard POSIX compliant test command
and it is available in all POSIX shells. [is actually a command whose argument is
1, and this prevents the single brackets from receiving further arguments.
e Some Linux versions still have a /bin/ [command, but the
built-in version has the precedence in execution.

¢ The double brackets is only available in Bash, zsh, and korn shells.

[92]

Testing

¢ The double brackets is a keyword, not a program, available from the 2.02 version
of the Bash and offers some great features, as follows:

e The =~ operator for regular expression matching

¢ The = or == are available for pattern matching

* You can use <> without having to escape the \> \<

® You can use && instead of —a and | | instead of -o

* You do not need to escape the parenthesis \ (\) to group expressions

¢ Glob expansion so a *can expand to everything, and this comes handy
in pattern matching
¢ You do not have to quote variables to keep safe spaces inside them

So, it seems that the double brackets gives us a bit of flexibility more than the old command,
but before using it widely think about the audience of your scripts. If you want them
available across different shells and, inside the same Bash, across different versions try to
avoid using commands or built-ins that are only available in some of them. Sticking with
the POSIX standard will make your scripts widely shareable, but as a drawback, they will
lack the advanced features that some keywords such as double brackets have to offer. So,
wisely balance your writing style and adopt the strategy that best matches your goals. We,
when possible, will use the single bracket notation just to be as compatible as we can.

Testing files

There is quite a lot to say about testing and one of the most common tasks is checking files
on the filesystem or if a directory is available or has some rights. So, imagine a script that
has to write some data in a file inside a directory: first, we should check whether the
directory exists, then if we can write into it, and finally if there is no name collision between
the file we are going to open for writing and an already existing file. So let's have a look at
which operators we use to execute some tests on files and devices and remember that they
return t rue if the condition is met:

e —e: Returns true if a file exists:

zarrelli:~$ 1ls test-files.sh
test-files.sh

[93]

Testing

We just verified that the file test-files. sh exists since 1s shows it:

zarrelli:~$ if [—-e test-files.sh] ; then
echo "Yes, this is a file!" ; fi
Yes, this is a file device!

Our test confirms it with a nice message.

Let's verify now that a file named aaaaa is not present in our current directory:

zarrelli:~$ lsaaaaa
ls: cannot access 'aaaaa': No such file or directory

OK, there is no file with such a name; let us do a test:

zarrelli:~$ if [—e aaaaa] ; then echo "Yes, this is a file!";
else
echo "There is not such a file!" ; fi

There is not such a file!

Well, as you can see, we used a semicolon to divide the different parts of the statement. In a
script, we would have seen the following;:

#!/bin/bash

if [—e aaaaa]

then

echo "Yes, this is a file!"

else

echo "There is not such a file!"
fi

Each single command must be properly terminated either by a new line or a ;. Each chunk
of code delimited by a ; will be executed before the following without the need for a new
line.

e —a: This has the same purpose of ¢, but it is deprecated.

e —Db: This checks whether the file is actually a block device, like a disk, a CD-ROM,
or a tape device:

zarrelli:~$ if [-b /dev/nvmeOnlpl] ;
then

echo "Yes, this is a block device!" ; fi
Yes, this is a block device!

[94]

Testing

o —d:

o —f:

This checks whether a file is actually a directory or not:

zarrelli:~$ if [-d test] ;

then echo "Yes, this is a directory!"

else echo "There is not such a directory!" ; fi
Yes, this is a directory!

This checks whether a file is a regular file and does not represent something

like a character device or a directory or a block device:

zarrelli:~$ if [—-f /dev/tty7] ;

then echo "Yes, this is a regular file!" ;
else echo "There is not a regular file!" ; fi
There is not a regular file!

Well, this is a file that represents a terminal, so it is clearly not a regular file as
test.file could be:

zarrelli:~$ touch test.file

zarrelli:~$ if [—-f test.file] ;

then echo "Yes, this is a regular file!" ;
else echo "There is not a regular file!" ; fi
Yes, this is a regular file!

: This tests if the argument is a character file:

zarrelli:~$ if [—-c /dev/tty7 1 ;

then echo "Yes, this is a character file!"

else echo "There is not a character file!" ; fi
Yes, this is a character file!

: This is true if the file is not of 0 size:

zarrelli:~$ if [-s test.file] ;

then echo "Yes, the size of this file is not O!"
else echo "The size of this file is 0!" ; fi

The size of this file is 0!

Well, we just touched the file, so we created it with 0 byte size. Let's fill it with a
character:

zarrelli:~$ echo 1 >>test.file

[95]

Testing

And now, let's repeat the test:

zarrelli:~$ if [-s test.file] ;

then echo "Yes, the size of this file is not 0!"
else echo "The size of this file is 0!" ; fi
Yes, the size of this file is not 0!

e —g: This is true if the directory has a sgid flag set. As we saw, the set group ID
imposed on a directory forces the files newly created into it to be owned by the
group who owns the directory itself:

zarrelli:~$ if [—-g test] ;

then echo "Yes, this dir has a sgid bit" ;
else echo "No sgid bit on this dir" ; fi
No sgid bit on this dir

And now:

zarrelli:~$ chmodg+s test

zarrelli:~$ if [—-g test] ;

then echo "Yes, this dir has a sgid bit" ;
else echo "No sgid bit on this dir" ; fi
Yes, this dir has a sgid bit

e —G: This is true if the group ID is the same as that of yours. Let's test on a file first:

zarrelli:~$ if [-G test.file] ;

then echo "Yes, this file has your same group owner"

else echo "No the group owner is not the same of yours" ; fi
Yes, this file has your same group owner

And now on a directory:

zarrelli:~$ if [-G test] ;
then echo "Yes, this file has your same group owner" ;
else echo "No the group owner is not the same of yours"

Yes, this file has your same group owner

fi

[96]

Testing

Let's double-check changing the group owner of test.file:

zarrelli:~$ su

Password:

root:# chgrp root test.file

root:# 1ls -lahtest.file

—-rw—-r—-r—— 1 zarrelli root 2 Feb 6 18:23 test.file
root: # exit

exit

zarrelli:~$ if [-G test.file] ;

then echo "Yes, this file has your same group owner" ;
else echo "No the group owner is not the same of yours" ; fi
No the group owner is not the same of yours

e —0: This is true if you are the owner:

zarrelli$ if [-O test.file] ;

then echo "Yes, you are the owner"

else echo "No you are not the owner" ; fi

Yes, you are the owner

zarrelli:~$ 1ls -lahtest.file

-rw—-r—-r—— 1 zarrellizarrelli 2 Feb 6 18:23 test.file

e —N: This is true if the file was modified since the last read. This can become handy
when you want to backup a file or just see if new information has been added. A
typical scenario would be a log file or a data file being fed by a process, a service:
if in a certain amount of time, the file has not been modified it probably means
that the process is not running or not working properly so we can probably do
something like restart it. So, let's have a look at one of our previous scripts:

zarrelli:~$ if [-N userinput-or.sh] ;

then echo "Yes, it has been modified since last read"
else echo "No modifications since last read " ; fi
No modifications since last read

OK, the files seems to have not been modified lately, so it is time to modify it:

zarrelli:~$ echo 1 >> userinput-or.sh

zarrelli:~$ if [-N userinput-or.sh] ;

then echo "Yes, it has been modified since last read"
else echo "No modifications since last read " ; fi
Yes, it has been modified since last read

[97]

Testing

That's it. Remember that in all the tests when we say that the test is true when the
condition is verified, we imply a second condition that is the file must exist. So in
this case, we would sayi, it is verified if the file exists and has not been modified
from last read. Also remember that in Unix everything is a file, so a directory.

e —u: This is true if the suid bit is flagged. This kind of test can become quite useful

for different reasons related to the fact that when you run an executable it usually
runs with the privileges of the user who invoked it. With the suid bit flagged the
executable is run with the privileges of the owner of that executable file not with
the ones of the invoker also not with those of the one who invoked it. So, a
program owned by root with the suid bit flagged can be a real harm to the
security of a system since whoever invokes it has the root rights over the system
itself. On the other side of the medal some programs, especially those that must
have root rights to access a device, need to have the suid bit flagged because this
allows a normal user to access the devices as root without having to access the
full root environment:

zarrelli:$ su

Password:

root:# chown root test.file

root:# ls —-lahtest.file

—-rw-r——r—— 1 root zarrelli 2 Feb 6 18:23 test.file
root:# chmod +s test.file

root:# ls —-lahtest.file

—-rwSr-Sr—— 1 root zarrelli 2 Feb 6 18:23 test.file
root:# exit

exit

zarrelli:~$ if [—u test.file] ;

then echo "Yes, it has the suid bit flagged" ;

else echo "No suid bit found" ; fi

~k: This is true if the st icky bit is flagged. This kind of privilege is really
interesting because if imposed on a file, it will have the file held in memory
resulting in faster access, but applied to a directory it restricts the user rights:
only the directory owner of the owner of the file inside a directory with a sticky
bit set will be able to delete the file itself. This comes really handy in a
collaborative environment where several users have their working file in the
same directory, and applying the sticky bit on it will give the file owners the right
to delete their files only:

zarrelli:~$ chmod +t test
zarrelli:~$ if [-k test] ;
then echo "Yes, it has the sticky bit set" ;

[981]

Testing

else echo "No sticky bit set" ; fi
Yes, it has the sticky bit set

e —r: This is true if the read permission is set for the user executing the test:

zarrelli:~$ if [-r test.file] ;

then echo "Yes, this user can read the file" ;
else echo "No this user cannot read the file" ; fi
Yes, this user can read the file

So, the user can read the file, let's check the following:

zarrelli$ ls -lahtest.file
—-rwSr-Sr—— 1 root zarrelli 2 Feb 6 18:23 test.file

Oh, well, the file is owned by root and root has read access, so why was the test
successful if the read is granted to root? Simple:

zarrelli:~$ su

Password:

root:# chmodog-r test.file

root:# exit

exit

zarrelli:~$ if [-r test.file] ;

then echo "Yes, this user can read the file"

else echo "No this user cannot read the file" ; fi
No this user cannot read the file

What happened? The first time we tried the test the owner was root, but the user
zarrelli was still able to read the file through group permission and other
permission. So, clearing those bits made the file readable only by the root user, no
one else.

e —w: This is true if the write bit is set:

zarrelli:~$ if [-w test.file] ;
then echo "Yes, this user can write to the file" ;
else echo "No this user cannot write to the file" ; fi

No this user cannot write to the file

[991]

Testing

Interesting, let's have a look at the file:

zarrelli:~$ 1ls -lahtest.file
—rw——-S——— 1 root zarrelli 2 Feb 6 18:23 test.file

Indeed, only the root user can write to it. Would you like to try and fix the issue
then run the test again?
e —x: This is true if the execution bit is set:

zarrelli:~$ if [-x test.fi